
Statistical Simulation to Estimate Uncertain Behavioral
Parameters of Hybrid Energy-Economy Models

Dale Beugin&Mark Jaccard



major feedbacks in the economy’s inputs and outputs, they are
referred to as computable general equilibrium models.

The last decade or so has seen the development of hybrid
models that attempt to combine desirable attributes of top-
down and bottom-up [12]. These models include some
technological detail and macroeconomic feedbacks while
also portraying the likely response of firms and households
to changing prices and technological options.

But the inclusion of technological detail poses major
challenges for hybrid models in terms of behavioral
realism. At issue is the ability of such models to empirically
estimate key assumptions about the technological choices
firms and households are likely to make when faced with
new options and changing prices. One approach to this
challenge is to conduct discrete choice surveys in which
large samples of firms and households are faced with choice
sets involving conventional technologies and emerging
technologies under different price conditions for energy
and emissions [13, 19]. This approach has strengths and
weaknesses. On one hand, discrete choice surveys elicit
stated preferences under conditions that may be rather
hypothetical for firms and households. This leads to a
concern that survey responses may not accurately portray
how they will respond when facing real-world conditions
[17]. On the other hand, discrete choice surveys at least
provide firms and households with an opportunity to
choose among technologies that are not yet common in
the market, which is important given that future choices are
likely to be quite different from current choices.

One approach to this conundrum is to combine stated
and revealed preference analysis in the estimation of the
behavioral parameters of hybrid models. Recent efforts in
this direction have produced potentially more satisfying
parameter estimates for hybrid models [1]. However, even
with this approach, empirical analysis shows a great deal of
uncertainty about key behavioral parameters.

Exploring uncertainty is important for improving and
applying energy-economy models. Bosetti and Tavoni [4],
for example, find that explicitly including uncertainty in
innovation and technological change affects the innovation
investment conclusions emerging from the integrated
assessment WITCH model. The implications and impor-



minimizing, bottom-up models. A key challenge, however,
in improving CIMS forecasts is uncertainty regarding
consumer behavior and determining appropriate values for
these behavioral parameters.

2.1 The CIMS Model

Three main behavioral parameters are used in the CIMS
algorithm to allocate technology shares for new plants,
buildings, and equipment. These parameters arev, degree of
market heterogeneity;r, time preference of decision maker;
and i, intangible cost factors [13]. The v and i parameters
reflect the fact that actual choices cannot be described only
through traditional discounted life cycle financial cost
minimization.

Market heterogeneity,v, can be regarded as a measure of
firms’ and households’ sensitivity to cost when choosing
technologies: at high values ofv, most choose the option
with the lowest apparent costs. At low values ofv, large
variation in technology choice suggests that decision
makers are less sensitive to the cost of a technology and
make their choices based on other criteria. Figure1
illustrates the calculated market share splits between two
technologies, A and B. As illustrated in the figure, when
v=1, even if one technology has a life cycle cost (LCC)
twice that of a competing technology, a purchaser
choosing the expensive technology has a probability of
almost 40%. At the other end of the spectrum, whenv=15,
the model trends toward a 100% probability of the less
expensive alternative being purchased.

Intangible costs,i, represent non-financial costs associ-
ated with a given technology. They include factors such as
the risk of failure of a new technology, option value in
delaying the adoption of new technologies, or qualitative
differences in technology performance. Each competing
technology is thus potentially associated with an intangible
cost that represents these non-financial cost factors. In

practice,i is set equal to zero unless evidence suggests that
intangible costs are significant for a given technology.

The CIMS market share function uses the life cycle costs
of different competing technologies to calculate new market
shares, MSk,t, for each technology option,k, at each time
interval, t, as shown in Eq.1.
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of consumer behavior is based on real-world evidence.



3.2 Parameter Estimation Using Metropolis–Hastings



complete CIMS model—consisting of thousands of tech-
nologies—is clearly impractical. Rather, we focused on a
few key technology competitions (nodes). Specifically, we
calibrated CIMS nodes for refrigerators, furnaces, and
gasoline vehicles. While it would have been useful to
estimate parameters for a node in the industrial or
commercial sector to compare the preferences of firms with
those of individual consumers or households, obtaining
sufficiently disaggregated market share from these sectors
proved very difficult. These three nodes were modeled
separately using a code that replicates the CIMS algorithm.
These individual CIMS nodes allow for greater flexibility
in slightly adjusting the configuration of the full CIMS
model to better match available data and make running
MCMC statistical calibration simulations (requiring
thousands of model run iterations) possible. In this paper,
however, we focus on the residential furnaces node as a
representative example.

Dowlatabadi and Oravetz’s [8] backcasting study pro-
vides specific suggestions for establishing consistency
between the model framework and historical data. First,
the start year of the model is reset to the beginning of the
historical period, 1990, establishing a common initial
condition between model and history. Second, all known
observable parameters, such as capital and operating costs,
are set to their historical values. Historical energy prices
replace exogenous projections used in CIMS forecasts, and
the macroeconomic equilibrium component of CIMS is not
included; no price adjustment is required for equilibrium as
historical energy prices are available. Though any relevant
policies implemented over the historical period should also
be represented in the backcast, initially, we include no



>95% to match the archetype characteristics. Second, due
to limitations in available data, a single aggregate heat
pump archetype was used in lieu of CIMS’ current dis-
aggregation of ground source and air source heat pumps.

The node was calibrated using data for Ontario, as
generated by Natural Resources Canada [5]. For calibration,
total stock data were compared with forecasted stocks, and
thus we implemented the CIMS stock turnover model to
backcast historical stocks.

4 Results

Below, we show the results of our estimation of behavioral
parameters for the residential furnace node in the CIMS
model. We show only the results of this node for which the
methodology had the best performance.

4.1 Estimated Parameter Distribution

The Hastings–Metropolis calibration algorithm successfully







1990 and 2005, market share shifted very quickly toward
more efficient refrigerators. Yet, over this period, the price
of electricity did not change dramatically, and the model
could therefore not account for these dynamics. A few



(1) randomly sampling values for the behavioral parameter
inputs from the joint posterior probability distributions
estimated in calibration; (2) running the model for each
sample; and (3) aggregating the iterations by calculating a
weighted average, or expected value, as the model output.
Calibration outputs are ideally suited to Monte Carlo
simulation. To sample from the estimated joint posterior
distributions over all calibrated parameters, the sample
points can be taken directly from the posterior sample
output by the Metropolis–Hastings calibration routine.
Because the calibration generates a joint posterior over all
the parameters calibrated, this distribution includes correla-
tion between parameter values. Including correlation in this
way is a better representation of the interactions between
the behavioral parameters than running a Monte Carlo
simulation using only marginal uncertainty distributions for
each parameter individually, which ignores the fact that
some parameter combinations are highly unlikely.

Still, Monte Carlo sampling in the full CIMS model is





carbon tax as fossil fuel-based electricity generation is
phased out, than oil or natural gas). Under a carbon tax
regime, the life cycle cost of heat pumps becomes very
favorable relative to the other technology archetypes.

5.2 Impacts of Explicit Uncertainty Analysis

While the second panel in Fig.7 runs the forecasting model
using a single set of parameters (the mode of the calibrated



replicate similar results with different behavioral parame-
ters. This finding suggests that focusing on uncertainty
from behavioral parameters alone underrepresents the
uncertainty in the forecast.

Overall, while the calibration analysis can improve
confidence in CIMS’ forecasts, its value may be more as
a complement to stated preference empirical analysis than
as a substitute. Challenges in extrapolating from the past,
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