
International Handbook on the 
Economics of Energy

Edited by

Joanne Evans
Lecturer in Economics, Surrey Energy Economics Centre (SEEC), 
Department of Economics, University of Surrey, UK

and

Lester C. Hunt
Professor of Energy Economics, Surrey Energy Economics Centre 
(SEEC), Department of Economics, University of Surrey, UK

Edward Elgar
Cheltenham, UK • Northampton, MA, USA



© Joanne Evans and Lester C. Hunt 2009

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or 
transmitted in any form or by any means, electronic, mechanical or photocopying, recording, or 
otherwise without the prior permission of the publisher.

Published by
Edward Elgar Publishing Limited
The Lypiatts
15 Lansdown Road
Cheltenham
Glos GL50 2JA
UK

Edward Elgar Publishing, Inc.
William Pratt House
9 Dewey Court
Northampton
Massachusetts 01060
USA

A catalogue record for this book
is available from the British Library

Library of Congress Control Number: 2009930863

 

ISBN 978 1 84720 352 6

Printed and bound by MPG Books Group, UK



311

13  Combining top down and bottom up in energy 
economy models
Mark Jaccard

1  Introduction: Designing Induced Technological Change Models and Estimating Their 
Parameters

Many environmental concerns, including the risk of human-induced climate change, 
motivate public policy eff orts to infl uence the direction of technological evolution – 
what is known as ‘induced technological change’ (ITC). Since technological change is a 
long-run phenomenon that occurs as society’s capital stock grows and is renewed, the 
likely outcome of alternative policies is inevitably uncertain, and more so the further one 
projects into the future. But even though future technological evolution and the behavior 
of consumers and businesses are uncertain, this is no excuse to engage in unsupported 
speculation about the future adoption of new technologies. A speculative or wishful 
scenario of the future, with negligible connection to real-world evidence, is ultimately 
unhelpful to policy makers and may lead to ITC policies that are ineff ective or have 
unintended consequences.

The appropriate policy modelling response to this challenge has at least two major 
tasks. The fi rst is to characterize the necessary attributes of an energy–economy model 
for assessing ITC policies. Some of these attributes are generic. Future technological 
potential, future responsiveness of consumers and businesses to policy signals, and 
future economy-wide feedbacks must be characterized under any modelling of ITC. 
Other model attributes, however, depend on the specifi c policy objective and scope. 
Thus, a model for determining greenhouse gas (GHG) reduction targets for groups of 
countries within a global framework will diff er in degree of resolution and structure 
from a model for assessing a specifi c policy program for GHG reduction in an individual 
country.

The second major modelling task is to populate the policy model with technology-
specifi c data and parameter values in which policy makers can have some degree of 
confi dence, even though uncertainty about the future is of course unavoidable. Models 
that are technologically explicit require reliable data for the stocks of technologies – their 
market shares, capital costs, operating costs, energy use, emissions. These and all other 
models also require realistic, empirically based parameters for simulating technological 
evolution under diff erent policies. This is an enormous challenge for modelling ITC. 
The quantities and operating characteristics of current capital stocks are incompletely 
known. The future costs and operating characteristics of emerging technologies, not to 
mention future innovations, can only be guessed at, hopefully with reliable guidance 
from experts. Finally, the response of businesses and consumers to policies intended to 
infl uence their preferences for these emerging technologies and future innovations can be 
estimated approximately from current sources in one of two ways: either from market 
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decisions taken under historical conditions (‘revealed preferences’), or from hypotheti-
cal market choices when these economic agents are surveyed about their preferences for 
technologies under future market and policy conditions (‘stated preferences’).

There is a considerable literature devoted to characterizing the ideal attributes of a 
model for simulating ITC policies. Many analysts have been engaged in the eff ort to 
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technological and policy options for policy makers. Ironically, with their simplistic 
portrayal of consumers as fi nancial cost minimizers, some bottom-up modellers may be 
more susceptible than many economists to the critique of applying a ‘rational-economic-
man’ view of the world.

