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In higher organisms, DNA replicates simultaneously from many origins. Recent in vitro experiments have
yielded large amounts of data on the state of replication of DNA fragments. From measurements of the time
dependence of the average size of replicated and nonreplicated domains, one can estimate the rate of initiation
of DNA replication origins, as well as the average rate at which DNA bases are copied. One problem in making
such estimates is that, in the experiments, the DNA is broken up into small fragments, whose finite size can
bias downward the measured averages. Here, we present a systematic way of accounting for this bias by
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more leisurely discussion, see �13�. The general situation is



malization. Here, we use primes to denote distributions for
the general-cut case.

B. Distribution of edge domains

To understand the distribution of edge domains, we first
consider how a domain of size x� is cut. Then we consider
the probability density for a resulting edge domain to have a
size x�x�. In considering how a domain of size x� is cut,
there are two cases: if x��1, then the probability density that
it was cut was x�. Since the cut position is assumed to be
uniformly distributed along the DNA, the probability density
that the cut creates a domain of size x is then 2/x�. The
factor of 2 arises because each cut creates two edges. Thus,
the probability density that the cut produces a domain of size
x is �2/x�� ·x�=2.

In the second case, the original domain x� is larger than 1
and will always be cut. The probability of creating a domain
of size x is now uniform over the fragment and is thus 2, just
the same result as we found in the first case. Finally, we
observe that an edge domain of size x can be created by any
domain of size x��x. This leads to the relative frequency of
observing an edge domain of size x:

ne�x� = 2�
x

�

��x��dx�. �3�

Normalizing Eq. �3� leads to the probability distribution
�e�x�.

To generalize to the case where cuts are distributed as
� f���, we follow the logic in Sec. II A, multiplying Eq. �3� by
� f��� and integrating over �. Again, only cuts greater than x
can lead to an edge of size x. Thus, we have

ne��x� = 2�
x

�

� f���d��
x

�

��x��dx�, �4�

where �e��x� may again be determined by normalizing ne��x�.

C. Distribution of oversized domains

The simplest way to derive the distribution of oversized is
to recognize that there is a duality between domains and cut
fragments. That is, if one interchanges fragments with do-
mains and cut locations with domain boundaries, then the
oversized domains of the original case are just the interior
domains of the dual case �Fig. 3�.

Applying this analogy to the general-cut case, we have

no��x� = � f�x��
x

�

�x� − x���x��dx�. �5�

Equation �5� can be derived from Eq. �2� by interchanging
� f� � with �� � and changing the variable of integration from
�� to x�. To specialize to the uniform-cut case, we simply let
� f be a � function, as there is only a single cut size L. Then

no�x� = ��x − 1��
1

�

�x� − 1���x��dx�. �6�

A distribution of domains ��x� on an infinitely long mol-
ecule of DNA thus gives rise to three different domain dis-
tributions on finite segments of DNA. Table I summarizes
the formulas describing the three different domains in the
uniform- and general-cut cases.

D. Example

Finally, we illustrate these results by an example �Fig. 4�.
Let the original distribution be uniform between 0 and
100 units, and let the DNA be cut into fragments uniformly
distributed between 50 and 150 units. Then x=X /100, and
the interior-domain frequencies are given by

ni�x� = 	1 − x , 0 � x � 0.5,

�9/8� − �3/2�x + �1/2�x2, 0.5 � x � 1;

 �7�

the edge-domain frequencies are

FIG. 3. An illustration of the duality between domains and frag-
ments. �a� Oversized domain; �b� interior domain. �a� and �b� may
be derived from each other by interchanging fragments with do-
mains. Shaded vertical wedges denote places where the molecule is
cut.

TABLE I. Summary of the relationships between the fragment domain length distributions and the
original domain length distributions, for both uniform- and general-cut models. The � function is 1 for x
�1 and 0 for x�1.

