(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 377208, 7040] NotebookOptionsPosition[ 373322, 6969] NotebookOutlinePosition[ 373731, 6986] CellTagsIndexPosition[ 373688, 6983] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["\<\ Pendulum swing up & balance, with local linear feedback. Test 3 ways to choose feedback gains (Problem 7.19)\ \>", "Section", CellChangeTimes->{{3.698811497715045*^9, 3.698811509022469*^9}, { 3.69885144307857*^9, 3.698851462312389*^9}, {3.709636905485622*^9, 3.709636910921179*^9}, {3.715342867107555*^9, 3.715342872342836*^9}, { 3.7153432690028687`*^9, 3.715343287448956*^9}, {3.716532618830523*^9, 3.7165326217793283`*^9}, {3.716570684194786*^9, 3.716570736464383*^9}, { 3.716613642404841*^9, 3.716613649251136*^9}, {3.7166173099843607`*^9, 3.716617315405965*^9}, {3.7167170388199997`*^9, 3.7167170401560717`*^9}, { 3.716725771532446*^9, 3.716725778338876*^9}, {3.717221319267695*^9, 3.717221332903965*^9}, {3.793502782741811*^9, 3.793502806661611*^9}},ExpressionUUID->"c2f1811f-5d39-4870-bd7a-\ 071084aa3a3d"], Cell["\<\ \[Bullet] revised, Nov. 12, 2021: \[Dash] eliminate unused variables from modules \[Dash] add option in NDSolveValue to prevent (spurious) warning messages \ about InterpolatingFunction \[Dash] simplify Plot and assignment commands\ \>", "Text", CellChangeTimes->{{3.716613652345023*^9, 3.716613661762876*^9}, { 3.716635650557143*^9, 3.716635673813285*^9}, {3.793904900379339*^9, 3.793904916165039*^9}, {3.843071915202323*^9, 3.843071961225065*^9}, 3.843072170556024*^9, 3.844255952228979*^9, {3.845740837286084*^9, 3.845740844947158*^9}}, FontSize->16, Background->GrayLevel[ 0.85],ExpressionUUID->"0abb6262-c79b-44e6-a613-7c457120e8f8"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"Clear", "[", "\"\\"", "]"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"ffCalc", "[", RowBox[{"n_", ",", "\[Tau]_"}], "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{ "f", ",", "\[Theta]", ",", "\[Theta]dot", ",", "\[Lambda]", ",", "\[Lambda]dot", ",", "\[CapitalDelta]t", ",", "bcs", ",", "eqns", ",", "sv", ",", "froot", ",", "\[Theta]ff0", ",", "\[Theta]dotff0", ",", "uff0", ",", "\[Theta]ff", ",", "\[Theta]dotff", ",", "uff"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[CapitalDelta]t", "=", FractionBox["\[Tau]", "n"]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"f", "[", RowBox[{"{", RowBox[{ "\[Theta]_", ",", "\[Theta]dot_", ",", "\[Lambda]_", ",", "\[Lambda]dot_"}], "}"}], "]"}], " ", ":=", " ", RowBox[{"{", RowBox[{"\[Theta]dot", ",", RowBox[{ RowBox[{"-", RowBox[{"Sin", "[", "\[Theta]", "]"}]}], "-", "\[Lambda]"}], ",", "\[Lambda]dot", ",", RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "\[Lambda]"}]}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{"bcs", "=", RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["\[Theta]", "0"], "\[Equal]", SubscriptBox["\[Theta]dot", "0"], "\[Equal]", SubscriptBox["\[Theta]dot", "n"], "\[Equal]", "0"}], ",", RowBox[{ SubscriptBox["\[Theta]", "n"], "\[Equal]", "\[Pi]"}]}], "}"}]}], ";", " ", RowBox[{"(*", " ", RowBox[{"hard", " ", "final", " ", "constraint"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"eqns", "=", RowBox[{"Flatten", "[", RowBox[{"Join", "[", RowBox[{"bcs", ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"Thread", "[", RowBox[{ RowBox[{"{", RowBox[{ SubscriptBox["\[Theta]", "i"], ",", SubscriptBox["\[Theta]dot", "i"], ",", SubscriptBox["\[Lambda]", "i"], ",", SubscriptBox["\[Lambda]dot", "i"]}], "}"}], "\[Equal]", " ", RowBox[{ RowBox[{"{", RowBox[{ SubscriptBox["\[Theta]", RowBox[{"i", "-", "1"}]], ",", SubscriptBox["\[Theta]dot", RowBox[{"i", "-", "1"}]], ",", SubscriptBox["\[Lambda]", RowBox[{"i", "-", "1"}]], ",", SubscriptBox["\[Lambda]dot", RowBox[{"i", "-", "1"}]]}], "}"}], "\[IndentingNewLine]", "+", RowBox[{ FractionBox["\[CapitalDelta]t", RowBox[{"2", " "}]], RowBox[{"(", RowBox[{ RowBox[{"f", "[", RowBox[{"{", RowBox[{ SubscriptBox["\[Theta]", RowBox[{"i", "-", "1"}]], ",", SubscriptBox["\[Theta]dot", RowBox[{"i", "-", "1"}]], ",", SubscriptBox["\[Lambda]", RowBox[{"i", "-", "1"}]], ",", SubscriptBox["\[Lambda]dot", RowBox[{"i", "-", "1"}]]}], "}"}], "]"}], "+", RowBox[{"f", "[", RowBox[{"{", RowBox[{ SubscriptBox["\[Theta]", "i"], ",", SubscriptBox["\[Theta]dot", "i"], ",", SubscriptBox["\[Lambda]", "i"], ",", SubscriptBox["\[Lambda]dot", "i"]}], "}"}], "]"}]}], ")"}]}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "n"}], "}"}]}], "]"}]}], "]"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"sv", "=", RowBox[{"Flatten", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ SubscriptBox["\[Theta]", "i"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ SubscriptBox["\[Theta]dot", "i"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ SubscriptBox["\[Lambda]", "i"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ SubscriptBox["\[Lambda]dot", "i"], ",", "0"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}], ",", "1"}], "]"}]}], ";", "\[IndentingNewLine]", "\t", RowBox[{"(*", " ", RowBox[{ RowBox[{ RowBox[{"initial", " ", "guesses"}], " ", "=", " ", "0"}], ",", " ", RowBox[{"very", " ", RowBox[{"naive", "!"}]}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"froot", "=", RowBox[{"FindRoot", "[", RowBox[{"eqns", ",", "sv"}], "]"}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"\[Theta]ff0", "=", RowBox[{"ListInterpolation", "[", RowBox[{ RowBox[{ RowBox[{"Table", "[", RowBox[{ SubscriptBox["\[Theta]", "i"], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}], "/.", "froot"}], ",", RowBox[{"{", RowBox[{"0", ",", "\[Tau]"}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"\[Theta]dotff0", "=", RowBox[{"ListInterpolation", "[", RowBox[{ RowBox[{ RowBox[{"Table", "[", RowBox[{ SubscriptBox["\[Theta]dot", "i"], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}], "/.", "froot"}], ",", RowBox[{"{", RowBox[{"0", ",", "\[Tau]"}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"uff0", "=", RowBox[{"ListInterpolation", "[", RowBox[{ RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"-", SubscriptBox["\[Lambda]", "i"]}], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}], "/.", "froot"}], ",", RowBox[{"{", RowBox[{"0", ",", "\[Tau]"}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Theta]ff", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]ff0", "[", "t", "]"}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]"}]}], "}"}], "}"}], ",", "\[Pi]"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Theta]dotff", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]dotff0", "[", "t", "]"}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]"}]}], "}"}], "}"}], ",", "0"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"uff", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"uff0", "[", "t", "]"}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]"}]}], "}"}], "}"}], ",", "0"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[Theta]ff", ",", "\[Theta]dotff", ",", "uff"}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "=", "500"}], ";", " ", RowBox[{"\[Tau]", "=", "5"}], ";", RowBox[{"\[Tau]1", "=", RowBox[{"3", "\[Tau]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"\[Theta]0", ",", "\[Theta]dot0", ",", "u0"}], "}"}], "=", RowBox[{"ffCalc", "[", RowBox[{"n", ",", "\[Tau]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p0", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]0", "[", "t", "]"}], ",", RowBox[{"u0", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{"None", ",", RowBox[{"{", "\[Pi]", "}"}]}], "}"}]}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"2", "\[Rule]", "Axis"}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}]}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.716725835516573*^9, 3.716725835885325*^9}, { 3.716726014532469*^9, 3.71672602766113*^9}, {3.716726231523755*^9, 3.7167262420957603`*^9}, {3.716726307201371*^9, 3.71672640862053*^9}, 3.716727073320963*^9, 3.7167365399686203`*^9, {3.84307222583185*^9, 3.843072226277053*^9}, 3.8430723025474033`*^9, {3.843072948584827*^9, 3.8430729546913223`*^9}, {3.844255966217416*^9, 3.8442559722618523`*^9}, 3.845740828044038*^9, {3.845740884122397*^9, 