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Abstract

We investigate a model that allows us to look at electron transfer in the fast-hopping regime.
Using recent developments in the study of non-equilibrium processes, we compute optimal
protocols which minimize the excess work required to drive the system from one control
parameter value to another. Using these protocols, we evolve the system using Fokker-Planck
dynamics to calculate how successful these protocols are over a variety of parameter values.
We find that in using these protocols there is a trade-off between reducing the dissipation
and successfully transferring the electron.
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Chapter 1

Introduction

Our goal is to explore and develop theory on how to minimize the excess work done when
trying to transfer an electron from one surface to another in non-equilibrium conditions.
We examine the non-equilibrium thermodynamics of a simple model system that reflects
the potential an electron may feel.

This topic may be of interest in a variety of fields. For example, in many fuel cells,
electron-transfer efficiency plays an important role. Efficiency is also important when de-
signing solar cells or artificial photosynthesis. It may also have further application in bio-
physics in explaining how molecular machines achieve very high efficiency, despite operating
out of equilibrium.

A theoretical background will be described in Chapter 2 to flesh out the necessary details
on optimal control of an out-of-equilibrium stochastic system.

1.1 The Model System

This section will cover the specifics of the model used [1]. We are interested in the transfer
of an electron from one surface to another, such as from a metal to a molecule. We want
to transfer the electron by ramping the potential voltage of one of the surfaces up or down
appropriately in order to make it energetically favourable for the electron to be on one
surface or the other. For the model, the two surfaces are described by two offset quadratic
traps. V0(x; � ) describes the system when the molecule is uncharged, and V1(x) describes
the system when an electron has been transferred from the metal to the molecule:

V0(x; � ) =
1
2

k0x2 + � (1.1)

V1(x) =
1
2

k1(x � x0)2; (1.2)

where � is our time-dependent control parameter (the voltage) which we optimize, x0 is
some fixed distance between the surfaces, and the k’s are the force constants of the traps.
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We will make the approximation that we are in the fast-hopping regime. Then our elec-
tron is quickly switching between the distinct potentials V0(x; � ) and V1(x), and effectively
sees a continuous potential of mean force (PMF) [2] defined by

E(x; � ) = �
1
�

ln
�
e� �V 0 + e� �V 1

�
; (1.3)

which is the Helmholtz free energy of the partition function summing over the two distinct
potentials. Here, � � (kBT) � 1 is the inverse temperature. The control parameter � can take
any value, but in the limit of large j� j the PMF approaches one of the distinct potentials
(V0 for negative � and V1 for positive � ). k0 and k1 can take any positive values, and we set
x0 and � to unity.

Figure 1.1: PMF E(x; � ) (black dashed curve) and distinct potentials V0(x; � ) (blue curve)
and V1(x) (red curve), for k0 = 16:0, k1 = 4 :0, and � = � 2:0.
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Chapter 2

Theoretical Background

Fokker-Planck dynamics [3] describe a particle under the influence of drag and random
forces, such as in Brownian motion. For any system that obeys Fokker-Planck dynamics,



for the generalized friction tensor

� ij
�
� (t0)

�
� �

Z 1

0
dt00h�f j (0)�f i (t00)i � (t0) : (2.4)

h�f j (0)�f i (t00)i � (t0) is the force autocorrelation function, in terms of the equilibrium force
fluctuations. The friction coefficient is indicative of the increase in energy cost of driving
through parameter space quickly.

For potentials which satisfy E(x; � ) �! 1 as jxj �! 1 it is possible [7], and much more
convenient, to express the friction tensor in the form

� ij (� ) =
1
D

Z 1

�1
dx

@� i � eq(x; � )@� j � eq(x; � )
� eq(x; � )

: (2.5)

Here the components of the generalized friction are written entirely in terms of the equilib-
rium probability distribution � eq and the equilibrium cumulative distribution function � eq

(both of which are analytic for our system), and a diffusion coefficient, which will be set to
unity.

