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Generalization gradients to exception patterns and the category prototype were investigated in two
experiments. In Experiment 1, participants first learned categories of large size that contained a
single exception pattern, followed by a transfer test containing new instances that had a manipulated
similarity relationship to the exception or a nonexception training pattern as well as distortions of the
prototype. The results demonstrated transfer gradients tracked the prototype category rather than the
feedback category of the exception category. In Experiment 2, transfer performance was investigated
for categories varying in size (5, 10, 20), partially crossed with the number of exception patterns (1, 2,
4). Here, the generalization gradients tracked the feedback category of the training instance when
category size was small but tracked the prototype category when category size was large. The benefits
of increased category size still emerged, even with proportionality of exception patterns held constant.
These, and other outcomes, were consistent with a mixed model of classification, in which exemplar
influences were dominant with small-sized categories and/or high error rates, and prototype
influences were dominant with larger sized categories.

A current debate, and the focus of the present
study, is concerned with the memorial represen-
tation of concepts. This dispute centres around
two dominant views of representation, exemplar
based and abstraction based. Exemplar views
(e.g., Lamberts, 1994; Medin & Schaffer, 1978;
Nosofsky, 1988, 1991; Nosofsky & Johansen,
2000; Nosofsky & Zaki, 2002) hold that our

ideas and concepts are derived from the
memorial encodings of particular instances. In
abstraction-based theories (e.g., Homa, Dunbar,
& Nohre, 1991; Knapp & Anderson, 1984;
Minda & Smith, 2001; Smith & Minda,
1998), conceptual representations include
summary or integrated interpretations of related
experiences.
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This debate remains unresolved today.
Attempts to separate the influences of specific



P2-5), and whether these tendencies are modu-
lated in precise ways by category size and
number of exception patterns in a category.

The reason for focusing on generalization gra-
dients to exception patterns is because exemplar
and prototype models make different predictions.
Exemplar models predict a sharp or steep gradient
across exemplar similarity, with this effect modu-
lated slightly by increasing category size in learn-
ing. Exemplar models also predict that transfer
patterns will track the category associated with
the feedback of its most similar learning pattern,
even when that pattern is an exception pattern.
In contrast, a prototype model must predict a flat
gradient across old–new exemplar similarity,
with classification tracking the prototype category
and not the feedback category.

The present study also investigated gener-
alization gradients to the category prototype.
Prototype models generally predict a sharp gradient
across decreasing similarity from the category pro-
totype, whereas exemplar models predict a flatter
gradient (Smith, 2002; Smith & Minda, 2002).
This prediction arises because prototype models
predict that instances similar to the prototype
must be classified more accurately than more dis-
torted instances. In contrast, similarity to the cat-
egory prototype is irrelevant to the predictions of
exemplar models unless exemplar similarity is corre-
lated with prototype similarity. In sum, exemplar
models predict sharp gradients across old–new
exemplar similarity and relatively shallow gradients
across similarity to the category prototype whereas
prototype models predict exactly the opposite.

A few studies have explored the shape of gener-
alization gradients to the category prototype with
formal models (e.g., Smith & Minda, 2002).
However, no one has explored generalization gra-
dients across old–new similarity when categories
contained exceptions. Nosofsky and Zaki (2002)
did investigate the transfer to an exception, train-
ing pattern and concluded that their exemplar-
based model of classification could explain the
resulting performance. However, this conclusion
is tempered because only a single and high level
of exemplar similarity was investigated, and cat-
egory size was held constant and at a small size.

Experiment 1 explored the shape of gradients to
exception and nonexception training patterns when
categories were very large (45 different instances per
category) and contained a single exception. Indeed,
the point of Experiment 1 was to create a category
representation that we believed could only be fitted
by a substantial, prototype influence. Since previous
studies have argued that abstraction of a prototype
emerges only following the learning of categories
of large size (Homa et al., 1991), we predicted
that similarity to the category prototype would be
significant, but that old–new exemplar similarity
would be irrelevant, regardless of whether the simi-
larity was to an exception or nonexception pattern.
Formally, this outcome should be fitted only by a
model with a substantial prototype contribution
but not an exemplar model of classification.