3.845740888064542*^9}}, CellLabel->"In[71]:=",ExpressionUUID->"6e42687c-bd84-429b-9901-9da7fec5d545"], Cell["\<\ Test the approximate solution on the open-loop\[LineSeparator] dynamics \ (integrated at a fine time step)\ \>", "Text", CellChangeTimes->{{3.716613652345023*^9, 3.716613661762876*^9}, { 3.7166171500953703`*^9, 3.716617173133562*^9}, {3.716626783084096*^9, 3.7166267858131742`*^9}}, FontSize->16, Background->GrayLevel[ 0.85],ExpressionUUID->"291c1013-9723-4bbf-bdf6-0ec48ff3a54f"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"TestSwingUp", "[", RowBox[{"\[Tau]1_", ",", "uff_"}], "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{ "eq", ",", "init", ",", "\[Theta]", ",", "\[Theta]dot", ",", "\[Theta]s", ",", "\[Theta]dots", ",", "t"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"eq", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Theta]", "'"}], "[", "t", "]"}], "\[Equal]", RowBox[{"\[Theta]dot", "[", "t", "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Theta]dot", "'"}], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"-", RowBox[{"Sin", "[", RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], "+", RowBox[{"uff", "[", "t", "]"}]}]}]}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{"init", "=", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]", "[", "0", "]"}], "\[Equal]", RowBox[{"\[Theta]dot", "[", "0", "]"}], "\[Equal]", "0"}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"\[Theta]s", ",", "\[Theta]dots"}], "}"}], "=", RowBox[{"NDSolveValue", "[", RowBox[{ RowBox[{"{", RowBox[{"eq", ",", "init"}], "}"}], ",", RowBox[{"{", RowBox[{"\[Theta]", ",", "\[Theta]dot"}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"Method", "->", RowBox[{"{", RowBox[{"\"\\"", "->", "None"}], "}"}]}]}], "]"}]}], ";", "\[IndentingNewLine]", "\[Theta]s"}]}], "]"}]}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Theta]1", "=", RowBox[{"TestSwingUp", "[", RowBox[{"\[Tau]1", ",", "u0"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p1", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]1", "[", "t", "]"}], ",", RowBox[{"u0", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{"None", ",", RowBox[{"{", "\[Pi]", "}"}]}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}]}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"2", "\[Rule]", "Axis"}], "}"}]}]}], "]"}]}], ";"}]}], "Input",\ CellChangeTimes->{{3.716726475850806*^9, 3.716726483729012*^9}, { 3.716726540265172*^9, 3.71672655675944*^9}, {3.7167265922123337`*^9, 3.716726624099812*^9}, {3.716726827404985*^9, 3.71672683813792*^9}, 3.716727075758045*^9, {3.716736385196327*^9, 3.71673639877942*^9}, { 3.843072267946273*^9, 3.843072268190043*^9}, 3.844255997934866*^9, { 3.8457408779527407`*^9, 3.8457408804684362`*^9}}, CellLabel->"In[76]:=",ExpressionUUID->"03e0d4f6-e531-4b5f-ab2e-1a3e95fe7d1f"], Cell["\<\ Show that linear feedback can stabilize against various perturbations. Use \ LQR for balance state for everywhere.\ \>", "Text", CellChangeTimes->{{3.716613652345023*^9, 3.716613661762876*^9}, { 3.7166171500953703`*^9, 3.716617173133562*^9}, {3.716626783084096*^9, 3.7166267858131742`*^9}, {3.716631401415011*^9, 3.716631413565827*^9}, { 3.716726797650621*^9, 3.716726800769066*^9}, {3.7172213459197063`*^9, 3.717221356055809*^9}}, FontSize->16, Background->GrayLevel[ 0.85],ExpressionUUID->"cef80cf4-d7d3-4045-a5b9-b38502d93e2f"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"TestSwingUpFB", "[", RowBox[{ "\[Tau]_", ",", "\[Tau]1_", ",", "d_", ",", "\[Theta]ff_", ",", "\[Theta]dotff_", ",", "uff_"}], "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{ "eq", ",", "init", ",", "\[Theta]", ",", "\[Theta]dot", ",", "t", ",", "\[Kappa]1", ",", "\[Kappa]2", ",", "ufb", ",", "u", ",", "\[Theta]s", ",", "\[Theta]dots", ",", "us"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Kappa]1", "=", RowBox[{"\[Kappa]2", "=", RowBox[{ SqrtBox["2"], "+", "1"}]}]}], ";", " ", RowBox[{"(*", " ", RowBox[{ RowBox[{"lqr", " ", "for", " ", "q"}], "=", RowBox[{"r", " ", "for", " ", "balancing", " ", "pendulum"}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"ufb", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Kappa]1", RowBox[{"(", RowBox[{ RowBox[{"\[Theta]ff", "[", "t", "]"}], "-", RowBox[{"\[Theta]", "[", "t", "]"}]}], ")"}]}], "+", RowBox[{"\[Kappa]2", " ", RowBox[{"(", RowBox[{ RowBox[{"\[Theta]dotff", "[", "t", "]"}], "-", RowBox[{"\[Theta]dot", "[", "t", "]"}]}], ")"}]}]}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "12.99"}]}], "}"}], "}"}], ",", "0"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"u", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"uff", "[", "t", "]"}], "+", RowBox[{"ufb", "[", "t", "]"}]}]}], ";", "\[IndentingNewLine]", RowBox[{"eq", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Theta]", "'"}], "[", "t", "]"}], "\[Equal]", RowBox[{"\[Theta]dot", "[", "t", "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Theta]dot", "'"}], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"-", RowBox[{"Sin", "[", RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], "+", RowBox[{"u", "[", "t", "]"}]}]}]}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{"init", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Theta]", "[", "0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{"\[Theta]dot", "[", "0", "]"}], "\[Equal]", "d"}]}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"\[Theta]s", ",", "\[Theta]dots"}], "}"}], "=", RowBox[{"NDSolveValue", "[", RowBox[{ RowBox[{"{", RowBox[{"eq", ",", "init"}], "}"}], ",", RowBox[{"{", RowBox[{"\[Theta]", ",", "\[Theta]dot"}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"Method", "->", RowBox[{"{", RowBox[{"\"\\"", "->", "None"}], "}"}]}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"us", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"uff", "[", "t", "]"}], "+", RowBox[{"\[Kappa]1", RowBox[{"(", RowBox[{ RowBox[{"\[Theta]ff", "[", "t", "]"}], "-", RowBox[{"\[Theta]s", "[", "t", "]"}]}], ")"}]}], "+", RowBox[{"\[Kappa]2", " ", RowBox[{"(", RowBox[{ RowBox[{"\[Theta]dotff", "[", "t", "]"}], "-", RowBox[{"\[Theta]dots", "[", "t", "]"}]}], ")"}]}]}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "12.99"}]}], "}"}], "}"}], ",", "0"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[Theta]s", ",", "us"}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"d", "=", "0.7"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"\[Theta]2", ",", "u2"}], "}"}], "=", RowBox[{"TestSwingUpFB", "[", RowBox[{ "\[Tau]", ",", "\[Tau]1", ",", "d", ",", "\[Theta]0", ",", "\[Theta]dot0", ",", "u0"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p2", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]2", "[", "t", "]"}], ",", RowBox[{"u2", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{"None", ",", RowBox[{"{", "\[Pi]", "}"}]}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}]}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"2", "\[Rule]", "Axis"}], "}"}]}]}], "]"}]}], ";"}]}], "Input",\ CellChangeTimes->{{3.716726812667987*^9, 3.716726883531363*^9}, { 3.71672696136793*^9, 3.716727079150625*^9}, {3.7167271306788473`*^9, 3.7167271716690073`*^9}, 3.7167383122717752`*^9, {3.7167383517180233`*^9, 3.7167383524198914`*^9}, {3.716738394564283*^9, 3.716738407792145*^9}, { 3.716738452123864*^9, 3.716738453915711*^9}, {3.716738489877406*^9, 3.7167385083938313`*^9}, {3.7167385651893682`*^9, 3.716738646187314*^9}, { 3.716738708050569*^9, 3.716738756860454*^9}, {3.71673880160703*^9, 3.716738803694364*^9}, {3.716738839979808*^9, 3.7167388785547457`*^9}, 3.716738937718771*^9, {3.716738967881958*^9, 3.7167390202687263`*^9}, { 3.716739074798856*^9, 3.716739090078024*^9}, {3.716739269912098*^9, 3.716739326035336*^9}, 3.716739360688181*^9, 3.717178550725272*^9, 3.717179758870756*^9, 3.717179794157363*^9, {3.7171799200719233`*^9, 3.7171799375311337`*^9}, 3.71722671021833*^9, {3.717226821989459*^9, 3.7172268485981207`*^9}, {3.717231321619536*^9, 3.717231333237545*^9}, { 3.717231399024392*^9, 3.717231399384038*^9}, 3.844255991040859*^9, { 3.845740867720602*^9, 