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enough. In fact, the situation is more subtle. Even when all
origins are initiated at the beginning of S phase, it is
possible to replicate with arbitrary reliability simply by
having enough origins. While it is true that there will be a
few unusually long gaps that will set the replication time,
these gaps may be reduced arbitrarily if one starts with
enough replication origins. We thus propose an alternate
way of viewing the random-completion problem: Instead
of fixing the number of origins and looking at the repli-
cation times for different strategies, we fix a time t* at
which either a cell has finished replication or it dies. Since
evolution selects on the basis of mortality, the replication
parameters [I(t), v, the number of potential origins, etc.]
should be a consequence of this selection, and not vice
versa. Choosing t** to be the cell-cycle time (25) minutes
and allowing a failure rate of 1074, we calculate, for
various forms of I(t), the replication parameters required
to meet the reliability constraint. (Our results depend only
logarithmically on the failure rate.)

In order to compare with experiment, we must confront a
further problem. While the in vivo replication time is
estimated to be 20 minutes, the in vitro experiments require
nearly twice this time to replicate. We must thus make
additional assumptions to translate the in vitro experimen-
tal results to the in vivo situation. In fact, we can do this
with one simple assumption. In earlier studies, it was
assumed that the replication fork velocity v is constant
throughout S phase. The original analysis of the in vitro
Xenopus



In Fig. 4, we summarize the results of these investiga-
tions. The dashed line at the top gives the fork density
required to make the delta-function I(t) meet the reliability
constraint. The solid curve represents the fork density
required for power-law initiations. As we anticipated, the
curve has a minimum (between n =1 and 2). The fine-
dashed line, which lies close to the minimum value of the
power-law case, is the experimental maximum fork density
[12]. Finally, the broad-dashed line gives the optimal fork
density (1=vt™).

Although the optimal fork density is lower than that
observed, it clearly does not represent a physiologically
possible case. It is unrealistic to expect the perfect coordi-
nation implied by the delta function at the beginning of S
phase. More serious, at the end of S phase, Eq. (7) implies
that the rate of initiation diverges, along with the total
number of activated origins. Still, we note that the quali-
tative shape of the curve shares the quadratically increasing
form of the experimental result. More generally, it would
be surprising if the initiation program were identical to the
optimum (even if one were to limit the space of functions to
those that are physiologically achievable). We note that the
minimum is clearly broad: there is little difference in
required fork density between a linear and a quadratic
I(t). The main point is that there are some strategies—
most notably the initiation of all origins at the beginning of
S phase—that are clearly bad, and these differ from the
observed I(t).

In conclusion, we have calculated the distribution of
replication times ¢, for the stochastic limit of replication,
where origins are placed randomly and initiate stochasti-
cally at a rate 1(t). Choosing an I(t) that increases with time
narrows ., and increases the reliability of replication.
Using the known mortality rates and length of the cell
cycle, we gave a quantitative interpretation to the
random-completion problem and showed that one can
meet the reliability constraint using an arbitrary [(t).
Different 1(t) functions demand different resources from
the cell. Measuring this resource use by the maximum
required fork density, we show that the experimentally

observed form of I(t) is close to optimum. In the future,
it would be interesting to consider the effects of any
regularity in origin spacing. While we have shown that
reliable replication may be achieved even in the worst case
of random spacing of origins, there is evidence for some
regularity. It would also be interesting to measure the
replication-time distribution directly. While determining
the time at which the last base (of 3 X 10°) replicates is
unrealistic, one might be able to determine when a given
fraction (e.g., 90 or 95%) of origins have replicated. It is
straightforward to generalize the methods presented here to
determine the distribution of times required to reach a
given replication fraction.
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