Our system only has a single control parameter � , so the excess power and friction
simplify to

Pex(t0) = � (� (t0))
�

d�
dt

� 2

; (2.6)

� (� ) =
1
D

Z 1

�1

[@� � eq(x; � )]2

� eq(x; � )
: (2.7)

The average excess work is just the time integral of the average excess power

Wex =
Z �

0
dtPex(t); (2.8)

where � is the duration of the protocol. We also have a generalized thermodynamic length

L �
Z �

0
dt

q
Pex(t): (2.9)

We can place a lower bound on the excess work:

Wex �
L 2

�
: (2.10)

For the linear response approximation, by the Cauchy-Schwarz inequality the bound is only
achieved by a protocol such that the excess power is constant over the protocol duration.
We can solve the Euler-Lagrange equation, where the cost function f (� (t); _� ) = � (� ) _� 2 is
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the excess power. This gives the solution

_� opt(t) =
(� f � � i )� (� (t)) � 1=2

R�
0 dt� (� (t)) � 1=2

/ � (� (t)) � 1=2 : (2.11)

Put more intuitively, this shows that we would like to choose a path through parameter
space where we are driving slowly when the friction coefficient is large, and quickly when



Chapter 3

Results

3.1 Friction Coefficient



approach the form of one of the distinct potentials, and changes in � have little effect. In
the large and equal k limit, the force variance approaches

h�f 2i � =
1
4

sech2
�
2

: (3.5)

For k0 = k1, the friction peaks at exactly � = 0 and is symmetric with respect to � . For
k0 6= k1 the friction’s peak is shifted to a positive � when k0 < k 1, and a negative � for
k0 > k 1, and the friction is no longer symmetric about its maximum. In general, the friction
peaks at larger values the larger the force constants are. This is also intuitive: as k increases,
the force variance reaches some limit, but one would expect the relaxation time to continue
increasing as the barrier between the wells continues to increase with k. Additionally, small
values of � do not significantly change the large barrier height, so we expect the relaxation



methods. We can rearrange Eq. (2.11) to get

t(� ) =

R�
� i

d�
p

� (� )
1
�

R� f
� i

d�
p

� (� )
; (3.6)

which is not a particularly enlightening form, but gives us expected behaviour as we drive

quickly where the friction is small, and slowly where the friction is large.



Compared to a naive (straight-line) path, we want to drive our system quickly at the
start and end of our protocol but more slowly in the middle.

3.3 Excess Work

Now that we know what our optimal path looks like, we can calculate the approximate
excess work we do over the duration of our protocol, and compare it to the excess work we
would do following a naive path. Although our previous expression for the path in Eq. (3.6)
gives us the correct answer, we would prefer to have � (t), rather than t(� ). We achieve this
by switching from an integral to a discrete step,

� (t + � t) = � (t) +
� t
�

R� f
� i

d�
p

� (� )
p

� (� )
; (3.7)

which depends on our chosen protocol duration and endpoints. For sufficiently small � t

steps, we get the same paths we did previously using Eq. (3.6), and in a much more useful
form.

We can now begin calculating the approximate average excess work, as well as run



The excess work is just the time integral of the excess power. Then the excess work is

hWex i =
Z �

0
dt � (� (t))

�
d�
dt

� 2

; (3.8)

which is approximated numerically by the sum

hWex i =
X

i

�t � (� (t i ))
�

d�
dt

� 2

i
; (3.9)

where
�

d�
dt

� 2

i
indicates the time derivative of the control parameter at a particular time t i .

There is some symmetry in the approximation of the excess work. Conjugate pairs ofk,

where the force constants are swapped (for example having parametersk0 = 4 and k1 = 16,

then k0 = 16 and k0 = 4 ), will have the same excess work. This is due to our system having

no preference (in the near-equilibrium limit) between going forward (driving from the left

well to right well) and backwards (driving from the right well to left well). They are the

same thing energetically, we just choose to go from left to right. Havingk0 = a and k1 = b

and going from left to right is the same situation as having k0 = b and k1 = a and going

from right to left.

For the Fokker-Planck simulations, the work is

hW i � i �! � i +1 =
Z 1

�1
dx [E(x; � i +1 � E (x; � i )] � (x); (3.10)

where � (x) is the current probability distribution, which is generally not the same as the

equilibrium distribution. Again, numerically we compute this as the sum

hW i � i �! � i +1 =
X

j

[E (x j ; � i +1 ) � E (x j ; � i )] � (x j ): (3.11)

To go to the average excess work we sum over all steps in the protocol, minus the free

energy, to get

hWex i = hW i � � F: (3.12)

The simulations act as expected in the long- and short-duration regimes. Generally, as

the force constant of the traps increases, the excess work is increased. An interesting point

is that although we start with our electron in the left well, where it is a�ected mostly by

k0, the excess work for short durations depends more onk1, shown by the grouping of the

curves in Fig. 3.3. This is likely due to the probability distribution lagging far behind its

equilibrium value for a particular � along the protocol for short protocol durations. Because

of the form of the PMF, as � is increased, the PMF looks more and more likeV1(x), and

our electron, which has fallen behind due to the fast protocol, is farther from its equilibrium

probability value. As our potential looks more like V1(x)
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it, the points would converge. Unfortunately, this is di�cult to continue due to increasing

computational cost, both in calculating the optimal path on a �ner time grid, and in solving

the Fokker-Planck equation on a �ner time grid and �ner spatial grid.