The alternative, top-down analysis, usually applied by economists, estimates aggregate 
relationships between the relative costs and market shares of energy and other inputs to 
the economy, and links these to sectoral and total economic output in a broader equilib-
rium framework. Elasticities of substitution (ESUB) indicate the substitutability between 
any two pairs of aggregate inputs (capital, labor, energy, materials), and between the dif-
ferent forms of primary energy (coal, oil, natural gas, renewables) or secondary energy 
(electricity, processed natural gas, gasoline, diesel, methanol, ethanol, hydrogen) as their 
relative prices change. Another key parameter in top-down models, the autonomous 
energy effi  ciency index (AEEI), indicates the rate at which price- independent techno-
logical evolution improves energy productivity. At their most basic, these conventional 
top-down models represent the economy through a series of simultaneous equations 
linking economic outputs and inputs (especially energy), whose parameters are estimated 
econometrically from time-series data. Models that link all of the major macroeconomic 
feedbacks in a full equilibrium framework are referred to as computable general equilib-
rium (CGE) models.

High parameter values for energy-related ESUB (a high degree of substitutability 
between energy and capital, and between diff erent forms of energy) imply that tech-
nological change for environmental improvement may occur at relatively low cost. If 
this parameter is estimated from past market data, as energy prices and consumption 
changed historically, it is assumed to reveal the actual preferences of consumers and 
businesses. With AEEI and ESUB estimated, economists then simulate the economy’s 
response to a fi nancial signal (an emissions tax, an emissions permit price) that increases 
the relative cost of emission-intensive technologies and energy forms. The magnitude of 
the fi nancial signal necessary to achieve a given emission-reduction target indicates its 
implicit cost, including the less tangible costs related to the special risks of new technolo-
gies, the risks of long payback technologies, and specifi c preferences of consumers and 
businesses for the attributes of one technology over its competitor.

A signifi cant challenge for top-down models, however, is the estimation of statistically 
signifi cant top-down parameters from real-world experience. Often there is insuffi  cient 
variability in the historical record for confi dent parameter estimation, and therefore most 
CGE modellers set the key ESUB parameters in their models judgmentally (Loschel, 
2002). The top-down approach is also vulnerable to the criticism of being unhelpful 
to policy makers. In the pursuit of substantial technological change for environmental 
objectives, policy makers need to know the extent to which their policies might infl uence 
the characteristics and fi nancial costs of future technologies, and the likely willingness 
of consumers and businesses to adopt these. If the critical top-down parameters for 
portraying technological change – ESUB and AEEI – are estimated from aggregate, 
historical data, there is no guarantee that these parameter values will remain valid into 
a future under substantially diff erent policies, diff
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such technologies are under development worldwide, providing households and fi rms 
with new choices. ESUB values in future may be diff erent. AEEI may also evolve diff er-
ently. Oil prices are well above historical highs. As this process unfolds, the estimated 
cost of GHG abatement may decrease, but top-down models are unable to help policy 
makers assess this dynamic. Increasingly concerned with this problem, some top-down 
modellers are exploring ways of treating technological change endogenously, but again 
the question becomes whether their parameters have any real-world empirical basis and, 
if so, the extent to which these are likely to be useful indicators of behavior under future, 
much diff erent, regulatory and price conditions.

Another diffi  culty with the top-down approach is that policy makers often prefer, 
for political acceptability, policies that focus on individual technologies in the form 
of technology- and building-specifi c tax credits, subsidies, penalties, regulations and 
information programs. This is especially the case where emission charges would need 
to be high in order to overcome signifi cant costs of environmental improvement, which 
would trigger politically unacceptable reactions from consumers and businesses. Because 
conventional top-down models represent technological change as an abstract, aggregate 
phenomenon – characterized by ESUB and AEEI parameter values – this approach 
helps policy makers assess only economy-wide policy instruments such as taxes and 
tradable permits. At national and subnational levels, a model would be more useful if it 
could assess the combined eff ect of these economy-wide, price-based policies along with 
technology-focused policies, but this requires the explicit representation of individual 
technologies that conventional top-down models lack.

