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Abstract

Conventional top-down and bottom-up energy—-economy models have limitations that affect their usefulness to policy-makers.
Efforts to develop hybrid models, that incorporate valuable aspects of these two frameworks, may be more useful by representing
technologies in the energy—economy explicitly while also representing more realistically the way in which businesses and consumers
choose between those technologies. This representation allows for the realistic simulation of a wide range of technology-specific
regulations and fiscal incentives alongside economy-wide fiscal incentives and disincentives. These policies can be assessed based on
the costs required to reach a goal in the medium term, as well as on the degree to which they induce technological change that affects
costs over long time periods.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Policy-makers are interested in better understanding
the prospects for policies to shift energy systems towards
more environmentally desirable technology paths over a
long-term trajectory. Two types of policy models
attempt to provide this service. Conventional bottom-
up models describe technologies (current and prospec-
tive) in detail, but lack a realistic portrayal of micro-
economic decision-making by businesses and consumers
when selecting technologies, and fail to represent
potential macro-economic equilibrium feedbacks. Con-
ventional top-down models, in contrast, address these
deficiencies by representing macro-economic feedbacks
in a general equilibrium framework and by estimating
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2. Conventional energy—economy models
2.1. Bottom-up models

Conventional bottom-up models are disaggregated
models of the energy—economy that contain a detailed
representation of current and emerging technologies
that can be used to satisfy demands for energy services.
Technologies are characterized in terms of capital and
operating costs, as well as performance attributes such
as fuel consumption and emissions profile. When their
financial costs in different time periods are converted
into present value using a social discount rate (oppor-
tunity cost of capital), many emerging technologies
available for abating various emissions appear to be
profitable or just slightly more expensive relative to
existing stocks of equipment and buildings. Conven-
tional bottom-up models suggest, therefore, that sub-
stantial environmental improvement related to energy
use can be profitable or low cost if these low-emission
technologies were to achieve market dominance.

Many economists criticize the conventional bottom-
up approach, however, for its assumption that a simple
financial cost estimate indicates the full social cost of
technological change. New technologies present greater
financial risks, as do the longer paybacks associated
with irreversible investments—such as most energy
efficiency investments. Some low-cost, low-emission
technologies are not perfect substitutes for their
competitors, requiring a substantial, ongoing subsidy
before businesses or consumers will adopt them. To the
extent they ignore some of these costs, conventional
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reduction could be achieved domestically through a tax
on carbon emissions of no more than $25/t C as well as a
host of other policies.

Top-down analyses have also been used to assess the
potential cost to the US of meeting its Kyoto commit-
ments. Weyant and Hill (1999) summarized the results
of a multi-model comparison of the costs of meeting the
US Kyoto Protocol commitments; most of the models in
their study were of the computable general equilibrium
(top-down) variety. Of the 11 participating models, eight
found that a tax of at least $150/t C would be required
to meet Kyoto commitments, and of these, four required
a tax of at least $250/t C. GDP impacts ranged from
modest levels to the loss of over 3% of economic
growth.

Policy-makers see results from both of these types of
studies and do not know whom to believe, and what
policies to apply. On the one hand, conventional
bottom-up models suggest that environmental goals
can be reached at low cost, and require only mild
policies. On the other hand, conventional top-down
models suggest that achieving environmental goals is
costly, and that more stringent policies are required.

3. A hybrid modelling approach

The challenges with conventional bottom-up and top-
down models suggest that an energy—economy model
that is useful to policy-makers should have strength in
each of the three attributes shown in Fig. 1. Such a
model would contain a disaggregated representation of
the technologies available in the energy—-economy
system. To simulate the manner in which consumers
choose between those technologies, the model would use
real market data and surveys to estimate not only
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Fig. 1. Representation of top-down and bottom-up energy—economy
models. Note: Computable general equilibrium models and time-series
econometric models are both considered top-down.

financial costs, but also key intangible decision factors
that reflect more fully the costs of adopting alternative
technologies. It would also capture the relationship
between the energy system and the rest of the economy
in a broader macro-economic framework. We call this
type of model a hybrid model, because it incorporates
the important features of both top-down and bottom-up
models.

Efforts towards hybrid modelling usually involve
either incorporation of technological detail into a top-
down framework (Bohringer, 1998; Jacobsen, 1998;
Koopmans and te Velde, 2001; Frei et al., 2003) or
incorporation of behavioural realism and/or macro-
feedbacks into a bottom-up framework (Jaccard et al.,
1996; Sanstad et al., 2001; Morris et al., 2002). In this
paper, we present a specific hybrid model, called CIMS,
that started as a bottom-up simulation model, but has
evolved to include macro-economic feedbacks and
empirically estimated behavioural parameters for simu-
lating technological adoption. Because a large challenge
for this type of approach involves estimating how
businesses and firms might choose among future
technology options, we focus our description on this
dimension of the model—in terms of model structure
and parameter estimation. Our particular goal is to
explore how such a model might be more useful to
policy-makers in terms of linking immediate policy
initiatives to future financial costs and adoption rates of
new technologies. In this sense, a key objective for using
this model is the endogenous modelling of policies to
induce technological change.