In Experiment 2, categories of intermediate
size were used, and the number of exception pat-
terns per category was varied in a partial factorial
design. Increasing the number of exception pat-
terns per category also increases the proportion
of exception patterns for that category when cat-
egory size is held constant. By varying category
size as well, an analysis of the shape of category
gradients tied to exception and nonexception pat-
terns under three contrasts was possible: When the
number of exception patterns per category was
held constant, and category size was increased;
when the number of exception patterns per cat-



where, xik and xjk are the values of patterns i and j
on dimension k.1 Typically, the similarity between
patterns is an exponential function of their
distance in multidimensional space:

sij ¼ exp (�cdij ) 2

The parameter c functions as a scaling (sensi-
tivity) parameter (e.g., Nosofsky & Johansen, 2000).

The classification of a pattern into one of three
categories, A, B, or C, is determined by computing
the summed similarity of pattern i to all members
of Category A, Category B, and Category C and



Figure 2. Predicted classification gradients across old–new similarity into prototype (P) and feedback (FB) categories as a function of b and

category size. New patterns are related to either an exception (E) or a nonexception (NE) training pattern.
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refers to classification rates into the prototype
category (P) for new instances related to a nonex-
ception training pattern (NE). The E-FB gradient
refers to classification rates into the feedback
category (FB) for new instances related to an
exception training pattern. The third gradient is
E-P, which indexes the rate of classification into
the prototype category for new instances related
to an exception pattern.

When category size is small, and a prototype
influence is absent (top left panel), similar gradi-
ents for NE-P and E-FB are predicted, and classi-
fication tracks the exception pattern only slightly
below the gradient for nonexception patterns.
When category size is large, and the prototype
component is substantial (bottom right panel),
the NE-P and E-FB gradients separate substan-
tially, and each gradient is nearly flat across old–
new similarity. Here, the impact of an exception
pattern is nearly absent, and the participant sorts
into the prototype category—the gradient E-P
nearly matches the NE-P gradient, and classifi-
cation into the prototype category is largely unaf-
fected by old–new similarity and whether the
most similar training pattern was associated with
the exception or nonexception pattern.

The similarity between the panels in Figure 2
for the Category 5, b ¼ .50, and the Category
20, b ¼ .00, motivated a fourth model prediction,
addressed and evaluated in the Discussion—that
participants who train on large category sizes
might base their category assignments on a sub-
stantial prototype contribution and a restricted



Materials and apparatus
Members of three form categories were generated
in the manner described previously (e.g., Homa,
1978). In brief, a form category is created by first
generating a random nine-dot configuration
within a 50 � 50 grid and then connecting the
dots with lines. This pattern is arbitrarily desig-
nated as the category prototype; different
members of this category are then generated by
statistically moving each of the dots of the proto-





A final analysis assessed the classification of
training patterns that were low-, medium-, and
high-level distortions of the prototype. This analy-



(1 – b) influences, a pure exemplar model (b ¼

.00), and a pure prototype model (b



gradients when categories were of smaller size and
which contained one or more exceptions. A mixed
model should predict a strong exemplar influence
when categories are of small size, or when multiple
exceptions per category exist, and an increasing
prototype influence as category size increases.

The basic design is shown in Figure 5. A
vertical slice through the design box holds constant
the number of exception patterns per category
while varying category size. Obviously the
proportion of exception patterns per category
changes as well (for categories of size 5, 10, and
20, these rates were 20%, 10%, and 5%, respect-
ively). A horizontal slice holds category size con-
stant, while varying the number of exception
patterns per category. Again, proportionality of
exceptions per category varies as well; for category
sizes of 10, these rates were 10% and 20%; for cat-
egory sizes of 20, the corresponding rates were 5%,
10%, and 20%, respectively. Finally, the diagonal
slice varies category size and number of exceptions
per category, while holding proportionality of
exceptions per category constant (20%). This con-
trast permits an assessment of whether category
size alone can override a high but constant rate
of exceptions.