Because they incorporate to some extent the transitional costs and risks of technologi-
cal change, top-down cost estimates for ITC are almost always higher than bottom-up 
cost estimates. Analyses of the costs of achieving the US Kyoto Protocol commitments 
provide an example. After signing the Kyoto Protocol in 1997, the US government com-
missioned studies on the potential costs of meeting its Kyoto obligations by fi ve national 
research laboratories. These studies used a bottom-up modelling approach and found 
that a 30 percent reduction in GHG emissions from business-as-usual levels could be 
achieved at no net cost to the economy (Brown et al., 1998). They suggested that this 
level of reduction could be achieved domestically through a tax on carbon emissions of 
no more than 25/tC as well as a host of other policies.

In contrast, top-down analyses have come to diff erent estimates of the potential cost 
to the US of reducing its emissions. Weyant and Hill (1999) summarized the results 
of a multi-model comparison of the costs of meeting the US Kyoto Protocol commit-
ments; most of the models in their study were of the CGE (top-down) variety. Of the 11 
participating models, eight found that a tax of at least US$150/tC would be required to 
meet Kyoto commitments and, of these, four required a tax of at least US$250/tC. GDP 
impacts ranged from modest levels to the loss of over 3 percent of economic output.

Policy makers see results from both of these types of study and are understandably 
perplexed – not sure whom to believe, and what policies to apply. On the one hand, 
conventional bottom-up models indicate that environmental goals can be reached at 
low cost, suggesting that only mild policies are required, such as subsidies and informa-
tion programs. On the other hand, conventional top-down models indicate that achiev-
ing environmental goals is costly, and that more-stringent policies such as emissions 
taxes, emissions cap and trade regulations, or technology- and fuel-specifi c regulations 
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are required. The reality is likely to be somewhere between these two extremes. Policy 
makers are likely to acquire more reliable information from a modelling approach that 
combined the critical elements of these two conventional approaches.

Ideally, then, policy makers need models that can evaluate the eff ect of economy-wide 
policies working in concert with technology- and fuel-specifi c measures, and that incor-
porate regulations as well as market-based policies. Such models would need to satisfy 
at least three criteria: explicit representation of the potential for technological change, 
microeconomic realism in accounting for how businesses and fi rms will decide among 
future technology options, and macroeconomic feedbacks in refl ecting how changes 
in production costs and preferences will change the structure of the economy and the 
growth rate of total output.

The cube in Figure 13.1 depicts how diff erent modelling approaches perform against 
these three criteria. Conventional bottom-up models do well in terms of technological 
explicitness, but less well in terms of the other two attributes. Conventional top-down 
models appear to do well in terms of microeconomic realism (if their parameters have a 
real-world empirical basis as opposed to being guesstimates), and may do well in terms 
of macroeconomic feedbacks if they are general equilibrium models. However, they lack 
technological explicitness, making them ineff ective for assessing the full range of policies 
that policy makers wish to consider.

As the fi gure suggests, an ideal technology policy model would be situated at the right, 
top rear corner of the cube. It would be technologically explicit, including an assessment 
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Figure 13.1  Criteria for comparing energy–economy models
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Finally, in terms of macroeconomic feedbacks, hybrid models may need to track the 
structural and output eff ects of ITC policies. However, this necessity depends on the 
intensity of policies that are pursued. Most policy makers will be unwilling to apply 
policies that signifi cantly increase some prices in their jurisdiction alone, while other 
jurisdictions fail to act, and will provide policy exemptions for economic sectors that 
are vulnerable to external competition. The emissions tax policies in European countries 
thus far have protected to some extent the more vulnerable industries. In such cases, 
macroeconomic implications are unlikely to be substantial. Nonetheless, governments 
are under pressure to demonstrate to skeptics that their initially modest energy–environ-
ment policies will not have adverse consequences for specifi c industries, so this alone pro-
vides a rationale for the inclusion of macroeconomic feedbacks in a hybrid model. In the 
case of GHG emissions, the more likely outcome is the near-simultaneous application of 
emissions policies by many countries. Again, governments will need to demonstrate that 
they have tried to estimate the economic consequences, at a fairly disaggregated industry 
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fl oor space or person-kilometers traveled. In each time period, capital stocks are retired 
according to an age-dependent function (although retrofi t of unretired stocks is possi-
ble if warranted by changing economic conditions), and demand for new stocks grows 
or declines depending on the initial exogenous forecast of economic output, and then 
the subsequent interplay of energy supply–demand with the macroeconomic module. 
A model simulation iterates between energy supply–demand and the macroeconomic 
module until energy price changes fall below a threshold value, and repeats this conver-
gence procedure in each subsequent fi ve-year period of a complete run, which usually 
extends for 30–50 years but could continue indefi nitely.