3.8457408700990458`*^9}}, CellLabel->"In[79]:=",ExpressionUUID->"9feaa965-6c5e-433b-9cc7-a1ba3b998866"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Grid", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{"p0", ",", "p1", ",", "p2"}], "}"}], "}"}], ",", RowBox[{"Spacings", "\[Rule]", "4"}]}], "]"}]], "Input", CellChangeTimes->{{3.717179660721051*^9, 3.717179669399199*^9}}, CellLabel->"In[83]:=",ExpressionUUID->"c2be2ada-e7b4-4fc2-9efd-840145fc75af"], Cell[BoxData[ TagBox[GridBox[{ { GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxd2Xk8VN//wHG7GSFmhEQlUhFKZSm8T5YUJYlClrKEshVFUpYiyZ4QImVr RxGS0SprZY+ylnUwM5YQ+s7n9/vdO9/fxz/16tHMOffOOffM80Ha3tPUiYON jW2AnY3tnz9nuqrfy95I0Gb+NZiWH6o116Z2i9bWCGbOMW8qXe/AO93crK/3 +iH6iks+KnwDkt2lA/abx2BcVnfz0/RmEHGze8irOwmKPuxiciZ9EL91zytj 81mQOfjxaWItFb4lb6mkCy1Cb1KTSX7+JNzICvzMsZIddajYHvpkNwdiCf3X b97hRDYJ2ara15fgmtk+7cYZbqSr+kRA/SQ78tbItKsOISDVJZebTic4kd7E vL9HPx96dOSadNk4FwrWPHRCQl0AGejcaLy7jQftfHr7xWXKcvSiUL9G7jAv cpulB30SEEYmG6Z6xeQIaE5BqEvRnITAzkmotJqANB89vpuYSEbx64clF1cR EZ1kePzIWxEkrqhn9keaiH5GHj9yllcU730Tvvt+qYrhTXUgeL8IFMd7j6wY x7W3K/Em1ctF509I4C0Z/sxEVVUS72QFDSGysxTeNRK7d0zGrcZ7p+TbWOXW NXgLct7zORGyFu/VwWs0LeWk8Sauty42rWK1ktbKZ7426/A+20V6Z8gmg/fE ZKT5vmRWGyh/TNmnKIt3xeSuP78bWO2xWaXjq9N6vLXGHZstiXJ468uKHxC4 x+qNQRF+b9U24C3vpEFZ38FqpwqXqy/ObMSbcrfZkb5iE95TeX9/K79ktcP6 R8SUA/J40+VvqhbSWF2S9ad3OlwBbys9GbRr9Wa8V7lfK1WqZPUKPreCA0cV 8U53L5v++1fxvz7PkR/0trfAvUHqu2PsRahU1p2oFvwBNo/HbbRCC8ErLl8/ xXkIzvYdkFdUr4Ovil3RaVQaeEtqnLGX/g5NDY0qCnXTsK6MrN9+fBCsRYzH Vj0nIle38uy2LVyob4Wcx3sBfkQ8Efv9VTI3sj03HVF3URB917BPuFDLg947 Z4y9Oy+E1o18TQh5x4tUSMHKFwuEkU0arbkriIBSTttC3zQJHbkerv1jkYBE 7S4Gnd/MWr8jB82P/XRcgXfHrptNOY9Y19ddbuw51VYIO7qPyPHHWsH3K1o6 NpNtUOO9cTbnUh6kjChM7+AegKi7D+/m3P8IdlK7OBpCJqDsQ2SBjHY7+Ejd 9rh9bQpobB+U19T+hKEc3xyGBBEV2nMR7Go50c2QWJ/bfstQeO4Gnsf63Ihm IXN+8psAaroXFJ4WzIO81szc360ghDRzMl7yRfGig6Ea7Zl2wqjVpnxzpjkB 1Ri9FAzPJiEPs3YOywEC2sSdEBvWS0bZj5ZifP/ZTyObrw7r1sEdveGmg3yx 0Ogua7xqRS+k2pmqz2mUwR71HYlL1SPwWM6q5ZLqV6iLq8rIllqOsjSS1x4Q 5kXi+XvV9rwVQtt3L56NmOFFohmfwsw4SUgoni0kK5eATt/g9tLcQ0bJatz3 fy4nIq5Se6+Tvqz7KzwuFj/Xdg/mDfaSeAV2wsiTstEcpxaIGvyh/EDnPigl DddxNv+EZ9bziz6i70H7sr9P8tFxMCFIJj1xaoX3egGRJr8m4UF9x0liRD8o efFzdjUQUFx/tNRUIieilnz4zam0DFXfzxUtkOBGJYZlozzXBVD092Be2WM8 aM9F6cAgbiEkY82/O8yLF3VV3NpcpCqMwt5pPnXQJqC+Vw4zVpdIKMYvTSC3 nYBULO4mC5aT0Z7m3u3n1hDR1mvLCsaiquCUe7aJ+XAoFHJ/1A9K6wbCphUc mluLofMnw70ueRj8+Pne1Wp/hltXbFeU1gkiHrm/bv3jPGh8mQ8pNE0ITZew c5z7wYuy2mU7nTuEEVm9l9qUQEAhfwqOLl9NRqTLmTpJvERUHBK3gqpbDr5Z /OLt3h7QYFmZTA7uAN33SYR616dQ2Mm3oaiehATeWO99zyAgbuXcnl9crPt9 VS73ESPgCyjXRUyeVUoEs1WW4a4eZPTOvzG+WJSIzps8bONsjwfjUGn3PQ0r gaFzobJ2dTN8fCa5zGHgLvi5fyo5tesnkJwtQjW638ITpZQni2/GQH2w6tTv wBZwa3dftTlhEmiK7EGbqH3wpflIQVMeAVm8fR90KIATiZsd1yglLENsJoXm LVzcKO1daE7scQG0wC81e8WABzmYenyDX8tRbG3ICP0EL8rufNeqvU4YUc/J mNqpEND4pMYpPVcSiqgdHD/ylYBeBuekmT4goyHX6dEBKSIqb/GvmlD5ACt6 ++6WJQdDacpViWzzLojt5PF9cfAFyL36armNbRgynziKBxfXg//Cpi86WYKo OtYn2/gHD/pWSgzKui6EgGPZ0aQvvOj0tGko/YMwurxtJGgxgoCit4XXzhLJ yKXWe3KAg3nerPHSoUW9BG/zw1XOk47QMn7ZXX3nN2iJ4A08ZvMIKsi9Keml JBS1I1W5hEpAWZ1RkTpTZIR2leQOMj+P+NTX7oPpDaCmYXuYYz4ejh9WXjC1 IiN7fjX2y2QiGnpupU7XfQwzlhbFB5IPQL/4gmjI41Y4SLJu0q7JhqdKKQk1 DWS0+3EiKWctEeWop6WMDlWDxYRrbGB5BJx/19m/XoWMyB7G7tRlRPTlrOXU ZEAlaBovZpiO+EBqePDVspWs9bG3P0QkKISMGm+0HYxcSURoxWd78fYQMHTZ mO1UPKd9Pqpd3vZiE3Dry1ZmxWZAevtLpdUT/YA6dB/7GLyFnzzyhlt8x0Cm +rTee8EWQPcG+m6fnoQY+fLdo3f6YB1vQHjDLQJKJVwv++nBiZ5mKnaQZ/hQ pOSmgs9zXEgwaPSK+X4BtCx0qCFFiwcZs3EZ2DUuR/raV7bftOJFhJGOR5zi wuig87Zp3c0ENLV8vayGHQnZ+xpmxdUTkH/ig/SpDDLacijw6KIkEbFfKmz0 4n4PNwajmzR2B4Lmr/6raoU/YE1xHfm283MwknvzeeD5EHhTSVpiM3VALYl5 whsriHgTz8q7NfOghthm1e1BQqhKqaSVXMOLGjhPWRW/EkYlt1LX/w4loISD 3qFjf5nPhxe+8u5sRGTm0W3BUCkCS4V+5fr+42Ch0dVWk9gOl7vOutMGH8B7 5Tqzm89IyLAu7Wf8MAGdpMVG/xwho5WboodfMe9/m860n8uZelhvYf3m3oU4 OOkpUWxgQkYJ1yaMXgsT0YKJhtN0VC7E29UG5HvrwUmHY8EixFYIi1Z+xB6c BV66dxLdPpDRVAzZayVzPVC7m7LdXn2C2smRmDM64RDQ/fGOxEYyAk5Zy3oi ESlsX/d3OL0CHsQGFFVOngHjv+4NPn5kxCe9cUxRnIj2i45d+qObBvHpObEB 8oow5XY/Jb+QeX83rcsoXc1cH1/ZNo8PlQJ/xWcjAz9X+PPFYo3EHzIab7Id /P3P9wc1PR1bRzI6kJ91RW4FEZ1aVhE6E5APUm7uE2paZkBdmRS/sZ2MRgYN fkgw/39zuviF3e1nweTKYd8bpd+0S1QIx3M3NUEub9jJKP902BL9bPj3J+Z6 O/UxNnzhDbBNnkmuPjQGMd6G/rdam0Ge9/5Hk6OTwKHYdWrufB8Y3hWcMopk 3mfXbu8NLpzowt4E+TdUPtSbdndwzxQX2mubzlDTEUDfwxZGM9R5kF5bw+L4 p+VozVfB4q4jvGjnmZOiAyRh5LXBn33LJgKauSMRvM2KhN6ZSb/JrSWgzrWP MvRTyYjDaf+yIOZ6yzIxtijweAdZsvUt1OOX4HIEuSzo+A/gq9OKej5dCF2d JRGVUUNw07pcojGxDtYn6UiOhAois06b/qnPPGjfggYp4KIQel5TPFb3kRex 3Zh+n1wsjOaFD+10v0JAST9c+gbnSag6OnJ6w1/m95cVYo7e3C/g61bHLv7l tpDSJSAgot8OpAV1O5etD6Dq9ZuCqIck5D1BuTI7SECf/ONjdgyQUVOXUF0a 8377i8Yt5XXUgWpc9tQ3Siy4LC4n6xiR0XNFPkaTEBGFZeRd/K2SDQ+LVcqj whDkEW4U27xsAWntG98v9NyHr/XpSa8ryWipIXt3DfM8jH7uqfBE9hMEhPNy 1Ahfg0D38nkRGTIaPpkgX0QgIq9OS77TZ17DAa1jdftivOBQlIOCpzcZ7c2v sDonRkQnntc+/BuVBPHeR4Y7tsvCkd9ZqexPyUiJ7Lr+MHO9hfqpq3m+KgFa q4OY+AZn0D0UeYM+S0aXj/qrTTGvx+aDRoaFHRnVWdTsNxchIlunUemJ9KdQ 3x0QmuNyCA5kJd+80ERGJpeHz/cz94dopzBRSC8SEr7TCBWz/MB9Mibq5gTz PGnV7Wn+5/s+R43x5NADWMtV3fq0YS8sL029taqGjCyCjpbYM1+fpnkt70/A XWgv12xO/LUNImJuxbV9Zz4/xYq19jNf/+/z99/7g+1/fkTQlaCvd+aYjXny TJM4g8u+DzBP7nPev3t93QjuyR5jq6sHcmi4J9sVj60L2MLAPbl36GgncRcD 96Rn1lRNURMN9+S6n6VDD6XHcE9KColxHdw7iHtydZafs3R4L+5J09C1DKkD 3wDz5MWX/OzzpC+AefJlxVcKbdUbwDzZm6ef6MV+BzBP5gVGxU2dKaJgnvTk /TjYSqimYJ4s4wyXygproWCevE1V/Biq00PBPMn2fz+YJ7HGPIk15kmsMU9i jXkSa8yTWGOexBrzJNaYJ7HGPIk15kmsMU9ijXkSa8yTWGOexBrzJNaYJ7HG PIk15kmsMU9ijXkSa8yTWGOexBrzJNaYJ7HGPIk15kmsMU9ijXkSa8yTWGOe xBrzJNaYJ/ed+JBi0jqAe9J4f8v1FZ7juCcr9xyii6bRcU/qdn8OXO7AwD2Z Pr6LequADqpOr7TWPp8HGSmzc14xEzBLS3p2MfMvzPD+fSioOwKYFw1152+n NnyhYF6Mi5WVDC/ooGBexOaHeRFrzItYY14UXGgUvPzwJ+7Fuo91XbMvqLgX J0gu/NsV6bgXD5WTc5zMGbgX2R2pXxvZGeBYGxSgdnUOwm3GeIXNaDCk9/Ol quUSiPypS+QsGQXMg2nwIWrnrnoK5sGK45ZissR2CubBQpcKJeXKXopHwWeb O2TW/GfvBer4B7Pmj3lxSYV3l3/fEO7FjU8aeSi/J3AvEq6ZJMcz6MCoS5ds FGPAA6mQCk4rBqgE8f8uF/oNp6wHQHk/HTAfcvt7FXJe/UHBfIiNV96c49jU whof8+LZ7K6YrOv9uBe12q3yVD+O4l7kMnOhljA/d8yLOtv9yN36DNyLK31u bTslzYCLl/tXvaPOwo0ObqPbt2jQ48GnKVK0CEH2cW4RHlTAPFh9+4lJmGQt BfOgUbe0r8u7Vgrmwfuep5u9lnooW/r4u+dGWPMPa52ec3BjzR/zYqm8xFJ4 zyDuxTfaCW8rNSZwL64yCCx3qqGD/aUKc7UQOryS3rfP/AQDQnInRHw8ZuDD t2MpzsF0wHzo/PrxHq0V3ykC/J5+44dY4xsRpCRfV7LGx7xo+fLq0rLkMeDW 9pByUR2ELxmh3k+c6YC6FqvYj9LglxK35So7BsjOFJn0bZqG4u7obr/vdMDO M+z9Cm74Vmz5MwqffF7N3hZhwBXJwH63JwyQ3+hRtuMAAxQztzwZHmGNj/nS 3TRZPnemD/flnpQXeXGGo7gvkyJ6+FANDfdl36mHJcPM8wzzpcMldZkFJQbw tCeMEjJnwd1EpF+8iMbcT1JLHA6LUG9OGon9RAXMj1rVh9uOCddQMD8q//pk NCHTSsH8uIe+c+Z9Rg8l1v/RmrxW1vUZ0/Jb2k+w5o/5sjPmx5Kn9SDuy4J1 nmwLLeO4Lxs9KKocL+iQYm7McFWjw4u5gtYBe+Z92dV7/6DUDGjnvlOSTaED 5smheTcXon0nJX7HuQAVYI1PWtf+e2sxa3zMl9WRtRJLG8bAROQA8fOdAYjh Fx7fakQHv+Iox+38NGjlsX09x9xvdddzu1+3T8HfINNHHRN0wPzpsIpd31Sm j7Jw4sjDJPtRMCWO8B3jYkDZlGBQBnOecETMz9CMAVNlo+G2Pf+1fuqtdm0b GweVtmsGNsYMkCyIWPRRnYL1wyU6ViQG7lGDsbxLcba9lFhBkRCnrSOwsDv5 Jeqmg3y2UilXPR2ak6+02dgygMDjofA5kwYPUreH1DHXN+ZRbLyTRcmN1Tep 0F+89vpBGQbs15vYs3OWeV2/jvhW6zHg5LVzX32mWfPDvFpFu9h5/XEfYF49 MXow6fmyUdyrYbaVjedKaLhXHRt/cNqrMnCvmhtlDmzbwRznqnuTwsVZ0Nn/ d8PV9zSwEtxgN6+xCDZySY80p6mAebTz6Aanj5HVFMyju+IsJrhaWiiYR637 uPbNevVQKj/OQ2Ad6/pULkXr3rRmzR/z6gHnxON3Vw7iXvVeiLKh3hvHvaon SbyklUeH4t2JiJNEB5l++3MbmefbEpfV6ddT0xAcmj/Ck0MHzKfLU3eGexM7 KWaGfpebd7DGn3la5ETNZ42PedVbXqTw2zgVzgVqBoYcGoDTYhMKDpp02Kj/ yCm1fgL8FCzW2Fow4O7htbkK+VPgFTnuxDVHB8yz0wFiYTH0Xop0vf5aI9FR kBDT4sj7Q4fWniMN6loM8G3hrjI9yoB2g+oZ8U7W+Dw5I21OzOv0UyhY2m/I AJo/54c+gSkojZ5OEJZg4L7dZHGH31Spl1J8gXNW/NcwjAlUmnO10GFP3Hne 9Fw6nJqLkuA5znx+MYouuATQIPrlZHsms23vXA2zFmJdf+Ta8L2XDKjw1fn5 4HpJBrhsUbvV1MiAZC65vfL7GGAochiUaf/1/DrCJ1zLPw4b1e/YkHcz4LIr T9YXazpU6c0uGjL3jXWNvmjqVhrsfHj1lboNA/dw+vL8nmGDPko6oWorTzgD im96Go6aMCBxuiadTX0C+FyJEkKmDBAsHTh1mnlurhN+OWxtzWD6WO7Hjioa rHyblJHKfP+Q+SSHsnnWfDAvy/I4IbNrfYB5edrU7hgHdQT3stVBLlf3ZzTc y2v9jTr8tzFwL2d2PJZTUGeAcqelgZbLLLyvnteUraNBStOj5efXL0Iv2pJ5 cdkYYB52vB+6usywmoJ52OqZls+7Jy0UzMMqNMPG55Y9lHa3dV9OVbHud5bu JX+aJWv+mJczZR1OE2YHcC+L7f70YeX1cdzLvoJWnqr36PBerWzw4F8asJ/J NN3AXO9DrqIHfXqmIay5ndH+iA6Yj+NmbHJcfnRQipovBK7fyhrf5VxW2r6n rPExLwvYNVewNTL3847tO60VBsBHiD+rbTsd9LZOPt+eNwHRcR+Cx44wIKLk e0Rf6hQIPe0h+y7SAfO0vpv96qb2XsqLEK1OWdoIhBro3N70mw4/W/3Phcoz 4GHc3PZi5n4xFCxRPN/OGn9dvIrc34Bx0F8zS5Hey4CObkre7blJWLetoqpa ioH7Or6jv9RctJeyV/lPIaNiGD6m1Bm/+UwHs2spT0cS6LCCMt9RwlzfKkPf 1ha5MtdfBoiPMM9vyoawa0+Wsa5/dWsg51FpKsjce7PTTZwB5+WOaa6tZD73 