Method

Participants
A total of 90 Arizona State University under-
graduates were assigned equally to the six

combinations of category size and number of
exceptions. None of the participants had pre-
viously served in any experiment using these
forms.



of size 10, there were 2 low-, 2 medium-, and 6
high-level distortions; categories of size 20 con-
tained 4 low-, 4 medium-, and 12 high-level
distortions.

The transfer test, given immediately after the
completion of learning, contained four types of
item: the category prototype, unrelated new pat-
terns, new patterns related to a nonexception stimu-
lus, and new patterns related to a category
exception. The related new items were at one of
three levels of distortion (1.0, 3.0, 5.0) from a train-
ing pattern, roughly corresponding to a low-,
medium-, or high-level distortion of that pattern.

The transfer test was identical for all conditions
with one change. For those conditions having a
single exception pattern per category, the transfer
set contained 75 patterns, 25 in each of the three
learned categories. The 25 patterns per category
were composed of the category prototype, 15 unre-
lated new (5 patterns at each of three levels of dis-
tortion), 6 related new patterns associated with
nonexception patterns, and 3 related new patterns
associated with the exception pattern.

For the conditions involving two or more
exceptions per category, there were 84 transfer
patterns, 28 in each of three categories. These
additional 9 patterns were new items related to a
second, exception pattern of the learning category
and were included to broaden sampling and
increase statistical power. These 9 patterns were
equally sampled from the three categories and
existed at each of three levels of distortion. The
remaining patterns were otherwise identical to
the conditions involving a single exception
pattern per category.

The transfer set was presented in a random
order to the participant, and feedback was omitted.

Results

Results from the three conditions involving a
single exception pattern per category are presented
first, followed by the three conditions involving
two or four exception patterns per category.
Comparison among selected contrasts involving a
constant exception rate but different category
sizes is presented last.

One exception pattern per category: Learning
Mean proportion error rates for the first and last
trial and the number of trials needed to reach
criterion are presented in Table 2 for each category
size condition. In general, participants had an
initial error rate near chance on Trial 1 (between
58%–66%) and a terminal error rate between
15–22%.

Transfer
Figure 6 shows the classification assignments of
new instances of different distortion (1.0, 3.0,
5.0) to exception (E) and nonexception (NE)
training patterns into the prototype (P) or feed-
back (FB) categories. The left panel shows this
performance for category size 5, the middle panel
for category size 10, and the right panel for cat-
egory size 20 (the dotted lines are model predic-
tions, discussed shortly).

Prototype-based classification: Old–new similarity
transfer
An initial analysis investigated classification into
the prototype category of new patterns related to
exception and nonexception patterns as a function
of old–new distortion (1.0, 3.0, 5.0) and category
size (5, 10, 20). The main effects of category size,
F(2, 42) ¼ 4.04, h2 ¼ .161, p , .05, and type of
training pattern (exception, nonexception), F(1,
42) ¼ 25.14, h2 ¼ .374, p , .01, were significant;
the main effect of old–new distortion was not,
F(2, 84) ¼ 2.07, h2 ¼ .047, p . .10. However,
the Old–New Distortion � Training Pattern
Type interaction was significant, F(2, 84) ¼

6.58, h2 ¼ .135, p , .01. Performance improved

Table 2. Learning performance for each of the conditions

Error rate

Condition Initial Terminal Trials to criterion

5(1) .662 .222 14.53

10(1) .576 .147 12.60

20(1) .592 .213 12.60

10(2) .618 .362 14.60

20(2) .591 .233 14.13

20(4) .601 .317 14.80
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Prototype similarity
Classification of unrelated new (low, medium,
high) patterns decreased with distortion level
(low ¼ .837; medium ¼ .753; high ¼ .641), F(2,
84) ¼ 40.66, h2 ¼ .492, p , .001. The three con-
ditions differed amongst themselves, F(2, 42) ¼

3.63, h2 ¼ .147, p , .05, with performance
ordered with 20(2) highest (.825), 10(2) lowest
(.658), and 20(4) intermediate (.748), an ordering
that matched that for the related new patterns. A
similar ordering was found for the category proto-
type, with 20(2) ¼ .956, 20(4) ¼ .822, and 10(2) ¼
.708, F(2, 42) ¼ 2.82, h2 ¼ .121, p ¼ .067.

