SIMON FRASER UNIVERSITY

MATH 157 D100 Midterm II (A) Solution

Wednesday, November 9, 2016, 11:30-12:15 (only 45 minutes)

PROVIDE THIS DATA AS IT AP- PEARS ON CANVAS!
Last Name
Given Name(s)
Student #
SFU email ID@sfu.ca

INSTRUCTIONS

- 1. Write your last name, given name(s), student number, and SFU email ID in the box above.
- 2. Sign your name in the box provided.
- This exam has 5 questions on 6 pages. Please chec to make sure your exam is complete.
- 4. This is a closed book exam.
- 5. Only approved calculators are permitted.
- 6. Ask for clari cation if you cannot understand a question or there appears to be an error.
- 7. Use the reverse side of the previous page if you need more room for your answer.
- 8. You may lose marks if your explanations are incomplete or poorly presented.
- Please write rmly so that scanning picks up on your writing. Cross out unwanted work (do not erase) and continue on the previous blank page if you need more space.

Questio	Maximum	Score
1	6	
2	9	
3	4	
4		

MATH 157 D100

[3] 1. (a) Let $f(x) = 2x^4 + 4x^3 + 7$.

(i) Find $f^{0}(x)$.

Solution: $f^{0}(x) = 8x^{3}$ 12 x^{2} .

(ii) Find the iterative formula fof (x) in the Newton-Raphson method not simplify your formula.

Solution:

$$x_{n+1} = x_n - \frac{2x_n^4 - 4x_n^3 + 7}{8x_n^3 - 12x_n^2}$$

[3] (b) Suppose the iterative formula flo(x) in the Newton-Raphson method is

$$x_{n+1} = \frac{4x_n^5 + 1}{5x_n^4 + 1}; \quad n = 0; 1; 2; \dots$$

Let $x_0 = 0$. Find x_1 ; x_2 and x_3 .

Solution:

$$x_1 = \frac{4(0)^5 + 1}{5(0)^4 + 1} = 1:$$

$$x_2 = \frac{4(1)^5 + 1}{5(1)^4 + 1} = \frac{5}{6}:$$

$$x_3 = \frac{4(5=6)^5 + 1}{5(5=6)^4 + 1} = \frac{10138}{13263} = 0:764382115.7$$

MATH 157 D100

[4] 3. Given the average cost function is

$$\overline{C}(x) = 200 + \frac{300,000}{x};$$

for some product > 0 and the demand for the product is

$$p = 0.04x + 800; 0 x 20;000$$

(i) Find the total cost function C(x).

Solution:
$$C(x) = x\overline{C}(x) = 200x + 300;000$$

(ii) Find the total revenue functio $\mathbb{R}(x)$.

Solution:
$$R(x) = px = 800x \quad 0.04x^2$$
.

(iii) Find the pro t function P(x).

Solution:
$$P(x) = R(x)$$
 $C(x) = 800x$ $0.04x^2$ $(200x + 300,000) = 600x$ $0.04x^2$ $300,000$

(iv) Find the marginal pro t function $P^{0}(x)$.

Solution:
$$P^{0}(x) = 600 \quad 0.08x$$
.

[3] 4. Use di erentials to nd an approximation of the value 26.99. Solution: Let $y = f(x) = x^{1=3}$. Then $f'(x) = \frac{1}{3}x^{2=3}$. The di erential is

$$dy = \frac{1}{3}x^{2=3}dx$$
:

Let $x_1 = 27$ and $x_2 = 26:99$. Then x = dx = 26:99 27 = 0:01: Since $f^0(27) = \frac{1}{3}(27)^{-2=3} = \frac{1}{27}$. so

$$y = f_{3}(26:99) p_{3}f(27)$$

$$= p_{3}\frac{26:99}{26:99} 3$$

$$= dy$$

$$= \frac{1}{27}(0:01)$$
:

Hence $\frac{p}{3} = \frac{1}{26.99} = 3$ $\frac{1}{2700} = \frac{8099}{2700} = 2.99962963$

[2] 5. (a) By implicit di erentiation, $nd \frac{dy}{dx}$ for the relation given by

$$x^2y^{\frac{1}{2}} = x + 2y^3$$
:

Solution:

$$2xy^{\frac{1}{2}} + x^{2}\frac{1}{2}y^{-\frac{1}{2}}y^{0} = 1 + 6y^{2}y^{0}$$

$$6y^{2} \frac{x^{2}}{2y^{\frac{1}{2}}} y^{0} = 2xy^{\frac{1}{2}} 1$$

$$y^{0} = \frac{2xy^{\frac{1}{2}}}{6y^{2} \frac{x^{2}}{2y^{\frac{1}{2}}}}$$

(b) Find the rst derivative for the following function not simplify your answer.

(i)
$$s = \frac{t^2 + 3}{\cos(t) + 1}$$
.

Solution:
$$\frac{ds}{dt} = \frac{(\cos(t) + 1)(2t) + (t^2 + 3)(-\sin(t))}{(\cos(t) + 1)^2}$$
.

(ii)
$$y = \ln(\sin^2(x^2 + 1))$$
.

Solution:
$$\frac{dy}{dx} = \frac{1}{\sin^2(x^2 + 1)} 2\sin(x^2 + 1)(\cos(x^2 + 1))(2x)$$
.