CIMS simulates the competition of technologies at each energy service node in 
the economy based on a comparison of their life-cycle cost (LCC) mediated by some 
technology-specifi c controls, such as a maximum market share limit in the cases where a 
technology is constrained by physical, technical or regulatory means from capturing all 
of a market. Instead of basing its simulation of technology choices only on fi nancial costs 
and social discount rates, CIMS applies a formula for LCC that allows for divergence 
from that of conventional bottom-up analysis by including intangible costs that refl ect 
revealed and stated consumer and business preferences with respect to specifi c technolo-
gies and time. Equation (13.1) presents how CIMS simulates technology market shares 
for new capital stocks:

 MSj 5

cCCj*
r

1 2 (1 1 r) 2nj
1 MCj 1 ECj 1 ij d

2v

a
K

k51
e cCCk*

r
1 2 (1 1 r) 2nk

1 MCk 1 ECk 1 ik d 2v       f
, (13.1)

where MSj is the market share of technology j, CCj is its capital cost, MCj is its mainte-
nance and operation cost, nj is the average lifespan of the technology, ECj is its energy 
cost, which depends on energy prices and energy consumption per unit of energy service 
output – producing a ton of steel, heating one square meter of a residence, transporting a 
person or tonne of cargo one kilometer. The r parameter represents the weighted average 
time preference of decision makers for a given energy service demand; it is the same for all 
technologies competing to provide a given energy service, but can diff er between diff erent 
energy services according to empirical evidence. The ij parameter represents all intangi-
ble costs and benefi ts that consumers and businesses perceive, additional to the simple 
fi nancial cost values used in most bottom-up analyses, for technology j
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technology j. A high value of v means that the technology with the lowest LCC captures 
almost the entire new market share. A low value for v means that the market shares of 
new equipment are distributed fairly evenly, even if their LCCs diff er signifi cantly. At 
v 5 10, when technology A becomes 15 percent more expensive than B, B captures 85 
percent of the market. At v 5 1, when technology A becomes 15 percent more expensive 
than technology B, B only captures 55 percent of the market. This second case implies a 
more heterogeneous market, and the fi rst case a more homogeneous market. A conven-
tional bottom-up optimization model, with no market share constraints, operates as if v 
5 ∞, equivalent to a step function where the cheapest technology captures 100 percent of 
the market – a completely homogeneous market.

Thus, CIMS is technologically explicit and incorporates microeconomic behavior in 
portraying the selection of technologies by businesses and consumers. It also incorpo-
rates substantial feedbacks, although not yet to the full extent of CGE models. CIMS 
would be depicted toward the top right rear corner of Figure 13.1, albeit still a consider-
able distance from the corner. This suggests that in an ideal sense, it should be a useful 
model to policy makers in pursuit of ITC. However, its usefulness depends on the extent 
to which its parameters have a meaningful empirical foundation.

Most of the key parameters in CIMS are found in equation (13.1) above, and can be 
categorized as technological and behavioral. The following subsections describe estima-
tion of these technological and behavioral parameters.

Estimating technological parameters
Equipment manufacturers, trade journals, marketers, government ministries, and inter-
national agencies provide information on the capital costs (CC) and operating charac-
teristics (MC and EC) of many energy-using and energy-producing technologies. There 
is usually not a great variation in these estimates, suggesting that policy makers can have 
confi dence in the values provided for technologies competing in the near future to satisfy 
the demand for new capital stocks.