fvoU7TRiQHnH7vORY6z5xeuY2jkOjoFWn4BRhDYDIu3kjaQM6XCV+kshi7ke T1W6vh5cTQP62bg6WeZ6xTwOphk9Fpp9lMdLI+2m5xhg8PBYUTZzfRf2ksZu kyZgKbTSWoe5/iWf8ZFKmOfChNdWTxfmfplfbng15AUNql76XgLm+09VhqWI zbLmk2d09naxLB1mXotMkpifP7+lgxjHJPN7e/WWsJeWDNzvGapR1xz5+ijq qabHD5UxPwd3sRVazPshuhDXuCqGBmduF9/XYZ43Xt59C1c8mfstaodlJ7ON m6U9jfVocJS0PX4H83zqkuFQHf5Gg0x5bUYPcz5C2x9stllkzeff34f+vd// 919F0Drhf7qR0uXbU1LQKcB6/rJ+f/z/Xo/1fwDQp/qK "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{419, 486, 484, 243, 244, 432, 385, 347, 319, 299, 287, 245, 433, 386, 348, 320, 300, 288, 442, 395, 357, 329, 309, 246, 434, 387, 349, 321, 455, 408, 370, 301, 449, 402, 474, 364, 466}}]]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJwNz88vF2AcwPFv/golNpskJ+JAycmPDmR9p8Sp6CBGWqxWKieqAxljMiZD E+VU6oCmMYzJyFjogvws+Qt6HV57P88+e55nT2Th3WB5SCAQOEEz22zZbHJs /Y8j/vKHQyLMYkmlgBqGODAL13NcIp9nfGDfLFEvc5uXfOE0OZTSyFdiuEcr k6Rwg6e8Z89dD7WTOYL0sEg5zXwjgT5+UMlPXjNNJuu84TtFrPCCz4Txi7cs U8Ua7cxwhQ26WaCEVV4xxll6WaKCFia4SBfz5PGEQXb96YF2MMtVymhinPPc p40pMijkOcOcIps7NDBKNBe4TjUD7HgnXtO5RR2fOEkWxdQzwhmSucZj3vHb +ThN4ya1fCSUKJLI5RH9/ActflJa "]]]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[{1, 182, 143, 221, 110, 214, 175, 225, 85, 207, 168, 223, 135, 219, 180, 65, 201, 162, 129, 216, 177, 104, 212, 173, 140, 51, 194, 155, 122, 97, 210, 171, 138, 77, 205, 166, 133, 108, 2, 183, 144, 111, 86, 208, 169, 136, 66, 202, 163, 130, 105, 52, 195, 156, 123, 98, 78, 3, 184, 145, 112, 87, 67, 53, 196, 157, 124, 99, 79, 4, 185, 146, 113, 88, 68, 54, 5, 186, 147, 114, 89, 69, 55, 6, 7, 8, 9, 10, 11, 187, 148, 115, 90, 70, 56, 12, 188, 149, 116, 91, 71, 57, 13, 189, 150, 117, 92, 72, 58, 197, 158, 125, 100, 80, 14, 190, 151, 118, 93, 73, 59, 198, 159, 126, 101, 81, 15, 191, 152, 119, 94, 74, 60, 199, 160, 127, 102, 82, 16, 192, 153, 120, 95, 75, 203, 164, 131, 106, 61, 200, 161, 128, 103, 211, 172, 139, 83, 206, 167, 134, 218, 179, 109, 213, 174, 142, 17, 193, 154, 121, 215, 176, 96, 209, 170, 224, 137, 220, 181, 226, 76, 204, 165, 222, 132, 217, 178}], LineBox[{107, 141, 62, 84, 18, 63, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 64, 50}]}, Annotation[#, "Charting`Private`Tag$47450#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV0etPj2EcwOGf/6KoaCOETWKrnLeQDa3fnHLYEjZUKDXmUGFTaqMwpLFy nOS4lbIVMqemkdNUDm8MOVXC665eXPs8z773cz+7d0embwluHhIIBOr5wmUv O1lMHCMJoY4DpJHIRL5aX6O7WEI8o2jiEBtYQCj1FLGGOcTwzfdXdDdLSSCK Zg6zkYUM5TbFpDOXJ1SwjUm0cJQsUnjGabbT7T+1uodlPKeKqTzkOFt5zQVG c5cyOthEO2f5yCJaqeQ9ebzlEp8YRgMHecdaXlDNB+bxlFN0kcsbLhLLA44x eDGvOE+QNs6wg+/OdFXzWc40HnGCbMZwj3IySCaMRkpYRxKT+WGva1pAKtMZ Szg/za5rISuYQTQR/DL7TQ+99PGHz2b9+pcbnveykpmMYzj/zG7qPlYxi/GM 4A6lrGc+U/hv/S3dz2pm85iT5DCB+xyhk0xeco4BfzpjvA== "]], LineBox[{336, 459, 412, 374, 289, 443, 396, 358, 330, 310, 247, 435, 388, 350, 322, 302, 290, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 436, 389, 351, 323, 303, 291, 444, 397, 359, 331, 311, 452, 405, 367, 339, 462, 415, 377, 471, 424, 480, 279}]}, Annotation[#, "Charting`Private`Tag$47450#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{228, 229, 227}], LineBox[{482, 483, 481}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->NCache[{None, {Pi}}, {None, {3.141592653589793}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotRange->{{0., 14.999999693877552`}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}], GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxdWnk4ldHXlfles2ue5zlJRYacTYNCkUKUSKZGlCiRoYiiosGQoQGJUlSm 0jVkTCUUUZkyj/eiUPhOz+/36vs+//Qsed6z3/esvdc5ey9ZFy9rN0YGBgZR JgaGv//+/F73RuHyDSMGhskX60yNNsy16t6cbG1CmhvsdQ8eSkGVGx+kf7zX i0h5scdRfjmS6Czud9EYQ+pHvyi+Tm1BAkedstk2TqHe8l2R+lY9KG71lpc7 bGbR8xJttpK3o+hLglYZjXcBiTQ7d9Y8nUKX04M/MIqugA0nhQR/OM0h4Ru9 UddTmODdjVr1fVGL6OLubUZNP1mgXCmt0dR9BZzUu+tUF8YOh7dphPsdYIJN E/MBx3vJ4LN4eNW7cWYINdx5QGw9F/iukt9XuIYV9HMTn5+j8oDlu4EDG3ex wdFZWkgtFx88Ojr1ylCJHebUeb+vtOGHnpoQvpE6djDMeXTn1i0KxPO9f2As QQIav5mzbYUArCujmNnJkeBHtLPtCTYhcM/mO30G420T/tv6dIRBSsamPR3j 0YPsJ58HiwDTCSHaD4y3KAgzXqwQBflNl08YyJOA/53SlacTYnC/1qcjC2OJ yCdWOjoSUFFhr2CmQIIEdT1eiockuIW6MggrkqBezHjdVKwU/Npw9JGCEgn0 JSqurfosDQnMWefzlEnAzXTP90CYDOgo2KllqZJAKlTa0F5JFq5ENX2M0SAB SXFfgXWNLCzdlHl9SosEmhtEn/g7ykFvzs5613UkOPGdv9KMQR6UNmx1emhI gompaJttCfKgUyvM0LOZBKarqpO2rVQAh4ORgYzWJHg9ZfD713sFOCipNt56 kATHNbTbP7opwqLcSJhnAAk2jLu22JOU4IuZcNnj2yTYrCCyneueEtzt7pCe qSKBSsil0xW6yhCpddn2zgIJ1Nz0qIrtyhDc+03ikiUZ3F57XnjuowKs5wLk txSSgXqnxZUmqAre1Rm7Fa04YDpr6deqQlV4UnhbpViSEw4q5pCStquBOiOl XF2GC2hq13XyJ9VgV/wF5dWJ3PDdv6sor4MLGP7784/f//n53bhHWuw3Zfn/ U4+VzCwtrfwv5sX7N/yN1lqBbp9r9dp/9SwqW7Vxoo77G9rAadCtGp6PvGOf bk7yGES5b+er9NY3oI8rv19JHp1EEXRhmXOyX1Hz+yZt9YYZpOrIZjztPID2 CewYE39GglODvKFDWszQI6h0/A0XJ9xjuXuiMYEF9p+audRwlht6K7/UxL1l hTceaWOVfryQQ82euFfJBtr8oavO5vGBU5ByDSmUHZKO7Ec9M/xwQIL8XHiR HYSczob4aQiAWKFeuxnm37Clzd4froKwxPuL2QNjIaPRD+ppQtDbEh8Tg3GS Kny36BCGnQn5uyowFn1ztURSVhRI5TvrOTE/H81K1YrbiwFv1m354xjHqx3x mooTh4cuZ4SmMG63932a/l4C6Lcu/srC/F0tXyp3/o8k3HiylfUG5m/Y7RUH +dZKw64YgUMdmL+3IkNTX+nIgO3hBfMkFRxPhfMexxYZkIu857ygRgKB5g1z n/xkQdtz5rqDJs6PvBJtN345SOmb5KBqk6CRS0ivO1cO3i6FbSldTwKtIUtO Mwt5qP6zAsaBBLdjVU/X9cjDfOD+i6HmeH2+FW9lzinAnveqB/Uc8Hq8hcOu YoogGBfab36cBLYx5q03CxVBcWR6qDCKBMZRr689s1HC+fp60OgJCXSsP/YM jCrBpm7rPZWdJHhI7xafjlQGydc5xvbyZKjl+yg7pqgCxQ9t+24FkyHuSep0 U6UKBAydv3xvgQztCodzr7mrwhEGiu7PXA7Q8PjE4MaoBvoe29/n3eQENRVp GaU0NYi1eaNg954LWjxMOVsM1UH13Mc5cV8e6Hy1w2u6NR9NzYtDdYwD+np+ g4njVCsSKWip9A/KQknD6jPrWPrRjTMN13PuVyMnSQPG92ET6IG2uJmeURvy lUw8nnhxGnHzlDnrvv2BBjP9M+liJIg68Nvd+y0TXA+75pt4mgOG37c2UDez wOQeeb+pL1zwvN7d6XkoK3hL/7xvrM4L050+ZNUYNrAM12u768QHvvVovtaG HerNC7kjM/jBVH8F99V+dlBluXEtopsCG557nCyXxfUh74NjCkUQ+D3NW/dj fgW5KVEsdwlB6+JW+fMYn+D8ShGNEobg0tClfIwZBRqEDjWKgJPYmMAsxme4 xd0+conBxHPfb7sw31p+1y7uNBaHDou7wQ0Y/56MDTkWJgGaT2Ua/DH/XJXP ir7Nk4Trp49t2IX5p7RX1oKxVwrWXdvuFYj552Dus2aYVwZWMJxLksX8i3MJ dXfKkYHKpIhxc8w/0ezcpPgdssBxu0j5yEpcr49cnu4YlYUy1lvZV1eTIDhD 2FcjQg4aSoNZGXRJ8PFgnoeZkjw0V/tHFBqRoMqkwz2qVB62PrJMjt+K47nT q/3CRgHohuU+0zY4H0PnTuROK0Cr/J37XZ4k6Pn6uu3ZFUVIuuS7VB5KAurL 2PyIVUoQv7WJSTSDBEYvp+MDapTgisHs/YNNJPDU0zHb66wMn5MYqkp5yHDG INybxKAC96ZfNT52J8OfgvOvKpNUQNhzJpDrCxkaXNJIxkaqMFb3yudFEAfw Rh4OrP+qCv2XjirG2HFCtVKfgLOfGpDVB72GT3KBy7ZjspVC6uD+LH6+nZEH JIY1LgxtbEC8wq2Dv0nXUNMxhR3igt2ohbJRa0yvBG1Zv+7WYt0w2nnP/0Gk zkfUEFuTliHJAwsBLoMefGwg8nSr7pYKXogvUGJ9/JMNhNJqI3Yz8YOWh0BZ 0wN2OHKZxdtwCwXMxD8Ny/OSgLnYxdvdXwBEpaNarfD+e4y371EvEITYg2e6 vDB+KpQfzT4iBAGDG6oSMK7ckp4VslIEvEdSJ5sw1vLdtb/JRxQ6t5pry2N+ dPbIqbuni8HNs46HL2HsYM/VdeOHOLSdm++UwHwprrDt6hCThMYk8/FvGC9K LakbmEpBwqm8518wf753dJ+RCZeGQtlDeiZYb5uqYklX98mAhZe/iQTW2yRZ MNu7IANf8jcnlKpjPf7TYCeQJgt5kZpXHVeRQPHXkPe4rhwk296/wLKWBLJ+ Aos3W+UgzHpib5o+Ca4dH3+67YQ8eK/uume1kQQ+Xf5RJHYF+FIm9Or+DhLc CZM6GJ2pAFwrnfna9pPAJNXXRRwU4clDHwlZX3w+2ND2yb9LEfLn7IXt4vD3 sB053nVWCfY+8ylfWUKCVUOP8fFGGThfr92lNI75lxMzFp2nDKvTuEXj1pNB aFCiudFcBXbdvy7gmUQGlaxijZ5RFTB+9IIdFDlgoH/trq4rqtBp+0BR+wcH bN0C4UvKarA9ZnP6qTZOuKJqrz5aowaFHoe4xldxw5YI2V8/XNRh3kBzzGOM B/jGhePmWu+hZAbdnZbs+mj4cclIptsnxHrYmxxgch9pxg81MLX8QGsg0cZf 6A0yOhfgm2A3jnKD+irK3D6jN5sCo636ptCj25mfpC/1Ik1vTqbv79lhY5zU ZpZ4JhgtqvrFpMkBGVZdgW/EWKDIrGSENYoLpNafWmmwlxW2nJUNDmHhhZmv QY/ue7PB99c3NV7o8MH3p5/ZLhmxQ8/Lgz8dgvjBNSeev6ONHbT33EngfkUB sZu7jrySxnzq4eycGxaAcFWXBYe//DpT+dx5pRC8JWfrnMP4+8JDzSUnYSBR btXmYPzLYPgNd5YIxJg+sB7H2Fk0cY3GoChc3H39uCnm38kf/ltCRcTB70Oy dQnG0a/uDO7cJwExszcvO2P+nVNtF/CKlgQBTZO4tZh/s/p5ZQElUqAuJPjU Etcvf/um3yv+SIP6gEvEIOZjY37ssa5bMrAjjuI5i/mYLOhx5LQ+rlfOupbz +PzHXXvSRrhdFizffpVmwPXL1ieBr8lHDq5ULVlp6pBATtblphlFHmLPzcfm bMD5Ib52/1C2PLzNkD2nY0qCzwMt7sHGCmDWzH6OtgvX3xIx3eZuBbBy1Dps 5U6CrAunv5gEKML2vJogxnM4f3af3egtoQSll9loFndIUOEVQa98rgSLXyPs eBpIULvPuZvbQhnc68cVQ1nJYG3VGS88pgyXb1pZ9zmQ4am+n4xhhApsqSl6 0FxDhuoV+rqiaqow9ezEm7PuHBAmsk5/oU4VItVEP0rqc4KA0laehQNq8OTI ozbDbVygps/wqIRJHZrrtlmLveOG1Rc58sZiatBBVYHI14PhKJ+lenNIcif6 U+3yRH11Aer4QT/WkDCEOHzjE78ZfUA3z+8XLG7gBtiXe2JhnBXGOXz5w5N5 YbOY+f5b39ggvU2hw6OdD7i0+i8y3GSHsN95djxSFJg6d06mhY0EXJxep8d3 CkASjVq/He+/irRI+8UYQejtE913BOODapaaYlVCoBhez30dY831JyrdmUWg 3++Efz3GCsk+nKe3icIB8fQqYcyP6rE7c2XnxMBV25I5EONZ41fKb16KA+sm t2tsmC9mV9y2lk1LwEXh0OkKjEVk9yt3ykrBZtk4/QLMn6cvfcYT9klD1B7d Bi7Ml7UPSC0Z22SgnPUnpR3rX5uP1c6vgzIQdLIldi+uX7Ee4Sozl2RBjXw5 /As+f8nsbvqoqigHvz6tM3da83f9m7cNKuVAVFg//KEeCbrU075vc5IHgYOZ 