3.1. The CIMS hybrid model

The CIMS hybrid model is an integrated, energy—ec-
onomy equilibrium model that simulates the interaction
of energy supply demand and the macro-economic
performance of key sectors of the economy, including
trade effects. Unlike most computable general equili-
brium models, however, the current version of CIMS
does not equilibrate government budgets and the
markets for employment and investment. Also, its
representation of the economy’s inputs and outputs is
skewed towards energy supply, energy-intensive indus-
tries, and key energy end-uses in the residential,
commercial/institutional, and transportation sectors.

As a technology vintage model, CIMS simulates the
evolution of capital stocks over time through retire-
ments, retrofits, and new purchases, in which consumers
and businesses make sequential acquisitions with limited
foresight (Jaccard et al., 2003). The model calculates
energy costs (and emissions) at each energy service
demand node in the economy, such as heated commer-
cial floor space or person-kilometres-travelled. In each
time period, capital stocks are retired according to an
age-dependent function (although retrofit of unretired






which businesses and consumers are presented with
hypothetical choices between well-known technologies
and emerging technologies. The most common ap-
proach to provide consumer and business values is
through discrete choice surveys and analysis. Fig. 2 is an
example of the discrete choice survey that was used to
assess consumer preferences for alternative types of
vehicles. Respondents to the survey were asked to
indicate which of the four types of vehicles they would
choose, given attributes shown in Fig. 2. The attributes
were based on respondents’s current vehicle situation
(i.e., how much they spent on the last vehicle purchased,
how far they commute daily, what type of vehicle they
currently own) and were varied up and down from these
levels according to an experimental design to provide the
variation in attribute levels needed to estimate regres-
sion parameters.



Table 1
Discount rates from discrete choice studies

Study Implicit discount
rate (%)

Choice of vehicle types 22.6

Choice of commuting mode types N/A

Choice of home renovation 26.3

Choice of home heating system 9.0

Choice of industrial steam generation system 34.7

resulted in highly statistically significant models with all
estimated parameters taking on the expected signs.

Table 1 shows the implicit discount rate (r parameter
in CIMS) calculated from the studies described above.?
For most of the experiments reported, the implicit
discount rate is significantly higher than that used in
bottom-up analyses. The higher values in our research
are consistent, however, with the implicit discount rates
in revealed preference research. This research suggests
that the high implicit discount rates found in empirical
studies are likely a reflection of the challenges of
obtaining information in the market, the high perceived
risk of those energy efficiency investments which involve
long payback periods, the scepticism of some business
decision makers to a priori claims of high rates of return
on energy efficiency investments, and the option value of
waiting for more information before making a decision,
among other factors (de Groot et al., 2001; Dixit and
Pindyck, 1994; Harris et al., 2000; Hasset and Metcalf,
1994; Sassone and Martucci, 1984). Train (1985)
summarizes several studies on implicit discount rates
and finds results ranging from 15% to 70% in the
residential and transportation sectors.

In each of the studies described above, intangible
costs (i parameter in CIMS) were also calculated from
the regression results to reflect non-financial preferences
in the choices made by consumers. Table 2 briefly
outlines the intangible costs estimated from surveys for
different technologies in each study. The results in Table
2 imply, for example, that the average consumer would
require compensation of $5913+$4599 = $10,512 an-
nually in order to be indifferent to purchasing an electric
vehicle instead of a high efficiency gasoline vehicle.
While this may seem high, it should be noted that the
low range and current performance of electric vehicles
has confined their market share to a very small niche.
Improvements in these characteristics would reduce the
intangible costs felt by consumers.

2The discount rate was calculated from CRF = r/(1—(1+1)™") =
Bcc/Bac, Where CRF

Table 2

Intangible costs from discrete choice studies®

Study Intangible costs ($/yr)
Choice of vehicle types

Methanol 8058
Ethanol 1457
Electric 5913
Hybrid-electric 12,224
Fuel cell 270
Propane 5527
Diesel —2242
Natural gas 937
Efficient gasoline —4599
Inefficient gasoline —7363

Choice of commuting mode types

Single occupancy vehicle 6352
High occupancy vehicle 7828
Transit 12,394
Walk/cycle 11,947

Choice of home renovation
Standard renovation —
Efficient renovation 614

Choice of home heating system

Standard natural gas 499
Efficient natural gas 28
Electric baseboard 308
Heat pump 271
Oil furnace —

Choice of industrial steam generation system

Standard efficiency boiler 500,000
High efficiency boiler —137,000
Cogeneration system —

2Intangible costs presented in Table 2 are based on ‘baseline’
assumptions about non-cost variables. For example, to calculate the
intangible cost for public transit, we used data on average commuting
times, number of transfers required, cost of public transit, etc. If any of
these variables were to change (due to policy for example), the
intangible cost for public transit would also change. All of these costs
are presented in $CDN.