There is less confi dence, however, in the market shares and operating characteristics 
of currently installed capital equipment. The longer that equipment and buildings have 
been in service, the greater the chance that their operating characteristics (effi  ciency, 
operating cost) have changed since initial installation. Also, the more numerous and less 
expensive a type of capital equipment, the less the chance that sound data are available 
on its current market penetration. In the residential sector, for example, information 
is incomplete on the current capital stocks and operating characteristics of installed 
compact fl uorescent light bulbs. While there are sales data for these light bulbs, there 
is scant information on their operating lifespan when uncertain factors such as rate of 
accidental breakage, rate of premature malfunction, frequency of use and instances of 
non-installation (leaving the bulb in a drawer) are considered.

Surveys focused on larger industrial equipment (major process equipment, boilers, 
motors) are more reliable. This is especially so for capital stocks of energy production, 
conversion and distribution as these technologies are often under the control of major 
energy companies, and in the electricity and natural gas sectors these companies are 
required to provide detailed information to utility regulators, with much information in 
the public domain.

As the period of policy interest extends further into the future, models that explicitly 
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through a combination of literature review, judgment, and meta-analysis. However, the 
available literature usually provides only separate estimates for the three parameters, 
often using the discount rate to account for several factors, such as time preference and 
risk aversion to new technologies. This creates problems for predicting the costs and 
eff ects of policies that attempt to infl uence only one of these factors.

More recent eff orts to estimate these three behavioral parameters involve the use of 
discrete choice surveys for estimating models whose parameters can be transposed into 
the i, r and v parameters in CIMS (Rivers and Jaccard, 2005). The data for a discrete 
choice model can be acquired from the revealed preferences in actual market transac-
tions or from the stated preferences in a discrete choice survey. In the latter case, a 
sample of consumers or business managers are presented with hypothetical choice sets 
and asked to choose the alternative that they prefer the most.

CIMS is made up of over 1000 technologies competing for market share at hundreds 
of nodes throughout the economy. Gathering information on consumer and fi rm choices 
at each of these nodes is an impossible task, so discrete choice research has been focused 
on several critical nodes for policies to infl uence energy-related technology choices in 
the energy supply, residential, transportation and industrial sectors. Evidence from this 
research is used to inform the setting of parameters at other decision nodes.

Recent applications of discrete choice research for estimating CIMS’ parameters 
have used stated preference surveys. There are several reasons for this choice. First, the 
explanatory variables in revealed preference data are often highly collinear and exhibit 
little variability in the marketplace, which can make estimating a model based on this 
kind of data diffi  cult. Second, revealed preference data may have less plausibility in ana-
lyzing the impact of policies designed to move the economic system beyond its current 
technological context. Stated preference experiments are designed by the analyst and so 
avoid most of these problems.

However, stated preference data can be biased because when answering a survey, con-
sumers do not face real-world budgetary or information constraints. Also, biases may 
arise if consumers do not understand the survey properly or if they answer strategically 
(Louviere et al., 2000; Train, 2002). Consumers, for example, often demonstrate a higher 
affi  nity for energy-effi  cient technologies, such as fuel-effi  cient vehicles, on stated prefer-
ence surveys than they do in reality (Urban et al., 1996). Therefore, while stated prefer-
ence surveys are likely to continue to dominate parameter estimation where dramatically 
new technologies are involved, there is an interest in combining this with some revealed 
preference research where feasible (Train and Atherton, 1995).

The discrete choice model used for estimating parameters in CIMS is a linear-in-
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 Uj 5 bj 1 bCCCC 1 bOCOC 1 bECEC 1 bOTHEROTHER 1 ej. (13.4)

By assuming that the unobserved error terms (ej) are independent and identically dis-
tributed, it is possible to generate a model of the probability of a fi rm choosing technol-
ogy j from the available set of technologies, K. This is called the multinomial logit model 
(Train, 2002), as shown in equation (13.5), where U9j is simply the observable portion of 
utility, and U9j 5 Uj 2 ej:2

 Pr( j) 5
eUrj

a
K

k51
eUrk

. (13.5)

A maximum likelihood routine is then used to fi nd the b parameters that most closely 
match the left-hand side to the right-hand side of equation (13.4) for the set of observa-
tions. This produces the set of parameters for the discrete choice model that best matches 
the actual choices that respondents indicated in their survey answers.