9aImJGAtbgw5NCMPTLSo3RzbScBXzxNvG6cA5kwdnEH7SKDRelMJVirCiYXb FSo+uP71xX5mbVAEAZnf52gxWP8nW5bqPJXAbVOsWfJzEuSnoMjUJSXo6VHQ a+7H7/uh8AKkKENuTMcIdSUZJv74zX9frwJfMnOhLJoM39QfXXNoUwFTVl93 Tj4O6Ar/EFIUoIrPjyZ9PHUcUPKZvFFbUA2kfjG+CijghK8qrxSjnmH9s3G1 WrfIBVz+z0O/WqoDr6jx1uInPFAQFis4uvEVqn5ho7T+xHH03r4sgRLajpyu SlbfOZSL8jvIyi/e8UNXf8PFP3R2kMm/GLnIKgCKYzPMW/F+XlB6kEMPbEQr dGtJwpq30G5x+8hDxykwoLL57KwQCfyssluZ2uJQVkDuOo4qUUQ3OVP2VqoF zbsNvNTuv4NOH6stOmzwA+Wr+oXpdVagx5pJjxfKx9Dm8AP97CGf0NG2Y+Ia N6bQ9dLuMaPRHtTYYpvXnMUOjBp3LrsEMoHIbme9YnYO8HvDfHWQmQWSK8Mz rzlzQSu98m2SKSsctD7+BfXxwL1N9DFuFzbI6Kj8bCTHB7y25f0XtNlhfErv 8KZD/ED+0jIZ9ZEdCkMzk60fUsCztKFGQwrvX0COdNZnAWhSXpKyx+9LZooL PyQmhPel6ONZjG/85DU8YS4MH+Wit2ZhTLecu919XQTag5huDWHcLNWWZP9J FHQf+7gYY35X7LEcFmEWh8XcgpA8jHfLZUls2iYB3+c2brDB/L6cHcVffkYS zmeUZSpifnerzc3rZErBeMD7X3q4Prbpm1WLDEmDD5/mmwbM94l2UdqdaBnQ aDTr+YDro6N5ZbOnlizwH3pzsRLXx+ifAywvGmWhIlR0ewm+H5u07ulK95CD E2v7o2vx/bg+WP9RPUkeSh7d2KKK62P6xS77xLvyULVJO//SFhJcufwuxFVX AR4Ovr38C9+Pt9mpJ7q1KQCLXKcJnxuOd88ne7K3InxQSR3UCiRBquwkRx+/ EpT/kGv7lYLPO2Yf0jxzlMDgirDE71oSnD4+82jQGOv1B7tgFkYyvHaIzknt VYbkWz8s1GzIcCnQy3r2rAqsSUt+408lg8lOth0sMqrgOBbwaO1eDnjpLJZ4 q0wVEmhni+rVOeFVxpnot3ZqYDg4nhW6lguu5G/z0ZlXA5cDSU9G8rnh1aeA mgntKlTaEWy1KiEUFSddEMuw+Y7WOBsW37V8jpRefrRfwzCETgYsTF4teIcC /qg2mqRzQ0z9qInnN1b4UkwKSY/iBZejghpFjWxwZMY6nFaF76dR3dtVL7PD lTWRb2dJFJA/HpMkx4TP2+tOBWojARC6w2xpgfc/qrBATOeMIITh298hjA2f Sy7J5QtBcmK26bW//RatL41fJoTBrlFkbzXGUk9Des3WicJRGQl9fswPvalO 5/EjYmD3LIXpFMZbC66/3ftAHFZzmOst/O23TB8NzO+WgM0B5NYXmD8K97gU V/NIwezNgNl0zJ/EnGIVm63SkNeQ7TCN+dMXv1lvNciAk3HQj2JcH38ltrUk f8f8yRtn0MD10Tql+1pfiCxEnOc8lojrY2rYlrAacTl4EXvdixvXxx8PbA5z F8sBV7yQnjauj5GX/GfqbOTh2dPuu2HGJLBSDAoUHZUHo/0a9zdZYH4dY88z iFSAdR7P9u7ZS4K7JzMjm+QVQeZj6UyBFz4vFI/bvi/H/Gn32vnhMgnuvdpW a+SkBN0Jq3UG8kgw7R+5buNPJegXliJv7CXBfJeFldh1ZVhlUX4oWIUM+9gU uN1XqcDioASHRAQZio5lVAi9V4HRieZyIzYOcPyUHJ/urQqX1E+l9LzkgCmp ybtvOdQgJXBN9mQGJ5zPGrtn91ANHKO3j3H0c4H3xMKWPVvUwea1ifPDWB6o l/Y2mYwpROaMj8OZ6K7o0/i5Y+v1v6AB5bYHmo456DWlOym1mB9KFKV3TYyy Q3pHTLTJNAUq9oVPaOP9jLtdemwg9T2qm7omnzMXh5x3rfpj7UAB/tLym68p JBh85rCetvERsrBGyi03tqNekT9CYY8+Iytl40s89RkoVzPpRv17CsS0rrgz LkOCzPXJSSODdSjLGrl2vLyE/Co7ehW1KbBWajBIjROfl07YT08FliEHa+5r 7kO+6HZk6IUSUQGQ24yObsPxbO0NEwgJo8BVgw8XP4iSAAQ/uIi0haEdz2I7 yBlzRn4xbWr7zzYje0dd/c3X0lBqW6Gm1EQvKiM7vD9pWoF+sKqZafmPoUU7 xaEW7k8I7vX3JB6ZQvnfHqozpPYgObbAyPf43NC8Y3vRzHEmyL27sp3ykwwB i8ktPXPMwB0yct7GggsoicxBeRtYYQcDs6lTEw+wbK1jfOrABuzD7TlMInww 7C+udkiDHaZ5FBX0nPiBZJ+m8OYdOwTcepg6nUaBMrJBpIkkCcqq51FwgwD4 nnBcs+fv+dR0bmyMVwjak4LvB2A8fuJNhbqxMCzdNbiaifHElxC2t1EiYBaZ AgMYR9/13zH5VhRMKhbdjXA+DfMbvPoxJwbV7jEqjzFe/ylHpxRJwOg9rWxL hb/35QN8h70lQaiGwVwK59dnOUkRwWQp8C66s2kVzq8o9Qj19E5pWFPdSaHi +rw4/k079KIMnOjqGH2J67ORO43tgLos7C6YuJSF63M9l9x3pgZZULY+/y0e 1+f15GLTKy5yQN7CffQWrs9STzILySzyINiixTZkiP++tMCOliwP5o/e/VyH 6/Phb3VcdtoKMGTieigQ1+cLGWvqc5sV4OrvP50nXUkQWMEkNn5YEbjkmuLM z+LvcVHNW5pbCZTD1b0+JuN6UXjyZ0mmErjkKzv41eD8/UWN+2SoDIamSXKN Szj/Ol3W9XxXhkuKjD221mQ4LXn0yGc/nF8zWUX2L8nAMHfM/reYKrDMnRDN tOGANuaYrb0vVaEwesfHYgVOuObG/zbfWg1Iq8NVzdS4oOz4+C7fGTU4EBHB zJDJDSuC8pu8Wd4g62OOsWoQjAz7ei/o5n9DP6FvRYTHM2SuVP6h/9kgqht5 /FLhZwMaLbr6mO0aPr9y5MaFt7DC+2stOmtDeCGb9fextfVs8J7psEPBSz5I vlkVIRfBDjcsT4aPLfGDbcl3nSwGrLdmp8+1rBOAAZnK6+Z4/0uYWA24vATB bMVtIU+MVecueDzIEgLbq0xDVzBGj6PtrvcJw1T5u91vMJbQZ7dcqy4KXwtq z/FgftBPBQuEu4jBvHbsVR+Mvb2DU5RTxGGT8RHZWYx/ZnrfUm+TgPrEVKcn mD/ZLn3y7SxS4DoSdCoZ8+fK/W+b1xhJw/0SUtMA5o/Rtd4RPwMZcGiIZMnG 9Zk1N1ko6As+v9Ln4wRwfV5TxFP17awsrKpbaDuD6/O3xBAHIWE5oI2oXe3X JkF7+4uPv57JgW3tgVO/1pPga3EvA3mnPLi/bxdZj+uz395dAT4D8lC5Iv1+ jzmuJ1RmI83zCsBgZqhW64D/vjy3WFxaEWRNIhMYcH12lZcUzn+lCFXS+7ZW XMLvK3dB44yDEkznagTEPiWBYJ9G9E2aEnzKTlUK7SZB0yFhHbYryhD1tJt/ SJEMcdHz8Q/VVEBJWj7tUxgZMrjvdUzXqkDz+p2Rhxk5QCKI6X7SEVWw9TB1 cX3BAbyVLjtF2NTg90rO4ZoUTrD1jOg2SlcDAZ+dQvLtXHAv557qLWN12Dck ENAUxgO7j3fuoWu/QBaTjqFRPc5oj9731vpbbWjfOuZzFQMP0ZtVDbuvP+GH 8YXjAXVD7OA+ee3Kj2EKbLz8NZAV72erycxpT593qMjDMGf7mVjk7iVWYGpF gQaJMt0FPhL8sdJzm4l5gPqujmq88d6E3A/uDRUgfUYuoqolTSHpyHtjyq2j VRRgrn5kfQDX59HO5oyjL2uRHI+BfbNxJArsrE4RU6HAh6uVjWQyCdTXyi0N pb5GJT732HroPmh/yoWIfbwC4OVWXfj3PL1j6dh739MUSDjbE+QtQgILobGg 3xuTkYCF1ns/+ZVo+uj9pKf5FOg22qTCgO/v8JFBY3ywGNVe1Rao8juE/tPX F4AHmplipvh5DrqbTPa7UmAk+FCFhyCuFxyvw38GPkW26aRdaw12o1HR+DiV NgpkfGAWdJXF999UkTPGbSfQVHq9aUryF6MibXbnB6rNyGEwrl8zIBVpXXky 9Ku2F81M9vtd/FOOGKZ8Eup2jqGW8aflGZ9bkBrb/WoruylU/NhIiNu/B5nd 4Z42j2aHopTgI+s9meDM1htq5aNkODppwuAwzQxb96fSdU244AG9/GLBelbY 1Pp+YbyWB5qV1h36bcsG+j7uQv38fMDgGMRuo8oOP1PEQtc48EP+ObcV7W/Z oUMmJ23zbQrIlMLgGwl8Pj4q13i4RgCUfx17/XeedXxYQ06LUwhQuhfXXz2Q WC0VwW4oDLMNBs8z/upD6qZS6gURMOaWFunHeMjFNMugRhQqOfpHDHH+Lk5o ZdRPi0FxdBpDDsbZuY8r5/Ql4OnZtD4LnM825u+uvT4iCRox1+6L4XxulHqi xBwvBRqW6jOqOJ975BW+D7VLw0v3atMirAesc9RdtAsywDq2iSUf60HuSXa5 byqysObltOJtrAeHRZFZTp0sUNDnygisB8/kD/1mdJaD7WPOl4OwHtRW7yvN ZsT1v8ZNpg7rwde2u7YpSfKwZD7Xw4H1YA/r1t2NqxTgCtNpC4T14G5Docuu jwpQLa1erIj14NQvsXknT0VgfHK64ksACYRemt57xaEET6eqAGE9eD5WJeua rgQ7XkZZvKgmwSuDDBYLfWWQ0Tp0uXCRBFfldsyf/6oMvZN5ORNWZBg/Nuy/ 2VcFmrJa7uwoJkOXhayTn4gq9PUdWOq15oB+2y13oopVQUf8gL+uLCcEVO0/ rGSlBiE6kp91FbmgrQE2U6Zwfic2LN1I44Z0qx178o5XIkelscBupyB07hKl JMT5G/r1SNvyzkw++t5RdKksZhB9MNYR7bzVgBTjTSSGw7nBOId/NXcjK2z7 o8cfeJYXuF88dx+rZgOGyzNvEgr4gCq2zzXhPDvEf/PsGZjnB2RU98JliR1e tJwJVlwtAI4Pa3T+6kHTw5VvZw8JgtZjn5i/86Q7t4tuD93HelDcr/9XD44e 6Rfz7sL8WUraVYmx2NJbZlUlUXj8NV+eG/PDUtfyeKOjGFh+u9HmhfGF7aci uBLEQbTNNmkGY8+QE/KezRJQuJCt+gjzZ9xk533NFVJgHnzMIAHzJzLNa7ec njRsq0hN7Mb8ORytXSWqJwOh5uIK97AecBed0x37LAP9TK50dqwH6VVKnfZn ZCGFJVPjMNaDwIyU6lIBOdioOlPehPXAZtot/GieHESHeZu3Yz2I+JjImr1D HrxtQ4UoWA8i/YzOSPbh8/uM/lwe1oMbg2EXHoQowHjGPawsJJgb1LYuk8B8 yXIhZx7H98s9a3/JlygCDa1/Y4j1QMz27n6hPUqwOuVGw8ATrCfiwYVGE0rA cNi79G4X1rPcP1lBl5XBfT7V4Y4CGVZ+6NtnrqICt+Io29eFkkHCSWbwYLUK vLJUZmZh4IDfjQVZgodUIb5ee7t6PgdICUo8fM2sBs8/a10qSeQEqG0Kyb+r Bh/Lxi7otXDBS9KM2DqkDnt8v2mdPMsDSYLCridZniPm9MjgTM79KOk7F5fA 5jY09aC/Vm/1Q1RTWp4Xk80P2YMPmzUH2aE2IO7qun4KUMrTWQdw/QsQil3M am9A9PKkS+HUa8hzgYdiYk6BMIsVlylYDyLSss7+0s5AZ2BP3OB5QFnslwsc Cz+h/kehA2Zd99HHd6nxpWUUaP+49z0f1oMrz7zUHyvUIlWW0xGr+C6i4GOv 5gXkKWC58pQNnR2fFzrsyUd8SpGdhcvmE1e8EVU54uJjDgFY4aC6/68e7Iw5 qO51kgKNZWHxhcIkOPDsbfZSTDwqc2BtI61SQLa/0m+vyKXA6P1Gu0QpEoSf Xq/r9bII1b/PiU1X9EAbd0Zfps3i+M0N2xF+nmOVXtoeJwpMLXjo3BIgwX63 EdmJ1Fwk4y1/sNp9J9qennD9TDMFPP1O2Gvg7yHUwUfi3RSNnE/HpQiMcCIW 96sx1ycoUDN79Z303/kWY/2OqcGHyI5vz8PAt1sRT/Htm+L1FLDJD5zMxu+f bHgx63fgHRT6bFvB6e41KNQwKsqSUQAupas/+qtPl67ejG39SgFGhYn6m3g9 Yn7t0yxCZ3bpQYQ/Y5uHhbFiw/CyP6Nrh8OF7ZmTy/6MtpV75QK16Mv+jK2D dh0kA/qyP8Mrfbr+RfPksj9D7kfxYLbs2LI/Q4JXmNly68CyP0Mq/bSHbGT3 sj/DOlyGLrn9CyL8GWcLOVfM8zciwp9R+PojdVK8HBH+jO6szbe8V6Qgwp+R FRwTO+3zgkr4M7zYqgc+s9dRCX9GCVOkZHrEJyrhz0gcXVkdbtJFJfwZxPye 8GcQmPBnEJjwZxCY8GcQmPBnEJjwZxCY8GcQmPBnEJjwZxCY8GcQmPBnEJjw ZxCY8GcQmPBnEJjwZxCY8GcQmPBnEJjwZxCY8GcQmPBnEJjwZxCY8GcQmPBn EJjwZxCY8GcQmPBnEJjwZxC4KP1390yk+jJ22CQPBlIay1j82MVizbJ/WJB8 NG+73cpl/H/9Gn/38z9+jW0HqpKsPvcv+zV2WHyKEvQaX/ZrlG3ZSRNKpi37 NTZ2fgjmOUhf9mukjhuM3syjIR23lxtkns0jecndp7yvTqDZyfgnZ+8uoZ9s S9ncG4cR4ccw2zifePt9I5XwY8ReU5CIzGunEn4MIj7Cj0HgdoPrzZk5/+In 5v3cf5q4z2X/WJ73N1Q3fJ99Pro875/g9+Rcu5K2PO/f+YqS6WZDX573r3Ad /di0go5c34YE6l6YQ5GOY2x8uyfR4KYfhTr2i0jgd8MtpqIRRMzzk1FVjL7B Oyoxz3/tbC+sQGqjEvP8fM/XmqvKuqnEPJ+Id/ZesElA6L/4iXnxojabQUDP 4PK8WOVxEyv118TyvJj9olVCHJ2G6A2pEk3CdPRQMuw1kwMdaYdw/nrF+wsd 3tePVlnQEDEfZgnwzme68I1KzIeJ9V61ZLo2f/q3PjFvPJHx/Wp6VO/yvHFD m0OWTvXI8ryRebfnaBHed2LeaLL2NKVzM3153ijqe3PNYVk6OnuuV7xydBZd bmcxT7w5ibqOkw0FXiygEJfYo5eOjyJinliX+NgqQuItlZgnmnfK+ntWfqYS 88T7XkdavBe7qMQ8kYg34vPM3MGj/+In5lXFamKLkV0Dy/OqcqMbFWV6E8vz KnHT4Fdu9TTkEvTaRjeMhl7Kbttmc4COwh5MCPge/4mqvuxN8gilIWI+5VH6 aMsGwa9UYj5FrGfOLilRWvZvfWK+YV94YZEjYQyxGB2X9NQZQI1p4Scfe9AQ fF+oWWE3ifo0WezFnehI4ecLqx7VGVTQeaXz9FcaYln1oKuP+d/z8y77v9b6 PYJqfV/OJgrQ0XmJ4N6jj+lITeV4ybrtdLTyrtbjoeF/6xPzkGPWCWoPfvYs z0O2JD3PijUbWZ6HxF/qIkP95PI8pOdwdtEQ1jNiHnIwaL38H006Ym27McJ+ dxYdsxLoFXkxifNJcpHx4AJ6Z8M/fK12FBHzjg11u1r38tVTiXnHqr5a8wn5 z1Ri3rGFpv/zTVoXlZh3EPHumHz6qe3Av/iJfnrH1W+LXvsGlvvpeXJeDH8+ jS/305uOU3UYn9NQks0O+iFdGno+l/e53wV/F4Pu+5aSP5HRg0pNhSQaIvrn g/NHPUkuHVSif06sxy/X9mt1wb/1if5rXfRbsUXlMWQlsJ30IaUfXeXkG19t TkOnC2Jc13JOos+s+0vncL41RD3oLG2bRksh1jntEzRE9GcPiq/YbC3fQ/1z wDY73mUEX5WGyXuZ6ahkmjskDceJbIVPm+2mo+mSkcj9Xf+LP+8cDNaMjSPt 1oumjjvoSCLv0oKvzjRSHCoyceCnL/drTceygmL3d1OvcQuEua0eRn+MEwqh