Table 3

Market heterogeneity parameter from discrete choice studies

Study Market heterogeneity
Choice of vehicle types 2.9

Choice of commuting mode types 2.2

Choice of home renovation 0.7

Choice of home heating system 3.0

Choice of industrial steam generation system 1.4

In each of the studies we conducted, we also
calculated the degree of market heterogeneity (the v
parameter in CIMS). Table 3 shows results for our
calculation of this parameter. Our empirical estimates
for the v parameter reveal that there is significant
preference and behaviour heterogeneity in the market,



so basing model predictions on an ‘‘average’’ consumer
or producer may lead to misleading results.

With these parameters calculated and integrated into
the CIMS market share function (Eq. (1)), we conduct
policy simulations that entail a portfolio of technology-
specific and economy-wide instruments. For example,
we have simulated the change in the market share of
industrial cogeneration systems when a subsidy is
provided to encourage the uptake of industrial cogen-
eration. We have also simulated the increase in transit
ridership as the transit service is improved by reducing
bus wait times and number of transfers required for
average commuting trips. We have likewise estimated
the response in the residential sector to a tax on GHG
emissions of different levels.

In addition, because our analysis is based on empirical
research, we are able to integrate an empirical portrayal
of uncertainty into our results. For example, in addition
to calculating the most likely market share for different
technologies in a policy scenario, we also generate
probability distributions around those market shares.
This enables us to test for the robustness of different
policies in the face of uncertainty about parameter
values, and also points the way forward to fruitful new
research.

This type of analysis is possible with any discrete
choice model, and indeed other researchers are applying
sophisticated discrete choice methods to evaluate
choices of many different energy-using (and other)
technologies, and to evaluate how those choices change
under the influence of policies.

The analysis presented in this paper differs in that
discrete choice research sets the parameters in a hybrid



price-responsiveness, are what we call “preference
dynamics’”. There are many potential explanations for
changes in consumer preferences, some rational and
some seemingly irrational to the analyst. Not all can be
captured in a simple energy-economic model. Instead,
we focus on one source of preference dynamics that has
been identified in the literature—preference changes due
to the influence of what other people in the economy are
doing (Hautcsh and Klotz, 2002).

Using a discrete choice framework, we have at-
tempted to empirically estimate how preferences can
change. In particular, we examine how our estimates of
the i parameter, which reflects intangible, or non-
financial costs associated with adoption of a particular
technology, change in response to a change in the
surrounding environment. For our analysis, we have
measured the change in preferences for alternative types
of vehicles as information about these becomes more
diffused in the economy, and as alternative types of
vehicles themselves become more adopted in the market.
We consider this an analysis of the ‘neighbourhood
effect’” whereby consumer preferences for alternative
types of vehicles are influenced by the types of vehicles
owned by neighbours, friends, and family. Our pre-

liminary discrete choice research has shown that as more
neighbours own a certain type of vehicle, consumers
begin to exhibit stronger preferences for that type of
vehicle.

3.4. Sample policy simulations using the CIMS hybrid
model

With empirically determined parameters and an
empirical representation of endogenous technical
change, we are able to use CIMS to conduct integrated



in many conventional bottom-up studies, where it is
assumed that the economy is not currently economically
efficient, and that appropriate policies can remove
barriers that move the economy closer to efficiency. This
definition of costs allows for the possibility of “no
regrets” policies, which can improve environmental
outcomes while increasing economic output.

In our policy simulations, we can also generate cost
estimates more akin to those of the top-down approach.
We use the empirical data on consumer preferences to
determine the financial incentive that would be required
by a business or individual in order to shift their
technology choice. The implicit assumption is that the
economy may not be that far from an economically
efficient outcome, although change would be beneficial
as the expected costs of climate change risks are
internalized into prices.

Jaccard et al. (2003) provide a more thorough review
of these cost concepts and their application to CIMS.
Although a priori assumptions will inevitably play a role
in estimating costs, empirical research into how con-
sumers and businesses view the risks and quality
differences of competing technologies can provide
valuable information to policy-makers in assessing the
likely response to a policy package, and this in turn will
help assess the ultimate costs.

4. Conclusions

The hybrid modelling framework presented in this
paper is designed to be useful to policy-makers. It

includes a detailed representation of the technologies
available in the energy system, so it allows for
simulation of technologically oriented policies, and for
measurement of the technological response of specific
end-use and supply sectors to policy changes. It also
incorporates an empirical depiction of behavioural
response to policies using a series of technology
adoption models developed from survey data and
discrete choice analysis. Further, it incorporates equili-
brium feedbacks: the energy supply and demand sectors
are linked via physical energy volumes and prices
derived from the cost of energy production, while
equilibrium feedbacks between the energy supply and
demand sectors and the rest of the economy are
represented using empirically derived demand and trade
elasticities, which adjust demand for a product based on
its cost of production. Finally, it includes a detailed and
empirically based portrayal of endogenous technological
change.

These features allow the model to simulate the types
of policies that policy-makers are interested in, and to
give confidence to policy-makers that the results are not
a feature of ad hoc assumptions regarding human
behaviour, but instead a result of empirical measure-
ments of stated policy response by economic actors in
response to changing economic conditions. This hybrid
approach incorporates some of the important features
of both top-down and bottom-up models, and thereby
transcends some of their weaknesses in providing a
useful tool to policy-makers seeking to induce long-run
technological change for energy—-environment objec-
tives.
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