The estimated parameters of the discrete choice model can be used to provide estimates 
for the three key CIMS behavioral parameters (Rivers and Jaccard, 2005). The weighted 
average implicit discount rate applied by decision makers at a node can be determined 
by the ratio of the capital cost parameter to the annual cost parameters, as long as the 
capital stock lifespan is expected to be greater than about 15 years (Train, 1985, 2002).3 
In equation (13.6), bAC is a parameter weighting all annual costs parameters together – 
the non-energy and energy operating costs in the case of equation (13.3):

 r 5
bCC

bAC
. (13.6)

Similarly, the (annual) intangible cost parameter can be calculated by comparing 
non-cost parameters to the parameter weighting the annual cost parameters as in equa-
tion (13.7). This parameter shows the annual monetary estimate of the intangible (non-
fi nancial) qualities of a given technology. For example, on average, consumers might be 
willing to pay $400/year extra to drive a car, and avoid the (real or perceived) discomfort 
of riding a bus. If required in CIMS, the annual cost can be converted to a single up-front 
cost for inclusion with the capital cost in the calculation of LCC:

 ij 5
bj

bAC
. (13.7)

The fi nal CIMS behavioral parameter (v), representing the degree of heterogene-
ity in the market, is roughly equivalent to the ‘scale’ of the multinomial logit model 
(Train, 2002). If the error terms (ej) are comparable in magnitude to the parameter 
(bj and bk*xjk) values, the model shows a more heterogeneous market where the error 
term plays a dominant role in predicting technology choices. Since the error term is 
not known, even where one technology appears to have a clear advantage over others, 
the presence of a large error term can lead to the other technologies capturing a sig-
nifi cant portion of the market. In contrast, if the error terms are much smaller than the 
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parameter values, the model shows a much more homogeneous market, where predic-
tions of  technology choices are strongly dependent on the relative attributes of the tech-
nologies. Unfortunately, although both the CIMS and discrete choice models (such as 
the multi-nomial logit model) show similar logistic curves of technology adoption, they 
are diff erent enough that it is not possible to directly estimate the CIMS heterogeneity 
factor from the scale of the discrete choice model. It is possible, however, to use ordinary 
least squares to fi nd the value of v for which predictions from CIMS are consistent with 
predictions from the multinomial logit model over a broad range of energy, capital cost 
and non-energy cost conditions.

From this combination of discrete choice surveys and literature review, the behavioral 
parameters in CIMS cover a range of values depending on the decision maker whose 
technology acquisition behavior is being simulated. In general, industry and electricity 
generation sectors have lower discount rates, lower and in some cases zero intangible 
values, and less market heterogeneity compared to household energy consumption, per-
sonal transportation and some commercial energy uses.

Recent empirical research for estimating CIMS’ parameters has thus focused on stated 
preference studies for key energy-related technology choices:

consumers’ choices of vehicle types and response to changes in road pricing,  ●

parking pricing, vehicle costs, fuel costs, access to express lanes, access to appro-
priate fi lling stations, preferences for lower emissions, and preferences for more 
power;
consumers’ choice of commuting modes and response to changes in travel time,  ●

weekly commuting cost, number of public transit transfers, frequency of public 
transit service, amount of walking required for public transit, and presence or 
absence of dedicated cycling lanes;
consumers’ choice of residential renovation and response to changes in capital  ●

cost, fuel cost, air quality, and the presence of a subsidy to encourage energy-
effi  cient home retrofi ts;
consumers’ choice of home heating system and response to changes in capital cost,  ●

operating cost, heating response time, and presence or absence of a subsidy to 
encourage energy-effi  cient heating systems;
industrial fi rms’ choice of steam generation system and response to changes in  ●

capital cost, operating cost, fuel cost, and electricity off set through the use of a 
combined heat and power system.