k4bUMjSLmd/RUEvC+VbH/XTEznpc/cPdSfTw9tqwBsxvol9LrOf+IqGp7voo 6i2QibKUpyOLTRNb9Gfxe/XZ+tdtoiP3i6c++s78i4/o59ZMnu2IetSDiH7u gRHL+GccI8v93Ij9ZU2niiaX+7muTd+YXHToy/1cG/O7/WvW4XUuHGtWPzuL TCyWlC+8mUQO3MpO83oL+H4Wn2M4M4qIfm2HnbJbdXQdlejXGsTumWD+9IlK 9Gv39TBvm/XuohL9WiJe7aArG6/v+xc/0Q/c7nHL+Y7owHI/8OSfGMfRe+PL /cBNEqSgDVk0VGB8C5j4aUi+1+WUCta3RWaHI6XTMyg0/OkwayYNEf0/ntv6 kSdJHVSi/0es9zP3hdvo03/rE/2jk2oC+V/GR9GpYMPgsJ396IjwhPpBQxpS 2ZzjdvvdBDqtvkd6/x46urNL5oH602nkHT3uxjxHQ0R/aSZQOOIqrZsq+26z jLnQCBIT3sCY9ZuGPnfZvl+/gY78P7HUWNvRUZtp3U+Rjn/rs2YOt7rh9zyt nrdoYUZHkwFMVT1c06j4yswNPjH6cr9JdU8Kp7VmN7XgDNOsSN8QGuMqs2H+ RENbYv3YUh/Q0OG5GDFWZ1y/6C/OeAZOoiuFU213MSb6TcR60TKRW4NMR9FH j2cDihJ05Kmle7O5iY4SmJW2qm2jIzOBXWjV5P+qX7Zkvrec40hlfYojxZiO zh1iTW/cR0M1m2YXzHDe7KvfLHR79STSz77wcr0jHRH+01Sep11Dpj3UVPaa 1ayRdFRw3ctsxIqObs3UpzKsn0DkQyQxXms64i7uP3wE66YcX+HQvn10NCqq 9G1dzSQSrYhPu42fHzYff7Bk/l88RL9KgdUNdl/sQUS/asbaaS/j6PByv8rB kvnQsSeTy/0qmQDz9oA19OV+1d32R0rq6+loVYe96QbPWfSmbt5QoWESJTXn 8PgpLqBu0Lp7lmMMEf0o1/vhUiVmdVSiH+XwZINv5eNPVKIfpT1p1vTMvotK 9KOIeNM3BgVM2v+Ln+h33FU4eIR9tn+53yFsXFslGjW+3O/w53bw0rlHQ290 SwYslybRCp+71sqY74OHhCx9u2ZQREsbvS2Hhoj+RuxPx0zPb+1Uor9BrOd5 Kj15W+6/9Yn7MZdTy2uGJpzP69bq71PvR768nOmta2lo0+qpZ2uzJtCV2KrQ MVs6ulT09VLP7WnEm9tF8V+gIeL+vPmoi1RzWzf1ediGDoXJYRRuapKo+ouG fnwOOBWuRkfZsXNrC3C+mHEXrfRr+7e+XJy20lLgONosPUuV3UpH7Z3UrMS5 KSS35nVNnSR9+T4d195bbCPUTd266nc+/fUQqk5q2FH+gYZ2X0zKHb5BQ4LU +fYizG/twS8yLw5h/qUhkWGs38R9mlhP6nMwk53sKJK/V65/VISO/JT2GsqU 4br3w/eFvjkdvWo39ose+xdfnIm1k+vAGNrQw2V+yYiOop3UzCXNaOjCaJ96 Oubj4bJDpQNSk4h2IrZBAfOVuG8j67SuPYY91EeLw23Wp+jINHvviwzM7/xu /rFE/gm0GF62zwTzX+IJmb8I68KE92ovT5wv8zxmF8KeT6KaQv8ghJ8/XRaR JDz7L54s8xOJBQo09LNUYIof7z+n/UFhxil8bq/Tiii0py/fz9N0Yi66knuo 629bO+8swftwTFhwA/4eQn9im8SvTiKfxIL7JlhvvE/2/DnvhfMtZp19B8Y7 WmS9dmyaRHb8a+PWYX36Ls+oM/RlEt1VM6J34Xh41z7UcFz4F8//Pw/9/3z/ z28FQI7vL26irk/jnt/jSdyHeOF/AGBLzMs= "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{728, 48, 46, 552, 553, 741, 694, 656, 628, 608, 596, 554, 742, 695, 657, 629, 609, 597, 751, 704, 666, 638, 618, 555, 743, 696, 658, 630, 764, 717, 679, 610, 758, 711, 783, 673, 775}}]]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJwV0s8v13EcwPHPF5kfY1G3Cl8/cqu/pOTbqR+y2YhDCSf9OJTGKFyiOoTV amWMkpNfh8qyLJZh0iQ6IYcwjaUeDo89X6/X+/oOF5VHrkYFQRDiAUcsJ/UE uebj5JBNFpmcpZAqmunnJ2EiXKKSJt6yTAZl3OIxI6yTz106GGWLAl4wzi4V NNLHEul0M0VUdBDU6Rxx5mc6xh9KmSfB/ZUe1And4yap9hk9oI80SYf1F2c4 bP+midqpKTqp/6jhkH1WY7Vdk/WDbnKRr8S7PddP7HCNaWLc7+sbfpBGF18I eavVp3xkm8u85DN/ucFDhlgjjzu08Z4NLlDOPV6zyDFKuE4rg6xymts84R2/ Oc/+52igl+8cpZhqWhhghVOc4wr19LDAf6EoUtU= "]]]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwl1WWUVmUUgNGhlAbpoQTpMgDpkO5upRtR6W4p6e4u6e7u7pJUursb3Hfx Y885z/t9a+LeOzPJ67eo+EeYkJCQ+GFDQoK50oeKxNGvdTRzkU5g/q0jmLN1 PLOkGctcbv7stU/mVAoTw/kS86nzyPb59nJk1hfMziTjiI7o9bn2Mvypw+mZ 9uK81DJklb0Sb+xz+cLhHF2KX0I+v2mavQjPZBYu2ruQnKO6d/C5Wa0r89Y+ j5pk5V9nXfmGY7oP4Vmjq/DOPp9a/BhcC9Y6r8p7+wJqky34/vgy+NmIFFwD orDOe6vxwb6QOmQnKuudV+ejfRF1yRHcAzY4r8En+2LqkZP/nHUjBcd1X6Kz MbgnwQ1liVGfXFzS3UnJCd2PGGwKriNhWKobkJvLugepOKn7E5PNuiZhWaYb Bl/KPZiui/Jc5+GKvSepORVcC++ZZy/LX8H11bPsJfjKvsx8FVwP+0J7heBc bzFrEY7oXltsLg+ucfBchvn8/JY2Y5srzIRmo+CxMGfouGYxM6a51Aw1XwT3 xFygy5NXXzV7kYbTegCx2KprE54VujH5uBY8s6TlHz2Q2GzTdYjASt2E/FzX vUnHGT2IOGzXdfmCVbopP3FD9yE9Z/Vg4rJD1+NLVutmFOCm7ksGzukhxGOn rk9E1uhfKcgt3Y+MnNdDg78F7NINiMRa3ZxC3Nb9ycQFPYwE7NYNicw6/RuF uRPcZ77loh5OKHt0I6KwXv9OEe7qAXzHv3oECdmrGxOVDfoPinJPD+R7/tMj ScQ+3YRobNQtKMZ9PYgfuKRHkZj9umnwbLFJt6Q4D/RgMnNZjyYJB3QzYrBZ t6IED/UQsnBFjyEpB/WvwfPHFt2akjzSQ8nKVT2WrzmkmwfPPlt1G0rxWA/j R67pcSTjsP6NWGzTbSnNEz2cbFzX40nOEf178PvCdt2OMjzVI8jODT2Bbziq g38Ucdih21OWZ3okObipJ5KCY7pF8HvHTt2BcjzXo8jJLT2JlBzXLYnHLt2R 8rzQo8nFbT2ZVJzQrYjPbt2JCrzUY8jNHT2F1JzUrUnAHt2ZirzSY8nDXT2V NJzSbQhlr+5CJV7rceTlnp5GWk7rtiRkn+5KZd7o8eTjvp5OOv7R7UjEft2N KrzVE8jPAz2D9JzR7UnMAd2dqrzTE/mJh3omGTirO5CEg7oH1XivJ1GAR3oW GTmnO5KUQ7on1fmgJ1OQx3o2mTivO/E1h3UvavBRT6EQT/QcQv3T/R++XgLP "]]}, Annotation[#, "Charting`Private`Tag$47517#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwN0ulPyHEcwPFfhxKj0LNcUbk2/4lS8iAU2qJsSsjm3DpWU47YKtrcozTN WWyuthyZcxq5FiK2hM3ZEno9eO39/Xy+z777xmcXpOWHBEHQSlxoEHRzmu2s JoN59HGZGjaSw0Rec4ZK8lnEN9o5QDHJfOIKtWxiBZN4w1mqKGAx37nBQUpI oZ+r1LGZvzygkZX8poOjlBMSFgSP9RSTecs5dhDu7omuYZC7HCfK/oUu4Qc3 GWt3SCO0Sydoqf7nEePMTTpaX2msztfPXGOMeZ+O0Kc6XrfoPx4SYz6po/Sl 5jLAHY4x0v65VhDq3KnNTKGH8+ykkD/c4wSZ/OQWhykjlS9cZz9byWMq77jA LtaSRRrxvKeF3axjKQuYxnQSSCSJGcz1l2bqLHpppZr1LCOd2XzgInsoYjkL +Uob9WxjFXP4yCX2soEh7tNANr+4TbR3OqKR+kyHATx8ZlY= "]], LineBox[{645, 768, 721, 683, 598, 752, 705, 667, 639, 619, 556, 744, 697, 659, 631, 611, 599, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 745, 698, 660, 632, 612, 600, 753, 706, 668, 640, 620, 761, 714, 676, 648, 771, 724, 686, 780, 733, 789, 588}]}, Annotation[#, "Charting`Private`Tag$47517#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{791, 792, 790}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->NCache[{None, {Pi}}, {None, {3.141592653589793}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotRange->{{0., 14.999999693877552`}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}], GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxlunlcTO///z+0W9K+7/sqKWnhXE9Fu0pKq0q2kCQJ2aYUyRbSIiWEbEko Fc0oEYW0KO27Svu0U33Ped3eF7ff59c/bo+bmnPNnMd5nuvM/S7vu89x+3wa jWbJTqNR/443fXyndC6WoGVGry4tPE9M1ay8NlRTgQwcf3lz3StGRWb3077d bkdWZka5+X5VSKo5t8tXqx/1c3p8eFHThIT8vR9ymbFQbtza2nuCXeiKrnm+ nfMkGrYsPpK2ZBD9SFjGHOabQdtEr3yYWzeKzqWd/DpffB5wST5YJ315ConG tp+9mswG9NeKk3cjZtEZJyuiYpwD4v/81hN2nQcHjG55fwznhvYDZQub7Nhg 7eB0aED7Aujblqe/soEdwlZt2CJhuBiENnE9alLgBOOMxBcnGEtgV/fKwYm1 XOA/OUwvWcwPcmK5ze4S3DClydek7SwAanOcDluZ3LDq0ePUuDhBcOQL+fpA iAeGBax9NhUKwePsnwX6UjzQcd5nUxCXCPD5Xi64JM0DVoOHrDoNRKH9pb9B jAwP9G3lPvDipBjsbXtltEuWB8yVROefKRQHW9vbkYvkeEDgs8rFzEEJCJ+a TQkjs1TUUwcDAylo7V5xqo3MCZpGfII7pUFLVZFdVZ4HPkmsWcG6LAM2u5Nt 3MlsLFUYo/NdFq65hFhGkJmX7XbwlnA5+NO7IvMWmWXCZFe5qcjDk2Oxp3PJ zKPsme34QR5iXaQrPpF56Wrxp4c2K0ClwP2m72QOahIosqYpQuqrTUktZB5k nXe2SlAEk4fu7j/JbKHz/rqVthKIm+Rv6CNzAcvk98QXJXASidw4ROYAreV1 37YrQ9vOegkWmVcPbKty41GBrLj7zmNkXqcktn7xbRXw4XnSME5mNXr04cKV quDat/D3BJk1thsxlOtUIX7N19ZJMm8v8It4sV8N/nj206fIzEit2jYsrA5x 8Wtp02QeTZ+b0MlRhwbxIQ8qb1V+xHN9vQZoe5gnUXlY46pB1pAGOJm8+kzl V2m/W8eiNMGbmB2ksvta8r3JaIH58Fvu32SW3HsmdylTC5wWgBSVhRf4P1vv og0ZnpbqVE7Zmzc2N6cNPTk79ahsrtTbOFxTiKIXKSXw3c9BTB2zwY+8jSj0 Se38NuOvKPBy5rrrO7vRm11xtoI2P9A37aaLN/qGkGDZr2yx6DZU+aViuWbZ GGLMf6XSsLkXeQrZ9Us+54HcBTtyZqXZoU1YJeDd4kXw/J2v2+RpDvA6OBZd dpQXJhxX/ZnI54R3O2/2F4Xwwf6yX10x2VywXCBM5+gzfuAvreb3CeGG63u8 UNuYAPT3XtgYO8YNIt5H6SFaQtAldMXksCQP9No7e3RsE4Zsqa2efWSfRYi+ r5o3RWBscMFuUbK/19WhybZeFI7b3KhnI/sr/u5SnrS8OJw5YuHCJPPjSZkS STcJiGm0qbIm+xqvsWcf64okDCaZh78kc51bcGbaFymQ5CsV5CI/L13FNwqn /khDN3OdjymZw5PmbeXXl4UgxsfqQDLHRYWlvDaQA/PiK/NiySxS6OO6uUoO KtPLwzPILFS5eqo6RB46P2yvKCSz1LO85dsFFGDjp8G138hcvljEqDVDAXR3 JUo1kHlZj/0ia1tFSBP5YNhB5qTL6oc/tinCKntptl7q+PzzSuVOKMEHH8PQ Aep4fDm92ySUofWUQfkwmTddsKm5lqMMZZ5S9qNkXnO2IOa5swosXH1aleqv geO3tp99KiC84s9Bqr8PRlolR6NUgVfY/xDV3xL+b/L9ymqwwFB+JdXfK09T RiuK1MC//F4xleuUdmfE7FCHpMpEXaqPWjuradvna8BkUt1xKmuoycqp3NQA Ge7wbCpX7bRYVLVKE9JN1FqofDZ4yeWESk04d9Fuhsp5rtV/9PdpQareBkGq nwn5R1YULNSG/SaOilSuM7laee+RNmTGNy2lcvNru32jNVlI9w3TtqkvHTWc Wm26mVWD9GJfXfYJ+4Su92qOreDoQhuOi8kvLfmOvKVN5n8JH0Qe9W0yT/tb ULB0YkDimVFUqfYj/JhGN+q+d+jeiAQPmB5Ji7v2ig2uhscEJx5eCKkyOl4n 9DhgyFUxhPVjMdyJ52M7tJ8TAmXH76zR5IO1lcqcR09ygX2kUe0tb37wFnfJ j7Tmhk82ObxRdwVAaP2yS+cbuUGdIzbmdKsgPAty77xIHifg2dfNyYLCsCmA f+lVsr/Ht6sI2m8UgW0muZHV5DwOWtQgKH5WFIYEtv0qJfs8X6hMZFe5GJwT sjOJI/t7hFdy+7fFErC9OfqRFtnXqt8lsxvWSEKlY+vRG2T+PXSZvjdcCmiy M35jZN6melS89Jk0cD+OVV1Bfn4qHvK289tl4EFnxvR2ap7Y7Nfr5ZODqeCa 3eep8+0btsP7kRxsWJTtkk5m8YcZ1+Pt5EEhk9+tgMwCe86N1vfJA3vydbUv ZD55VzRY67QCeMq5xP8g87etz3ZaqyjCSEp2aBuZi03rd5x9owjlt+vyusm8 LbV9+UtnJaj2zArsJ3Nv2FRQxqgStNF3iFH9bWsoqH1+URmkTf7kUfOYkX85 67SOCrDPPCik5jGRPxof+kEFYjk4tKj++hkZWHv4qIKa610Tqr9HTCIDeWhq EM3FxUv19U/2qddF19Vgl0ZKGpXLfG/yrCHU4c6hH+JU//iidh/71KAOmtZH 9lL5vUqnkE+IBjy13/2Ayr5We+WLRDSBPcCihsqp5yONLDI04fn2znEqR9sd k3llrgUjiWa8VD/dY+mHxju14HPKgCyVJ2+fNA0N04bxJyu0qCzVqxXRY1aG Wi+Yy1b8YiJzwxVxsx970bBwns7vyXpUdvnDzbvSS0Ah+kzzgflcIJZpudK8 kA88hj0S9Xu5QORmyWknNgHIc18r/CaZG/ac4whcZS4IWWOH94hz8wB7rm/g