Overall, for nearly any time, smaller k values allow a larger improvement in the amount

of excess work done. The protocols with smallerk values approach their asymptotic limit

more quickly (at a shorter protocol duration), and that limit is usually larger. In all cases,

barring the case whenk0 = 64 and k1 = 16, the optimal protocol successfully reduces the

excess work done on the system. If the excess work is the primary concern in transferring

our electron, the optimal path should be used in nearly all cases.

3.4 Distance from Equilibrium

The Kullback-Leibler divergence, also known as the relative entropy, is a measure of how

one probability distribution is di�erent from another reference probability distribution. We

can use it as a measure of whether or not our protocol's succeed in getting the electron from

the left well to the right well by comparing the �nal out-of-equilibrium distribution from

the simulation to the equilibrium distribution expected for � f .

The relative entropy is de�ned as

DKL (P j Q) �
X

x2X

P(x) ln
P(x)
Q(x)

; (3.13)

where, in our usage,P(x) = � neq
� f

(x) is the �nal probability distribution from the Fokker-

Planck simulation, Q(x) = � eq
� f

(x) is the equilibrium probability distribution for the system

at the �nal control-parameter value of � , and X is the system state space our distributions

go over, which is the same for both of them. For our purposes, a smaller relative entropy is

better, as it indicates the two distributions are more similar, and hence the protocol more

successfully transfers the electron.

The relative entropy for several simulations are shown in Fig. 3.5, and the actual prob-

ability distributions are shown in Fig. 3.6. Again, at short protocol times, the results seem

to be most strongly grouped by the k1 value, rather than by k0, even though the particle

does not have a high probability of reaching the right well. Presumably, this is becausek1

has a dominant e�ect on the �nal equilibrium distribution we are comparing to. Similar to

the ratio of the excess work, the relative entropy is best (lowest) when the force constants



Figure 3.5: Relative entropy at the conclusion of optimal (left) and naive (right) protocols,
as a function of protocol duration. Circle markers indicate k0 = k1, up triangle markers
indicate k0 > k 1, and down triangle markers indicate k0 < k 1.

distribution at equilibrium is very narrow. Because of how narrow the distribution is, the

initial distribution is relatively farther out of equilibrium than for a case with a broader

�nal equilibrium distribution. Because of how the relative entropy is de�ned, when we have

a very narrow �nal equilibrium distribution, di�erences from it have larger contributions to





Chapter 4

Methods

Most of the programming for this project was done in FORTRAN. The only exception was
the code used for the Fokker-Planck equation, which was adapted from existing code written
in Cython, which was developed by Joseph Lucero.

4.1 Integration

Because of the simple form of the model, many functions had a closed-form expression. For
those that did not, numerical methods were used.

Many of the expressions for quantities we were interested in included integration from
negative to positive infinity. If there was no analytic solution, in order to make the problem
tractable, we selected an appropriate range over which to integrate. For integration over
� , the canonical ensemble for the system was used to find the probability of being on the
potential V0 or V1, as appropriate. Taking V0(x; � ) and V1(x) as the energy states of the
system, we can then integrate out x by taking

U� (� ) =
� 1
�

ln
Z 1

�1
dxe� �V � ; (4.1)

where � just labels the potential we are currently working with. Because the individual po-
tentials are simple quadratic wells, these are just Gaussian integrals with analytic solutions.
Additionally, V1 is independent of � , so this expression will just give a constant. We can
then find our probability of being on one potential or the other by taking

� � =
e� �U �

e� �U 0 + e� �U 1
: (4.2)



range is skewed towards the tighter trap. For example, for k0 < k 1 the � range will shift to
more positive values.