For recent applications to the Canadian economy, surveys were completed by 800–
1200 fi nal respondents for each of the household surveys (residential and transportation) 
and about 300 fi nal respondents for the industrial survey. Some surveys were conducted 
using a combined telephone–mail method and some using an on-line questionnaire 
method. The surveys had response rates ranging from 17 percent for the industrial survey 
to 84 percent for one of the transportation surveys. Analysis of survey results was con-
ducted using a multinomial logit method, and resulted in statistically signifi cant models 
with all estimated parameters taking on the expected signs.

Table 13.1 shows the discount rate (r parameter in CIMS) calculated from the studies 
described above. For most of the experiments reported, the implicit discount rate is 
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signifi cantly higher than that used in conventional bottom-up analyses. The higher 
values in this research are slightly lower than the implicit discount rates in many revealed 
preference studies, possibly because the survey seeks to separate pure time preference 
from other technology-specifi c attributes that might be correlated with this. Train (1985) 
summarizes several studies on implicit discount rates and fi nds results ranging from 15 
to 70 percent in the residential and transportation sectors. The low value of 9 percent for 
home heating systems is suspect and has led to additional research. Other values from the 
empirical research have led to the adjustment of the CIMS parameter values.

Intangible costs (i parameter in CIMS) were also calculated from the regression results 
to refl ect technology-specifi c, non-fi nancial preferences in the choices made by consum-
ers. A table similar to that for discount rates could be produced from these. Again they 
have led to changes in the values used in the model. Finally, each of the discrete choice 
surveys also led to estimates of the degree of market heterogeneity (the v parameter in 
CIMS) at individual decision nodes in the model. Empirical estimates for the v parameter 
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neighbor eff ect is particularly important in assessing the potential for new technologies 
to achieve signifi cant market penetration (Hautsch and Klotz, 2002). Recent empirical 
research with CIMS involves, again, the discrete choice framework, to estimate empiri-
cally how intangible costs – the i parameter – change in response to change in the sur-
rounding environment, notably in the decisions by other agents in the economy.

CIMS has a declining intangible cost function which links the intangible costs of a 
technology in a given period with its market share in the previous period, refl ecting 
improved availability of information and decreased perceptions of risk as new technolo-
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outside the range of historical experience, additional empirical analysis that estimates 
likely changes in relative production costs between competing jurisdictions is advisable. 
An example would be the case in which an aggressive carbon tax in one country pushed 
the production cost of its cement industry beyond the historical cost diff erentials with its 
international competitors.

4  Some Sample Applications

With these parameters estimated and integrated into the model, CIMS has been used to 
simulate portfolios of technology-specifi c and economy-wide instruments. The examples 
in this section focus on climate-motivated ITC policies.

Representing forecast uncertainty for policy makers
The empirical eff orts to estimate the behavioral parameters of a hybrid model such as 
CIMS generates information about uncertainty that might be useful to policy makers. 
In particular, the parameters estimated in the discrete choice surveys are only the single 
most likely estimates of the model parameters from the data. To represent what this 
uncertainty means for the model results requires the construction of multidimensional 
joint probability density functions for the model parameters using equation (13.9):

 LL(b) 5 a
N

n51

ln [Pn,j (b) ]

N
, (13.9)

where LL(b) is the log of the likelihood for the parameters b, N is the number of observa-
tions in the dataset, and Pn,j(b) is the probability that the model assigns to the choice j 
that was actually made by the respondent at observation n with the particular combina-
tion of b parameters being tested. Pn,j(b) is calculated using the multinomial logit model 
(equation (13.5)). Uniform sampling from this  the discrete choice s3l model 
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behavior of agents in the economy when faced with real-world instead of hypothetical 
decisions.

Estimating long-run ESUB and AEEI values for CGE modelling
The earlier discussion of conventional top-down models noted their challenges for mod-
elling ITC policies. In particular, if their critical parameters for technological change, 
ESUB and AEEI, are estimated from historical data, these values may not apply to 
future conditions in which technology options and expectations have changed dramati-
cally. Even top-down modellers who are concerned with this have no empirical means of 
estimating alternative future values for ESUB and AEEI when their models lack techno-
logical explicitness and behavioral realism at the technology selection level of consumers 
and businesses. By how much might the emergence of plug-in hybrid and biofuel vehicles 
change the interfuel ESUB value related to personal vehicles for transportation? By how 
much might carbon capture and storage technologies change the interfuel ESUB value 
related to electricity generation as GHG taxes rise?