jkNC0BFb0lhLzstMkazz3L9E4IH2nThnsk9F5mnpdG0xGO1zMTYk+7QseKNX xX5xmKgvy/lJ5uY2Bc0daRJQ6KsqtZPsj7vb4pbYDknoXv2hvIzMuYWbWuol pOF7X2KcKPl+ZmXmNE0sZMAiXeGNHZmb6luPyEXKwo4ByV+hZK4ovsxzyVMO PO/0CyeR+bo8WHvMyEFrkJ3xC+r+/6fMReimPGisKJl8T2bliZ7AgZUK8MFE VLOKzPIhQrPXahQgml04qInMMQEDmVZBivC6d66mk8z7Ww6d5eFWAo1TTfq/ qPMTLrP1/D0leGY5sm+QzKYpwb6SoAxRDc5HR6j9yOra6kMtylA1d6aGmo9F m34FtBxVgQ8ZlpHUfNTpeUJup1SB7sqeT/Wr99GF/vPPVGG9bEoG1S+RbqnK chs1GOrbvZnqk1p6rlZbnxq0mMh1UPlnl/7Glovq8KQ9yYLqh6U5RM6pasCC vTIXqHxR3U2z74MGbILrhVQ2Py0/0eGrCVkPfLupHOSZ2N0zSfbtFLBRfen1 XVr/LF4LdppNiFL5e1sQK1JXG4w79qpQ+XXVvW2V1dqQY7xWl8r8A6JXpmpu o659DVmbbyWi3id5v+5tr0YHl7n4m0uUoKXxPWVsVR1oxonn/uXYakScCA1O cBlAqyThAF29Bb1be+y8QycLKX60SfSS/ImWBi5ia/rCDcVPdHPWRrBB36vi CbalC8EluKvZmZsDXlnn/eI8uxiWl98WeGrNCeZH5U/SOfigTnl6yX1fLmgq uKb10oAfPuuv5Zpczg1t+VvH3Y8LwGpJ4lXcV25Y7pqawPtaEB7/fljvIkb2 sW1R81SvEKS8j7+1jZyPy44UvfDRFgE2uqH8c3I+Ns08WDrnLQqBkR/PZ5B9 njDpfcebLgafVfvE6WR/fcQT9bS6xUEmXKhOiuzrgY5D5mFikvBSb7n1JTKf f53avcFTCpYVPpfpI/MJ9TqhfeelIXeziv5S6no1fsYMzZOBbdwJhA+ZD7lV /J73RxZmp17siaLu11mX97bEycHsZz6hu2S+Ibxzz2FjeRAu2P47n+pzyQFn 0Tp5MFFpjSij7sf7E/gr9ivAAYHHa2rJrCDve81aUBFO5LtcaqXmhaS+V89D RVi3uGAxNR+//6zacXKNEnxGc+3UfrUqT2JlZasSaO3KyKH2q+kRh3+YhipD eMQef2o+zjodNQuUUoGcxysuUPOxcN/pkaIXKmAUI8RB9bfE06eV11YVYrr7 JKn+Ojo0x4v2q8IpM+dJKmcah8itOq0GwdukrlL9fT/PeKW4hjrUeNgupvoY LrbCeOajOjzkbdxGZSEVyyUzWzQgePbY7f/u98a0x3lsmrDVKq6Cyo8TmBdS kjRhJVc4678+f7R/emS5Fvz5enkh1c88WkSCQKUWlLbLyVD59Pexqa3+2rAh 7YMGlXXPLHzWf+ED8is2kF1S/xrVd4zsLUvoQbZj2m7oRh26dspLOLeMFzpM alJfNnPCwMJggcgbfCAX++bst3IuSKtVqt9Zxw+ifIXnb0VzQ/jvZy5LZATh bbHA8IU5bli8aN/hgQ1C8PzJR5UH5HzcqmG/VKJYBFbq3Rw1IPu01DCoaAe7 GExd/nNEhuyT0o39iw5bicNaPw/PKjK/70+dYp6QgONL4pe7kf2ZXPNa9V2+ JJjGvPJ6S2bri9stmaNSsEeJ48gS8v2IyXupNsvLQLit3QNL6vPO3z+Q4CkL tgbrJw+SWf8+T9VdKznYfCMiKZ7MtfsdNjR0y4FsR4j/MzJf3hmpNhYtD46t cYPvyCznVPFNXVkB5lzOF1RQfV1zLcmkSAESy0XWN5K5RfNmk5W3Isi/lFpE zUfO3HL6rjFF4PbISqH2j/yflsRvuqIE8lHBE9T+UavmmgpoK8P+T36q1HyM 6bz8nbNMGXy+3oul5uP8oaq5j34q0LTU0IWaj1nJKCplTgWuOWokUv2y/poT Acmq0L3+wlWqT4N/QqabDNVguvyWNdWnRs3HMe61arDls241lVsiv9JfharD vJRvq/7b/31fYLZcWANeS6RGUrlB7bXy2ecawM988prKiw+9CGuw14RV7906 qHzCr2rVmi5NCGTfRKP6UtE4z//AKS2Qks8UpvJK+xCh2zLawN/UrURlG25p qTdMbfjDEF9G5az6BaovPwtA8llhH+NebpDLOhM1yykEzQdCxMzJPjhJukXt ChCEZd9LedWW8ID2rWVPenq1YUbTazn19yEOD2vYaq+gI01aDotp0WjE9Aiz VKYKvdvyaq1423t0eG/Jq90mHYj5VXATc6YKPVl6/cnM23500bM5/83VZuRf u1dSK5aF5nzq2a7EdaHyqk3PKtO5wbG2yOTFLjYQc/IxyuVeCBKHBE5sH2GH G0WR92J8FgNvWK5UtwEnbHUM+IE6l8DqfNeO3o1ccLe+6DuhwA+/Wp4olapw wwDLaPfaXQJQOLtDUKmEG3LC7t1wfCAI1p/U32WIkOc39JFs+nch+HTHp96W nK8L2K5E7pIQgfUec5dukfM1dpxvVZCNKIyXztBvktfDiP1UUutVMcjp5SwM JvtfKVN73a1aHIJijzCFyL4Xutr3irFLQsBOrogoMjsppEuttZKC2NvmHj/J fO7hWYG3R6SBeFx9R4P8/Fo1pqYN7snA3RlR281U342t34v1yAKH62Ov01R/ 6sSHU8/LAbJcveMOmTfbFFX6LZOHutLBojwynx//yfGyXB7mXfJ7Ukrd32tc W9J2KkD8zsbLNdT9/aTx4088iuDnFihCzde0My1uibcUQexJ7Qvq+4CL5z7T t61UAv+0K0nUfLVy0UzcXqsE/EfET1Pz9ZxrtduCQGVIrhZdS83XFPmhhZ0C KiAbmrmfmq/s1l9v+j1SgbYb/MPU9XA4YOxx9xpVuKN9ZyHV/wL3849S2lWh Il67n8rRx/Y5Th5VAzEPyWiq/6YbuOw45NTh1LpaTqrP+T4SiXFMdQjJ2e9D 5dd3j5wvddGA/ex9Kf/tF7Ks9htMa4CljHY5lbNkmlZaX9GEQYt3w1TuOp17 yF1NC6xfaC/4b7+QzfEg9aMWdLUsl/5vf1Ad+mFweTGqevXVNdIyD6nkf3PT o/Wg0zcOxJqN/EChf9TLTdN4oUGm8Pv4Z074kctDTzvLB8fv69aUFXHBnjHH yOFifngpmi5zl84NF/WiSid5BOFCic28gmluuLLi4LHlSAgSxIdrYsjrZ9UL 6TmFLBFYyPHGVpXsT8eyH+U/BkXB/MWIOT/ZH5lMerv1CnE4oee27xOZjVjN PgN7JMA5DwQcyb5YZl8t9bgvCdbD807kU983jfofy2qVAsc94fYLyfejdHux su4SGejcFn1uHZkTH+WqOVvKwqEe6b0HyNwZv85IF+Tg2OILFdfIPJFYW3Wj SQ70VXV+P6Xuf8mtMZ10efghEt1eRJ3fcPPwD5IK4Ku5k42apx33nXfz5ipA hYZ9NvU8HhV9aOyjsyIYt269Qz2POygfPybepwhoV8IGap5+2sv9zCRKCTac 259LzdNbB+5FVSgqQ/mswR/qeeZA7sCmL2+VwVbBMIiap7dfW5UQ3iqw/sU1 RPVn9FDUCrNxFTBufHOGmqfTLbYOEldV4c2C1EiqP55cSrw7dNTgq84EUP15 tfduocgXNdjsTP9M5c3VN+LTAtXBKtpsJdUHlszQrdKFGqC09n0YlU+l9992 eaABV6tv5lI5cHDG3NVcE9qVzNuoHDEw3NXXoAnvxqpn/9uPJu3RdzqiBTaP TwlR/SkQbL2ekisAHFl9Sxd3cENa/YXzpqOC0MJe0iJGnm+fjTp/HN0F4duL jI3fFvJAxtLrsZ++CMLNvPAVd8TJeVlU3668XBB0W2Rd57PzQFJUWESeuBAU jBpu8Cb/3rI9XIgeLgi3Rb5elhTgARD+6itWG44uRpldurIsFIVcqNXwOlqJ wlxqmuPWvkcptTlLZQbbka6k2UfO51Wog1PDetmhfuQhVHzDcUUzgttdbYl7 WIixlPWp2akLKXAdi/pyjRvWark3bfBkg4xb2nWC4wvAM01SatNPduCl/zrl bLsYSuzNcn9pcYIdjd3Cu2IJvBjmMztsywXcvXWP2MT4QW3z8I4kOW4YXaKs ZOQtAG3XNLesf8cNoXEPUkZvCsK7rwH3c4R5gPl+Gp0sEwKftIkaIOfrhMVU fz+fCJjecXuaQM7XgaB3hZprRKFkZVJ7PHl9DP6gc5WeJfcb1pNs+8jr4fyt Q3ZDpeIwa736Ph/Z/14Bk9cdUxLgkbFDOJLMhtWPDN4gKXBbUTvcQV0fe7bw 7w6Uhrd7+6rVqP2jgrSY8A0ZOCOb8tmDzGc1T2umNctCl1+uUyS1XxxoXB52 Rg4KskzP3yYzsWOYa4umPATH0FSo+fppsUITW5k8jFoQQM1XwwW5Fhd9FWDr 2kxDar7KPL2Xs4BDESz8NX5Q37d+epPtMnxDEUaXfj5DzdfdjR8XuyxXgrdZ VSHUfI24q/cpo1IJBreM+lPz9Vghm8TAbmVIz43ToebrwBmNQFleFXhz+/VW ar4q5RwYz7unAu3vfnVR14fDBONK9SpVCD20hY26HkabfVe0NalCjkfkTyof lvbf8z1EDbqFoiOp64E2tdftt4Q62O67wkb1uZb9gmV7vjqUvdDzonLMdoHS LEcN4PogmUxlZsDAxuAxDRi3Hv1C5XnHsyoCOd4hxg7DfblTr5CNytuvXc+7 kdX49LmNKT9Q36tLT7hieEEn40/A3DtO+BJTZaBP5wNNjZ53K95wwRe23e7Z +fzg0W2ccu4oN8TaH4jsnxOAzvSYdfqT3OBkffhE1QoheJp35GoE2X/1qYid 99NF4EdWia8s2Qf05LzL1U5R2Fq8OWEB2QcpY257fU1xWMZ87VdM5pGDJ4Ui fSWgU3zeITvy/AcGnkxWTZaE8FvnTr0i8/i9wDjNWino5xzR4yHfz0PfTsU6 DhngjEyaMKPuJ3ca1+kRsjDS+1shiDr/Me2/QkzI53FLgV/U95ecGTdEjv+Q gyXDHYial3qvlhQ3HpUHWbcbHtS8bEyku4uIKkBXQVwa9f1lXd3LbxPPFWDv SMUual425LbTFmxQhPOBjgHUvAzx2Bi6/yc5PwPPaFDz8h6DnVh6SgnYlf8k UvOy4W1GrqSsMpy0c+ii5uU2RWnRrNfKILaE6UPNyxGFCK0j7iqwri1Jj+qD cKfW+WvDKmCQ2HWCmpcVu0QNuC6qAnPJpRNUH66cn45/oKEGTWf4V1F9uMt7 u360RA1E7yR8pLLUcbY71/eoQ4BqkP5/3/8U+W4Q49KA9IcVJ6m8ye90K5Gm AVF9Aq+ofPvRbfW4NZqgeNSwlcrvdMqcrj4VgOz9Lvo1LdywYyjmYkevIJzL SjFukeCBHfsksi0cBOFD1elt8xaQ58csOc6/WBD4Dm/04iHn4bHm98kSaoLQ q+WTVTmPB7ySI0578gnBzK1HBY5kH+zm9n4JPiwIee9prhl8ZN/971zPzBKE RwoJPRdFyX7/9yMEQw1hK1aRv+++cq2p1zZB8N8bMxG1mAf6xOOvqNUKQhSP haIyuZ6qFLEja2qD0D2f/CVrrXajV8u5fe6rVyJGHgdb0FgxWnbxac9ESTsa dnhfWHmhCtFY+xM+buhHmcGi0rs5m5EG1533Di4s5J5cLq2v34WsU3lHbc5z w6mrKkrXndngiGWsxtu+BfCsuzyxpJUdLL1SRlaaLgahdSaWP1U5YW3Nl5mB kiXgs+ja11xLLjDev0OkS4AfFo9dMTkuzQ3jyRJheu4CcLm59617ITfUyz26 uS5JEKqNxS/pkfO01l+hfPcHIVjIUv5iTM7TgF4thWWLRIBX/bdhLDlPpXRl TnOvIver0nO8seT1M5Cy9g0jQgy0xH3k/MnrpcfXIt3kgzisvHEsnpe8PmYH l939NCoByY+1PE6R+WHGk6IpYymIMV6a305mZ5vPMQV7pOHx2oh+il+VyzxV YY+XASnFJYupedqmqNTUUycL2rptXyh+xTnF2DgcIQesnydkqHmacYBboVFN HjLcQr9T/Gq3OLJ+9FEe2Ipteah5+lxx1+/5Pgpw1/7DQmqelrz3fPNwviJk eTnmUfO0ofbWpuTrimBVL7efmqeunJZO5TpKUB28cRs1T2+V5fhu/KYEHS1m PtQ8PTghMe3tpwz6pqBMzVORfIvbrxeqQJVFtic1T1/0F8tvS1MB63NfW6nr 57XJXQ5bY1Uo0DOao66fSwp206caVCFl8eMO6voZ2Nt7aF2wGgRprD713/Oa rbx3iJg6eET2zftvv7nJPPVsrjp8uC6wmcqhxV67VRw0YCpb9waV0xzsXJ8F FCHufTwf2xxeoab6V9HMC93ok3dUWnLwD6QcbyrVG8kLFR935RxncoLVHyOB Y0f54MFx5SWduVxAOzf2LiGbH+aPlYpOHuaG+Ea/tp/TApCX0bPk5zg3vKw6 clJZVwgkf4zuOkH2PzXpVVLPHRHo37TWT5I8//57uiQCW0TBadk7Ey7y/EvM lbKrq4iD32mv1kIy26+0DyjfLAG1vHH3bMnzHbH+4OnFCZLwurKILYfMfvQg Rb9KKQgc3a/ETX0ephvuLJ0nA6Xjm7Wo+Rl1c5+TghF5/q2Lj+2nzu/55cXi RnIw6301hJqfvK9OrOz/LgcOzrGtFP9JK1ZpdjsiD2LuGqLU/Dx2N/n9GyEF WL+yKZian86j2yP9nylA1Oh6M2p+nv6WyPnQThEOL7mxkZqfUSHEEelORUi8 0ihCzc/Y7vCI+3QlKJVUiqbm51T3ckemlDJsKbKqp+bnZlf9CcU8Zdj+lOVC zU+JTbe8RFxVwP5qrDZ1/u9JnswhBlXAI/ZAKHX+iYw/6cfPqcKlmrlQ6vxr f+30tFFTA5VX143+m5fect1b36vBrbnUD1T+XZ6dLrxLHVQbOPWo8y0jLPWg gF0D2JfXnKDyhzdvn114KABCP7mC9Zu5oST0yqUVXYJAuL28lUfOI7+ZJYKm NoIQf1tlOx8PD3z7nBL/hikI6w48ufhcjAdO7n09LaQoCLKrrj17TuMBhurp M08WCsG+Bs4AW/J8b7iwVXPfAUFgk1u9YYB8Pt80kZY0L0MQrh4+lytPzkez DefPDU8KwpqhtY2a5O9vLja66epN/r+rjF7mIh5Yn5Zw9UilIOg4lWj/JOcx x45LF64OCkL23rf358j1LclNuib5SRB2LJU0cyP/P2zV2bP284WgtnjyDSJf L/rStcs1DeS8P1e9eDP5+399g/9+hhjYN/gyOHHC/P17BvYN3l8oeFpl0f7X NxifWOHvxxj66xskJ3B8mE5n/fUNTvhm+7pYs/76BnJP8kVNO4b++gbZ8kyL oLe9f32DFclPHhZWtf/1DcL61g3VoQaEfQOZjGKBjNpvCPsGhUVWOn72RQj7 BjV5ZXe+Cach7BtwXJoUss9+zsC+wZ9617zrh0sY2DfITi65P8+tmoF9Az/5 ns5hvRYG9g0alvs8XrBqI8K+QQz7jxf5FywR9g0eOzJlvioDwr5BedLBTP5w fYR9A/r4xThpMw2EfQO5dLmTJzbKI+wbMCV75jgFRRD2DZYpPjngPL0IYd8g dXdDynltNoR9g5bTUxFvwicJ7BssW5+yx05xiMC+AS3/zUeOyA4C+wagtWqg yq6OwL4BU3Udv6vPNwL7BvRDUt7iGu8J7BuAIPcdSdk3BPYN6Kvu+hvZPyew b0B3er6GVpFOYN+A1nVNiLYplcC+AX1fq/OFwlgC+wb0mC8n6O7nCOwb0KNy 1q0xCCewb0BbvUJmyPMQgX0DGkPYM7c+gMC+AZ075Xbpva0E9g1oq4YWEXOu BPYNaP/7wb4Bztg3wBn7Bjhj3wBn7BvgjH0DnLFvoNgd91VMqoOBfYP3Z4T8 y6b/+QZOW2mt++i//voGHcyVPy8/GPnrG1jU5es//8FCBtvzV8s9n0Y8glLf 9puOoMmh+KdHb82hPcql++S8BhD2CU4IFQtZXCtnYJ/g3eEHXQsv1DGwT3Ds