Contrast among 1 vs. 2/4 errors/category conditions
The mean overall correct transfer performance for
the six major conditions was ordered as expected,
with best performance associated with larger cat-
egory sizes and smaller manipulated levels of
exception rates: 20(1) ¼ .780; 20(2) ¼ .757;
10(1) ¼ .705; 20(4) ¼ .694; 10(2) ¼ .617; 5(1)
¼ .612. A global analysis revealed that the six con-
ditions differed amongst themselves, F(5, 84) ¼

4.20, h2 ¼ .200, p , .01. In general, differences
of 7–8% reached significance at the p ¼ .05
level, and, therefore, the six conditions separated
themselves into three major groups: 20(1) ¼

20(2) . 10(1) ¼ 20(4) . 10(2) ¼ 5(1).
A final contrast of the six conditions compared

the gradient changes across old–new distortion
for new items related to exception and nonexcep-
tion training patterns. One measure of gradient
change is to compute the difference in classification
accuracy for new items that were maximally similar
(1.0) or maximally different (5.0) from a training
pattern. The motivation for this contrast is straight-
forward—exemplar-based models of classification
predict a substantial advantage for new items
having a high-level versus low-level of similarity
to exception and nonexception training patterns.
Contrarily, classifications based on prototype influ-
ences predict reduced or minimal gradient changes.
Figure 8 shows these contrasts for exception and
nonexception patterns, separately for condition.

Two results are apparent: (a) Gradient changes
are larger for nonexception than exception pat-
terns; and (b) magnitude of gradient changes is

generally reduced with increasing category size
and decreasing rates of exception patterns.

Model fits
The fit of the general mixed model of classification
to the full set of transfer patterns is summarized in
the top half of Table 3. Generally, the overall
model fit was satisfactory, with the mean absolute
difference between observed and predicted values
ranging from .01–.03 for each condition. Of
most importance are the estimates for the category
prototypes. For conditions associated with a single
erroneous pattern per category, estimates of b gen-
erally increased with category size. For conditions
associated with 2 or 4 errors/category, estimates of
b decreased overall, but were still modulated by
both category size and proportionality of feedback.

Although the exemplar model performed satis-
factorily when category size was small, and the rate
of exception patterns was high (as indicated by the
small values of b), the deficiency of this model
became apparent when b was high. For example,
when category size was 20 and contained a single
exception pattern, the prototype contribution was
highest of the six conditions (b ¼ .479).
Figure 9 shows assignments into the prototype

Figure 8. Summary of gradient differences for each of the six

conditions, shown separately for nonexception (NE-P) and

exception (E-P) patterns, Experiment 2.
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Discussion

The literature on categorization is replete with the
benefits of increasing category size in learning on
later transfer (e.g., Homa, 1984). This experiment
extends this conclusion for categories of size 5 to
45 when exceptions occur in each category, not
just a single exception pattern within a category
but as many as four patterns. When 10% of the
patterns of a category are exception patterns, the
mean overall transfer accuracy was .705 versus
.757 for categories of size 10 versus 20, respect-
ively. With an exception rate of 20%, the overall
rates of classification were reduced, compared to
the 10% error rate, but the benefits of category
size still emerged—the corresponding rates,
for categories of size 10 versus 20, were .617
and .694.