Fragment distributions

Uniform-cut model General-cut model

Interior ni�x�=��x��1−x���1−x� ni��x�=��x��x
���−x�� f���d�

Edge ne�x�=2��1−x��x
���x��dx� ne��x�=2�x

�� f���d��x
���x��dx�

Oversized no�x�=��x−1��1
��x�−1���x��dx� no��x�=� f�x��x

��x�−x���x��dx�
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ne�x� = 	2�1 − x� , 0 � x � 0.5,

2��3/2� − x��1 − x� , 0.5 � x � 1;

 �8�

and the oversized-domain frequencies are

no�x� = 	0, 0 � x � 0.5,

�1/2� − x + �1/2�x2, 0.5 � x � 1.

 �9�

The frequencies ni, ne, and no are all zero for x�1. More
examples are given in �13�.

III. UNBIASED ESTIMATORS OF AVERAGE
DOMAIN SIZES

In Sec. II we saw how cutting up a long piece of DNA
into fragments led to three different types of subdomains:
interior, edge, and oversized. We then gave explicit formulas
for calculating the frequency distributions of each of these
domains, given an original distribution ��x�. In experiments,
one is faced with the reverse problem: given experimentally
measured frequency distributions ni�x�, ne�x�, and no�x�,
what can one infer about the original distribution ��x�?

In principle, from Eq. �2�, we can already invert measure-
ments of the fragment distribution � f��� and interior distri-
bution ni�x� to recover at least part of the original distribu-
tion ��x�; however, unless there is a great deal of data, ��x�
will be poorly determined �13�. It turns out, though, that the
algorithms for inferring replication initiation for DNA—the
motivation for our study—require knowledge only of the av-
erage replicated and unreplicated lengths. These are just �x�
��0

�x���x��dx� in our notation. In other words, we need only
to estimate the average domain size. In earlier work, we es-
timated this average using what we will call here the interior
estimator: x̄i�� j=1

n �xi� j /n, where �xi� j is the jth interior do-



xi
tot = �

0

1

x��x�dx − �
0

1

x2��x�dx ,

xe
tot = �

1

�

��x�dx + �
0

1

x2��x�dx . �12�

Because there is only one size of the oversized domain, xo
tot

=no, as given by Eq. �10�. We then see that xi
tot+xe

tot+xo
tot

= �x�. In dimensional units, we have

x̄2 =
X̄2

L
=

Xi
tot + Xe

tot + Xo
tot

Ni + Ne/2
, �13�

where Xi
tot is the total length of all observed domains, with

analogous definitions for Xe
tot and Xo

tot. Intuitively, the sum of
these quantities is just the total length of all the domains,
whether they be interior, edge, or oversized. Dividing this by
the total number of domains �Ni+Ne /2� then gives our esti-
mator.

As before, the generalization to a distribution of fragment
sizes is straightforward and leads simply to replacing L by
�L� in Eq. �13�. In the example at the end of Sec. II C, one
finds xi

tot



not a reliable indication of the DNA’s stage of overall repli-
cation. A simple way to get around this problem is to sort
data by replication fraction rather than by time. In effect, we
use the local replication fraction of each segment as the
“clock.” A more sophisticated way to deal with the data in-
volves estimating the starting-time distribution and deconvo-
luting its effects �10�.

Since our theory relies heavily on the assumption that cuts
on the DNA occur with equal probability anywhere along the
molecule, we first show how to test this assumption on the







=�
0

�

dx x��x��
x

�

d� � f��� + �
0

�

dx ��x��
0

x

d� �� f��� ,

�A4�

where we have integrated by parts and used �0
� dx ��x�=1.

After again integrating Eq. �A4� by parts, we add Eqs. �A1�
and �A4� and find

ni� + ne�/2 = �
0

�

dx ��x���
0

x

d� �� f��� + �
x

�

d� �� f����
= �

0

�

dx ��x� = 1, �A5�

since ���=1 in our scaled units.
Similarly, we start from Eq. �5� and integrate each term by

parts to find

no� = �
0

�

d� � f����
�

�

dx x��x� − �
0

�

d� �� f����
�

�

dx ��x�

�A6�

=�
0

�

dx x��x��
0

x

d� � f��� − �
0

�

dx ��x��
0

x

d��� f��� .

�A7�

Then

no� + ne�


