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Abstract
Motivated by recent attempts to use parametric resonance to calibrate the
spring constant of a Brownian particle in an optical trap, we have looked
systematically at the effects of modulating laser power on the motion of the
trapped particle. We predict and find experimentally an increase in the
particle’s position variance at low laser modulation frequencies, but we find
no evidence for any resonant effects in the extremely overdamped motion of
the trapped particle. Our results can serve as a guide for designing multiple
traps by the ‘time-sharing’ method.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the past twenty years, the technique of optical tweezers
has found wide application in the measurement of forces on
single molecules and materials in physical and biophysical
studies [1, 3]. The relation between force and displacement
for a trapped object depends on several parameters: the
size, shape and index of refraction of the trapped object; the
wavelength and power of the trapping laser; the numerical
aperture of the focusing objective, etc [3, 4]. In the
small-displacement regime, the particle–trap interaction is
approximately that of a harmonic potential, with a force–
displacement coefficient called the trap stiffness or, more
loosely, spring constant. To determine the trap stiffness
experimentally, one can measure directly the displacement
produced by a known external force—for example, the Stokes
drag in a constant flow [5–79].

Recently, Joykutty et al attempted to develop a new
method for calibrating the stiffness of an optical trap that
was based on the periodic modulation of trap stiffness [10].
While there are serious difficulties with that technique [11, 12],
the effects of a modulated trap have both fundamental and
practical interest, and we focus on these aspects in this
paper. In an underdamped mechanical system, the periodic
temporal modulation of trap stiffness can lead to parametric
resonance [13]. Brownian motion in such systems is relevant
to atoms in magneto-optical traps and has been studied both
theoretically [14] and experimentally [15, 16]. Under the
proper conditions, trap modulation can lead to an increase
in damping and a decrease in the variance of positional
fluctuations of the Brownian particle. Such a decrease
corresponds to a ‘cooling’ of the ‘temperature’ of the trapped
particle and is a desired feature of such traps. On the other
hand, parametric excitation can also lead to an instability
(Hopf bifurcation), where the motion of the particle increases
exponentially [17]—an undesirable result. Thus, a full
understanding of the effects of modulation is important in such
cases.

Here, the system of interest is a small colloidal particle
in a viscous fluid. The motion is extremely overdamped,
with dimensionless dampings that are typically

O(10). (The
dimensionless damping is one for a critically damped system.)
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implies d〈 f (x)〉 = 〈d f (x)〉 [33]. Thus, since 〈x〉 = 0, and
〈x(t ′) dw(t ′)〉 = 0, the position variance σxx = 〈x2〉 is

dσxx (t
′) = d〈x2(t ′)〉
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