We do something similar when trying to find a reasonable x range to integrate over. In
this case, we look to our analytic solution for the probability distribution. We are interested
in an x range where the probability of finding our particle is greater than some tolerance,
and also contains both wells (we don’t stop at the low probability at the energy barrier).
We can find where the probability distribution gets sufficiently small by using bisection [8].
We bracket an interval (a; b) such that f (a) has a value greater than our desired tolerance,
and f (b) has a value less than our desired tolerance. Using bisection we can find, to machine
precision, where our probability distribution is equal to our desired tolerance. As long as
our initial guess for a and bbracket our desired tolerance, the bisection method can not fail.
Using this method we find out how far we must integrate over x before the probability of



conditions and a guess of the solution. In order to apply the FTCS method, we must
discretize the derivatives in Eq. (4.3). The FTCS scheme is first order in time, and second
order in space. Then the obvious way to discretize the derivatives is to set

@
@t

� (x; t ) �
� (x; t + � t) � � (x; t )

� t
; (4.4a)

@
@x

[� (x; t )� (x; t )] �
� (x + � x; t )� (x + � x; t ) � � (x; t )� (x; t )

2� x
; (4.4b)

@2

@x2
[D (x; t )� (x; t )] �

D (x + � x; t )� (x + � x; t ) � 2(x; t



One may also consider discretizing the probability flux and setting it to zero, where the
flux is obtained by solving

@�
@t

= �
@J
@x

; (4.7)

where J is the flux. This gives us

J = �� �
@

@x
(D� ): (4.8)

Discretizing this and setting it to zero at the boundary, we get

0 = �� 0 � D
�

� 0 � � � 1

� x

�
; (4.9a)

� � 1 = � 0

�
� � x

D
� 1

�
; (4.9b)

for the left boundary, which is still not good enough. The probability is still able to leak



Chapter 5

Conclusions

This research explored how to transfer an electron or other particle from one surface to
another out of equilibrium while minimizing the amount of excess work done. To this end,
a simple model was developed, using two quadratic potential wells to simulate the two
surfaces. We made the assumption that we were operating in the fast-hopping regime,
where we could treat the two distinct potentials as one continuous one. We calculated
the general friction tensor, and used it to calculate an optimal path through parameter
space that should require the least excess work. We then simulated the evolution of the
probability distribution using the Fokker-Planck equation. From these simulations we were
able to calculate the excess work, and we were able to calculate the relative entropy by
comparing the final non-equilibrium distribution to the expected equilibrium distribution.

Our results suggest that there is a trade-off between optimizing for reduced excess work,
and how fast one is able to have a high chance of successfully transferring the electron. In
nearly all cases, excluding some for short protocol times, the calculated optimal protocol
required less excess work than the naive straight line protocol. This can be seen most clearly
in Fig. 3.4, where the ratios of the excess works for naive and optimal protocols are shown.
As may be intuitive, more loosely bound electrons (represented by smaller force constants)
allow for greater excess work savings, and we can reach the asymptotic limit of these savings
in a shorter protocol duration. Conversely, the distance from equilibrium at the conclusion
of the protocol (quantified by the relative entropy, shown in Fig. 3.5) was higher for the
optimal protocol compared to the naive protocol for equal duration. This indicates that
the final non-equilibrium probability density of the optimal protocol was not as similar to
the desired equilibrium probability density as was its naive counterpart. Using the optimal
protocol generally results in excess work savings, but has a reduced chance of successfully
transferring the electron in a given protocol time.
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5.1 Future Work

For future works continuing this research we would like to improve the precision of our
simulations. This would be best done by changing our method of solving the Fokker-Planck
equation, as well as how we input protocols. At the time of writing, the protocol was cal-
culated and written to file so that they would be reusable. For increased precision, it is
necessary to reduce the time step between points on the protocol. Gaining high precision
means very small time steps (which results in very large files) and long run times. Moving
forward, it may be beneficial to compute the path one step at a time, as the simulation
runs, to keep the memory cost manageable. Additionally, we could move to more sophis-
ticated methods, such as implicit methods. Although the FTCS algorithm works, it is not
particularly stable. Implicit methods would allow better stability, putting less constraints
on the timestep size we use when integrating.

Aside from programming improvements, we would also like to explore other aspects of
the system. In this instance we operated in the fast-hopping regime, where we smoothed our
two distinct potentials into one continuous one. Alternatively, we could leave the potentials
as distinct, and describe the transfer of electrons through a hopping probability such as
 0�! 1 = �� t

~ f (E (x; t )) for transfer from the left well to the right well, and  1�! 0 = �� t
~ (1 �

f (E (x; t ))) for transfer from the right well to the left well, where f (E (x; t )) is the Fermi
function, E(x; t ) is the energy difference between the distinct potentials, and � is a constant
which describes the electron coupling, which is independent of the energy gap.
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