The mixed model of categorization fitted to the
results showed a prototype influence that was
minimal for small category sizes and/or high
rates of exception patterns and an increasingly
large prototype influence with larger category
sizes, especially when accompanied with a low
rate of exception patterns. Obviously, the mixed
model with its additional parameter cannot
perform worse than the exemplar or prototype
model. However, only a mixed model can simul-
taneously accommodate all the results found
here—the shapes of different gradients tied to
exception and nonexception training patterns,
the shape of the gradient for patterns related to
the prototype, overall differences between patterns
related to exception and nonexception patterns,
and performance differences for different types of

new patterns, all as a function of category size.
Furthermore, the mixed model reveals regularities
of exemplar and prototype influences that vary in
the manner predicted.7

The combination of variables explored in the
present study may clarify an apparent inconsis-
tency with the results of Nosofsky and Zaki
(2002). Nosofsky and Zaki had participants learn
two categories of seven exemplars each, where
one pattern in each category was an exception
pattern. At the time of transfer, exception neigh-
bours—new patterns that differed from the train-
ing pattern by a single value on one of six binary
dimensions—were consistently assigned to the
category having the exception pattern, leading
these authors to conclude: “the exemplar model
predicted that items that were similar to the excep-
tions along attended dimensions would be classi-
fied into the exceptions’ category, whereas the
mixed-prototype model predicted that such items
would be classified into the opposite category”
(p. 936).

However, these authors held category size
constant (and at a small size), and only a single
and high level of old–new similarity was ana-
lysed. In the present study, transfer gradients
similarly tracked the exception learning pattern
when category size was small, and old–new simi-
larity was highest, an outcome that mirrors that
of Nosofsky and Zaki (2002). However, when
category size was substantially increased, these
tendencies reversed. The prototype influence
was also largest when category size was
maximal.8

7 Our modelling did not include either differential weighting of the dimensions (obtained from the multidimensional scaling

task), as is sometimes done with exemplar modelling, or implementation of the l response-scaling parameter recently added to

the generalized context model. The use of l, introduced to explain deterministic responding by individual participants, does not

always appear in exemplar models (e.g., Zaki & Nosofsky, 2004). Nonetheless, our conclusions are restricted to the models explored

and not to other variations that could be considered.
8 Zaki and Nosofsky (2004) recently argued that gradient effects obtained with dot pattern stimuli (related to our 9-point forms)

may be artificially produced by procedures used to generate distortions. This assertion is false, since their demonstration applies to a

1-category paradigm and cannot be extended to a paradigm in which multiple categories are learned. When participants learn mul-

tiple categories, rather than inspecting a single category (as done in their paradigm), correct assignments cannot be based on potential

elongation (or other) properties that might produce the gradient (according to their argument) since, presumably, all categories

would have these properties. If accuracy of classification cannot be based on this property, then obviously chance performance

cannot produce gradients to the prototype. Furthermore, routine inspection of all prototypes and distortions results in the elimination



Finally, the optimal model was a mixed model
in which the exemplar contribution to classifi-
cation involved the retrieval of a small subset of
the training patterns. Exemplar-based models of
classification are invariably evaluated under the
assumption that the full set of training instances
enter into a categorical judgement such as recog-
nition or classification (e.g., Nosofsky, 1991;
Nosofsky & Zaki, 1998). Rarely has an exemplar
model been evaluated in which a subset of training
instances is consulted for categorical decisions,
presumably because retrieval of less than the full
set can only lead to a weaker fit. A recent exception
was provided by Storms et al. (2000), who found
that typicality judgements and category naming
times for natural category members could be
fitted by an exemplar model that assumed retrieval
of the 10 most frequent exemplars of the category.
In the present study, when a mixed model is con-
sidered, the focus is less on a single influence (e.g.,
prototype vs. exemplar) but rather on mutual influ-
ences for different segments of the data space. As a
consequence, the feasibility of a mixed model in
which the exemplar contribution is based on a
restricted set of stored instances emerges more
readily. Theoretical development of a theory of
concepts might profit by disentangling additional
conditions or constraints likely to foster strong
reliance on abstractions or exemplars, while
exploring whether the full set of exemplars is
always retrieved when categorical decisions are
made.
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