With its detailed representation of how consumers and businesses might respond to 
new technologies and changing costs, a hybrid model can generate ESUB and AEEI 
values that refl ect future technological conditions and shifting preferences of businesses 
and consumers, and these can be used to guide the setting of these parameters in top-
down CGE models that assess policies for ITC. In recent research, CIMS was applied 
to this end by price-shocking the model with a strongly contrasted range of energy 
prices (Bataille et al., 2006). The CIMS outputs (pseudo-data) from this exercise can 
provide the standard data (changes in costs and inputs of capital and individual forms 
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long-run capital for energy ESUB value for Canada of 0.27 and interfuel ESUB values 
in the range of 0.8–2.0. The values diff ered widely between sectors, suggesting that struc-
tural change in future will also change aggregate ESUB values. A long-run simulation of 
CIMS with all prices held constant also produced an AEEI estimate of 0.4–0.6 depending 
on the sector. This compares to 0.25–0.5 percent for top-down estimates in the literature, 
and 0.75–1.5 percent for bottom-up estimates about the future AEEI rate.

Forecasting a portfolio of climate-related ITC policies
In 2007, the Canadian federal government presented a portfolio of climate policies that it 
claimed would reduce domestic GHG emissions by 20 percent (from 2006 levels) by 2020 
and put the country on a path for its target of 65 percent reductions by 2050. The policy 
portfolio included an intensity-based emissions cap applying to major industrial emitters 
(including electricity generators) in conjunction with several focused regulations, subsi-
dies and information programs for non-industrial emitters. The policy did not have a cap 
or tax on non-industrial emissions, but allowed industrial emitters the option of meeting 
all of their intensity cap obligations by subsidizing reductions in other producing and 
consuming sectors of the economy.

With its technology detail and empirically estimated behavioral parameters, a hybrid 
model such as CIMS provides an opportunity to assess the likelihood of such claims by 
government. An assessment like this may be an important check on government policy 
claims, given that the Canadian government has set three diff erent targets since 1988 for 
GHG emission reductions and launched six diff erent policy initiatives that it claimed 
would achieve the targets. In every case, the policies have failed to achieve the targets and 
emissions have continued to rise over the past two decades.

Thus, unlike conventional bottom-up models, a hybrid model such as CIMS, with 
its empirically estimated behavioral parameters, can be used to forecast the response of 
consumers and businesses to such a portfolio of regulatory and fi scal policies, as shown 
in Figure 13.3 (Jaccard and Rivers, 2007). Parameter uncertainty in the model is shown 
in the fi gure with 90 percent confi dence intervals around the forecast of the policy’s 
eff ect. The results suggest that once again the Canadian government’s policies will fail to 
achieve its claims for them.

5  Conclusion

The shift to technologies that reduce the impacts and risks of the energy system faces 
substantial transitional challenges because of the high initial cost of many of these 
technologies and the healthy skepticism of those called upon to acquire them. To assess 
policies for overcoming these high transitional costs, policy makers need evaluation tools 
that combine technological explicitness with behavioral realism to estimate how actors 
in the economy will respond to alternative policies. These tools should also show how 
such microeconomic decisions would aff ect the overall macroeconomic evolution of the 
economy in terms of its structure and total output, as these will be important considera-
tions in garnering policy acceptance.

The conventional top-down and bottom-up energy–economy models off ered to 
policy makers are defi cient in terms of at least one of these three attributes and thus are 
less useful than they could be. This explains the recent drive for ITC policy modelling, 
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involving the design and application of hybrid models that are technologically explicit, 
behaviorally realistic and provide macroeconomic equilibrium feedbacks. A special 
challenge with such models is the empirical estimation of their behavioral parameters 
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