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Diffusion-limited loop formation of semiflexible polymers:
Kramers theory and the intertwined time scales
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Abstract. – We show that Kramers rate theory gives a straightforward, accurate estimate
of the closing time τc of a semiflexible polymer that is valid in cases of physical interest. The
calculation also reveals how the time scales of chain relaxation and closing are intertwined,
illuminating an apparent conflict between two ways of calculating τc in the flexible limit.

The looping of polymers is a physical process that allows contact and chemical reaction
between chain segments that would otherwise be too distant to interact. Polymer loops are
particularly important in biology: In gene regulation, looping allows a DNA-bound protein to
interact with a distant target site on the DNA, greatly multiplying enzyme reaction rates [1,2].
Similarly, DNA looping in the 30 nm chromatin fiber may trigger the initiation of DNA replica-
tion at different sites along the DNA by enabling long-distance interactions [3]. In protein fold-
ing, two distant residues start to come into contact via looping [4,5]. Measurements of loop for-
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Also notice the barrier to chain closing at rt ≈ α (top), which is created by the balance of
chain entropy and bending energy as implied by U(r, �). The short-range attractive potential
then rounds off the barrier. The resulting effective potential has thus the qualitative form
often assumed in Kramers-rate calculations.

In the limit of strong damping [18], the time needed to tunnel over the barrier (mean
first-passage time), calculated using Kramers rate theory, is
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dynamic variable (cf. eq. (1)). This assumption of local equilibrium allows one to apply the
equilibrium distribution function G(r, �) and implies that the effective potential derived from
G is time independent. If the chain relaxation times are too long, the potential effectively
becomes time dependent and has to be obtained self-consistently, along with the motion of
the internal modes. We thus compare the scaling behavior of τR(�) with τKr(�) and τc(�) in
both the flexible (� � 1) and stiff-chain (� < 1) limits.

In the flexible limit, we can use the Rouse model to estimate the longest relaxation time,
which gives τR ∼ �2, in units of the basic time scale �2

p/D. By contrast, at large �, eq. (5)
gives τKr ∼ �3/2/α. (This is just the result of SSS [7, 10] and has been confirmed by single-
“particle” simulations —see fig. 2(b) and the caption.) Thus, when � > 1/α2, the third
condition is violated and the Kramers calculation does not hold. Nonetheless, we can still
estimate the upper limit of τc: The closing time is at most a time necessary for the slowest
“random walker” to travel, with diffusion constant that of the entire chain Dchain ∼ D/RRtn$
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chain limit, this dynamical fluctuation regime disappears. Note that the boundaries between
regions I and II are not sharp but are crossovers. Loop-formation kinetics in the crossover
area will likely combine aspects of both regimes, as indicated in recent simulations [10] and
by results that show that τSSS and τDoi are, respectively, lower and upper bounds for τc [11].
Similarly, based on their BD simulation results, Podtelezhnikov et al. [28] suggested that
τc � τR/α near the boundaries.

Our discussion has neglected hydrodynamic effects and excluded-volume interactions. w
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