Qcf84HQXhH2CqO+8Wp/z7RD2CbppH04d6DFD2CcY8tbytH5thLBPkBrwcR1t 1zKEfYLuVcW/8pyUEfYJypccFnBJl0TYJ4CYdREmbfwI+wQwkPWB4yoXwj6B T23jDp8HswT2CYYCfjYeamcR2CegBc3yKr7uIbBPQAvd3Vi9t4XAPkGL5s0v x7ZUE9gnYK6wfcdilhLYJ6C9CPF7PPGWwD4B81ONYfGLHAL7BEyzIk3F8QwC +wTM+DN3s1TSCOwT0Fqln7WyXyewT0D3CnI+WRtDYJ+A/sAneIPzaQL7BPTN FlkLtY4T2CegH6mU1pwNIrBPQH/+SfD9TT8C+wS0SvX53/y8CewT4P5gnwBn 7APgjH2Amqb1hi/LfjGwD+CQtdroeO+9vz6A6rxUz02Pf/71AcQdnNtjKof/ +gD0tV+2ezWw0LZS+rGVEVPors7hl+GVI6h7bUeOgdssuvVBy6uGdwhh3r9A inksPa+MgXl/459Hn51bahiY96cFV3fxPm9lYN7PbJkINdHdgDDvl3MdPnla yhxh3p+wfOlB36pVCPP+2mmeYjfX5Qjzfu6CFxOaj1QR5v20M3vyVcZkEOb9 Dm0OdoebBBHm/eXntkkOKyxAmPe3vOjuuqs8D2HeT2trqFUVGicw74fnLTp8 FX0E5v1MTQXLHZ5tBOb9Pok/Jnfl1BCY9zNTYPYW71cC8366W6nT49EiAvN+ 2m6r96/W5RGY99MXbQ1WsnpGYN7PHBHxH/e6R2DeT+d9vu+LWjKBeT+dx+IZ W+YVAvN+mvvD5jevogjM++kTbDvHbOkE5v20A4cLA/gOEpj304TYdA5f3UNg 3k9fk2+59doWAvN+mobnwkuXNxGY9+M+YV6PM+b1Et23R5kBPxgVe5XsJIVb kcO6hIgF3fV/+X2kj7X3+eIBNFKWIlUhOoKuygrEFa9loeX0RROv+SaQNoo6 OnWPhbjnxma5234jtejS2qakYYT5/aoalT/btjYyML/3rExCM07OaOdAnatm tjDEtIvwBR+2QZjnM+Ucvu4bWIMwz3cYTbJdO2WAMM+nV3SZ/vDQRpjn+zUW 7okyUkSY57coez7d/FIMYZ6/7PGLX51ifAjzfAcvGW3CjANhnu8T/GK//O7f BOb5TPbeGMveYQLzfB9rDf3e6S4C83zawjXzb+1oJDDPZ+qc2+BrXklgns/s OVPu87mEwDyf9mbzp89aTALzfGajU8OLbS8JzPNpKYducuc/IjDPZ9awjbCU bxOY5zNPXPp5Z3U8gXk+bedrRxPvi8Rfnq+Z8KdONYLAPJ++3npei0wogXk+ zdp2e7HUfgLzfHpyS6DI3HYC83yamJjBbnZPAvN83A/M33HG/L1keFBxZ94g A/P31ODEGs7wTAbm713eG+nK5zv/8nfWAcvu/RuG//L3BgXdQ2UfWejoiXbJ or5JtLrbgTtcgIVaAhasEno5g66e2z8jf3QIYb7uoxc27B77iYH5uq1mZ4RZ wncG5us+b9Qqk4ZaGJivJ1jnzbfTcUSYrwfyZgmN2logzNdpXEZH95wiEObr MWeM9cO36yHM1zPdZpujBtQQ5usJm28+cPeRQ5iv04r3mHgMCyHM1328b1Qa Ry5EmK+X8479cFGYjzBf95n/hd3WbILAfJ05SdvVfHKAwHy9pfvoD7Zd7QTm 6z7i7syI6VoC8/WW1KBtOnvLCczX6Z8z34xwFROYr4PncFR7ej6B+Tp9P0dn 9tosAvN1GudJvYiY+wTm67RGwxR6UwqB+Tot8qJgxrOrBObr9Iu0iF20aALz dab87yiNVWEE5us0b6fsmKUhBObrNC2O361aewnM1+lNWRre8b4E5uu0wUaP 9BwXAvN13CfMx3HGfNxyl0THhFcLI4vj/Tr6jWZ02shOdK/E97+8PFu3Ve+l fj/yPV7gvDJ8GNl5Z+vYzI6g8PuDQsEB48g88u6R8WIWks1yTYm1/o1sdlpz XxoeRpiXqwz3eBaM1DMwL2eGShpxHNqE1GTF6s5cEIbULUPc/rzrEebn3cwE PftOU4T5uY/SBb5CB0OE+Xnqwsy71xfoIMzPh3JNraVACWF+PvRax8NISQJh fr5M2r7l7AQfwvx8qEPQL2IrJ8L8PLXoeKvE7B8C83OfhaffW7aMEJifg0/p q4sbugnMz31q/hSVCzUTmJ+niovE/7atIjA/hzbTjRGrPhGYn4PDdm2rRW8J zM/pK7fuEI/MJjA/p7XcXLJt/RMC83N4+vu2gOwdAvNz2ti7U3rxCQTm53Tz 6O+Gs5cIzM9pXV7PrQ0iCczP6Y1+9b+uHyUwP6flPr7VyxlEYH5OZ8gK5azb SWB+TjtpM1P+cDOB+TnuB+bdOHMQAdJ+Bj9RT7z8463pPQiaZj7McxlCOxZo 3FI0H0FK4y8d2tTHkFbQuJV/KwutF5NpfCQ5jcafntw8emEEcejcb+lkJ5/n bGLOJf5xRVIrOGqV7pD3axAYTT6bRKRM3CyIHyTXI3ql83GSM/Hs3KGCZb9/ oSsGe3Ofiw+hU1In2/2fjCCmLm3HyeMs1Oaq/oPj+QSqXX72dziZMV/H66V3 /H525ud3hDPm69yJ3GHfOgsYmK9nxe/2owd0/OXrL+1l5vYtGP7L1zdX6D41 yGchztrYX9y3JlFafaikpw45V09Jz87fOoM8oPijXOYQwvw8oa4w3zDyIwPz c4Wni5xiJqoZmJ/LyNsuuHK5hYH5Ocw9XPzxuSPC/PywhVLT6l8WCPNz+noL A4ttCGF+Lre4y+bLsB7C/NzhR8urG3HqCPNz+osPFitq5RDm5z5J0/us6cII 83O+DqLBa/UihPl56uc7OwXvzUeYn9Mv2LT0t0wQmJ/TH37q5PIZJDA/9xHJ 41sw1k5gfk7rX116+PYPAvPzVE9xi8Wd5QTm56kRF+qk44uJtP/xc6bmtYqL W14TmJ8zBUe1FpZkEZifMz9VpLcuTScwP6cNSlnbv71JYH4OWmK9ToaxBObn NPMthtMPownMz2nJb869zAkjMD+n8/M2JBeFEJif07pUzgfMCyAwP6evbDu9 Xnorgfk57bLV8GdXVwLzc9wfu6HM6tot//qFeXiozeiTGeM2Ru71CIm7zk2o Jgw9zRWu/MvHudSX8HJ696HrznYju1YOo/I5maE31SNIw6T1jr30OMqIhXrL byz0cOGCgLrZaSQkWjB3W2IEYT5u8atn7CJRz8B8XGrdopbCxS7obE62hMER YTC0vFQr1rYeYV5uaBRY8Xi7GcK8PFNU0nWYzQhhXg5q1w/K/9JBmJcnLEwb TS5RQpiXl5/57H+xXQJhXj50/5Lxpj38CPPyGOOkSMcpToR5eeo0j25B+QyB eXmqWZjnMh8WgXk55AY3m7P3EJiX04LerxQcayYwL6fLft4UXF1FYF5O961t nv39icC8vKVR8PNB+lsC83LanJ7dhEQOgXk5bOM2+CGTQWBeDpkhvRK37hCY l9ND7Y8etEkkMC+nCSGBg7tjCMzLae+7ZphFkQTm5bRwWu59n2ME5uX0NdI5 cmFBBObltFmrYyZDOwnMy2mpi1a0nvYiMC/H/RBQqJ3Qzf7XFweh9Txfk7tQ xHTy++aMbnQ4+8I2/UVDKPiB9aFi3hFUdvZ+85vaUbQxw7H4bAsL1e7/+nj4 6xTi631ZcurZCMK8/NyWd+pnRdoYc9y+rn0J5Ps7Hu4uv+kGUYMipXW7yPUQ ckEhfJuIP1s2PYz3/YXaT/EOlNMHUd4oL/2mL9mr/UePVPiyUHSfhF/rlgl0 b9cxu7CrLDSa9yvKq+Xfer98djfR6x9AV8fXSB6JHUZSz6Jngg1Gkc7BZwsr qlgI83mDju0lohtaGVbl9vVbK8nj671reinjQmjcXZrL/nkYFWhHXbRUZKE6 wdnIBMY4Ymd5P6/MYaFjvu/ech4dQyJPxD5KNbMQ5vmj3oLKehauaPKYu0vA JPl6Jz6GORk5E7ZrB82NJ0fQQHbG6QZyLhsXr7TWYJ9EueUqCqLbWWjHmYPf gsf+rd/p7QntJAHevxnz/47ULuKIWBED83+dE38sbRra//J/PVW/+L2dQ3/5 /8PNpS0Xs1ioLGJvpebRSTSqsO27yGoWcudV9Z42mkELU5+a230aQpjve8hf mbo+W8LAfJ+wGTHlSK9mYL7/IW1y9TXfFgbm+/6EhdW+CUeE+X5mcqD/qIkl wnzf0ixyjVwNQpjvJ3DvWrHPSB9hvl/Odu7S+j51hPm+q15rwm5heYT5fozV BlPtj8II8/2hlM9Dq5MWIcz3+UaJ45t65iPM92m7DB3tdCcJzPfpEUd3hlUM Epjvg8nmkDOrOgjM9+WEG7XFJn8QmO/TZzoCzRS+EZjvy+3bskCupZjAfJ++ ebFqDuM1gfk+pBYuVV74nMB8n95YrPbuZDqB+T6tL7SwWiKVwHwfLh3XmDkW S2C+T/P8OCM2/xyB+T79+N2guPEwAvN9mtztP3lLDhGY79NWGc5W7w0gMN+n P74jnrBlK4H5Po0pz7X5kSuB+T7uz/LjF82uev7rF+b7U2yv/fs12hmrOtsj VmY1Ij0Ptpdz57795f0ty1Mv1A79Qtlr4oBNYBh9iXF/IsUcQbPs7nvejI6h qDVmYQ3VLBT4qs15pnYadR/NNHuxdARh3u+eafr+cGcdA/N+NbfJzUnuLiiP jdNk8T5hsLzlYaxjZ4cw/w8M/Rwtf98MYf4Ppqu1Q7yNEOb/ryLdQluXLkOY /4t1NhxbyauMMP9P3eWlbrpOEmH+Tz+xZte2e/wI8//AYAXdjHVcCPN/OpJ9 ZrtqlsD8v3zttYYdt1gE5v9y17PmLnj3EJj/w4sH8z7qtRCY/7f0nC9kl6wm MP+nyaHLHzaXEpj/t5ycrcvIf0tg/g/6C3y8duYQmP9DXXQt42wGgfk/02NX ekj7HQLzfzoRphRxP5HA/B9WVx6SuxVDYP5Pm8kqVlp0msD8n35pX3hK8TEC 83+6yPWH9owgAvN/Wuwpt80WfgTm/7SeI5HSE14E5v+4H+MZL7f3Zf7ry8GT q06Gb+hCYxp+kq+XdiO1dY+2J30eRE1lYh/vkc9LqRvl7mtmjqJ08adpTU0s lCKTHiv0cAq16M+/kF04grAfUGjlJJXU0coYCooRK79Kvj+Xl6b5BTeI0faJ suOt5HqOCrQfs99EyH9eJ2cj8guxF9kcW6c0iL63bPpiuHoEOTEesxk5sZBX 9lUde6MJZHpqNO1SMnm/sfg4Llb/b72c93prtt8eQDOM4yrBB4bRUChbcdvi UVSxt6+Z8ZXs6/98hMU854YfyrUydgQXRmd+IY9fNbwmb5cLYX45hCvl/jAy TTzVZcxP3i8aQ9Zzxo+jjdKZN1YzWMhBa/XZYMcxJL/88MYH5P0O+wsdq7cF yCW4ovCN2ktsRsnX6+3in97uTPgtW3mtsmIECZyo64w7y0K8lzL5E+on0Je9 AyqJ+1nIWmgj0hn6t/4E3rGNBa/Jz7Ey7s9oIQtt2u/X0LpuHK0+kbjydykL TTKWijnMG0OXL57L9SWfV36Xu8pK/BaE2VZ2fjBpY+QlCQR09JLH94xknKpy JlK4P+hyRo2gF/dEhq4GspDlT34DLu9R5PQpu53jB/l8YB1ZoNE9jmJMyn7m P2Wh9ASb6YQ7Y+irw8oXHxtYaJnr/clUaRbat1vX3/EmC4VPx2/Nm/633v8v /6PRsF/Rsahxi/vAOwb2K9I8GmVdr7T/9Su4v5/dd65i6K9fYdb77XzbExbS qXezWO03iUI2pES9N2Oh65WPloQoz6BZ6arz9jVDCPsTATbHvM/klzCwP7Fw u8/NIHo1A/sTMUWF+w1tWhjYn9Dfmi+dIr4RYX9i8ubom5fbLBH2J1omPshe 4waE/YlMpx/sqZv1EfYnMjWWBFwW1UDYn3BIDIh21ZdH2J9gXglY8LtfGGF/ AsY/7bz9aRHC/gR0HhhxXMiGsD/BpMU1tbtNEtifoJt7r9bmHCKwPyFXftbq nk8Hgf0JWlTVY0fFOgL7E7QlgQW6a74R2J+gb/a/OcP+nsD+BNP57p01g68J 7E/APf1PS7SfE9ifoHPq+RanpxPYn2BuqO2xMUwlsD9B22i1IP1mLIH9Cdr4 liGFpecI7E8wH1qzOYqEE9ifoGvflFtucIjA/gSt39k/Pi2AwP4Efan3LqGI rQT2J2jbdmxRrHYlsD+B+5Nmdjx0yO1fv7BP0Wdz09bzTjvjRLRgHt2nEUlF m/nYFZf/9SvYuZ88//XqF3q3Mu+n/dwQivO1jB99MYK6d4nYB7eMoXeg/KS5 hoUqeb9+5CX3MBIv3e8nG44g7FcoVE9Za+fWMbBfse1edsjOMBdU8UC7dHKX MHCHWnWVRdgh7FuItYc8XVpihrBvkRlWviD7ghHCvoVhq+/Ad5tlCPsWk+dM 33voKiPsW/Dx9UJqiCTCvoVct26GwTt+hH2LwAItC2N/LoR9C1pixIW7QbME 9i0clj/r2FjIIrBvIWeZFppxoYfAvkVqcPS1lw4tBPYt6PoTcYpENYF9C6ZT xa9ll0oJ7FvQ7N4Nx/54S2DfAuZJxw9fyCGwbwGTycFvGRkE9i0giO/HJHsa gX0L2t3eEu7viQT2LZiDYpy5r2MI7FvQ3kbN3l92msC+BX3Jn9N3J48R2Leg 39Pdc78piMC+BW39llN+B/wI7FvQ3Jv9S3S8Cexb4H74HUy7YZXxry/cK/SN PTW7UNQN8ehv/T/RWl3Wc/30QSRwpPh7Xtswin7VEN2WNIpqP7/3yG1koXkH Y7lV4qdQXMFMknrpCMK+Ri17x/eS0lZGz/37k2suk/erSY2iONYNYr7BMyWl ZnI9W1/TlAM3ES/CV9crDfWiuBMpxUvHBlDH99CDkRojyOaV4ePrtuS8lXQQ 5FSeQK8fSdq53SbnPe8r7ZDaf+tVuLJcZe7YAMpumnl/xXcY1TUz0hOnWKjq h0pYWxkLYT9k/ldTRjx3KyP4/dG2TWXk8U17jJ1jXAinM9czesnnnOijSv7N XCyUYKqn+yZ8HPkFWHllkvcP48tT/prEGOoxGl2mRN4vsE/i+tuP/Q/TFcXc 7doxPEy+XvLbsAC6MxGi4rFKjtznGa5LO3X3FHm/YfmP2X2YQKdURqxvHWKh 13VrQs73/1t/+IFnKw+ms9C6E8z65eT9Eb4rMRN0x9HB0t2SuV9YqE3p12/O /lHEVjXkykceH/spTeX3jO7qtDFK+kuLo7vJ4zfFy0mMOBOPZ3trHQ+OoFar RqEvu1houe0X8QLrUbQmdfQKF3n9DmWsud1aOY7cCxQ2NT5noSszXE32l8YQ IRnWtJDcfxB2pTf7F7CQsGmUne518vmQefq66OS/9QqlJp/h5BlHPMxpiYeV LJQ9sLUo+N0oyhqpv/eFfJ7DPkzgMq3vkTOtDE4Ri1ZNhVHUcy98cFsF+bz2 gX73zY4xJHg2j+8P+fvB84Jz0sbJ9Vsvf+hg60zwegTpJwqPoaZa2pow8v16 hTs7OhwYRcmnJrw+17FQgd4lkbacMeSW0ZmxqZ6FZh/NM3SaUf+7Pj79B1qb Z/6t96hQhkXrtDoY3Y4Npfyi//v7//d58/9+X/l/9wf/+xTAUxK9e7u0goFf n3GS+vt1hOfR+34F52/97/vHIQb+e3w8/Pr/v+P/7+f/AbJ6rwU= "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[{ PolygonBox[{{765, 968, 520, 1093, 681, 608, 570, 1006, 899, 803, 719, 646, 521, 969, 862, 766, 682}}], PolygonBox[{{960, 1094, 861, 533, 534, 975, 868, 772, 688, 615, 577, 535, 976, 869, 773, 689, 616, 578, 1012, 905, 809, 725, 652, 536, 977, 870, 774, 690, 1054, 947, 851, 617, 1045, 938, 1077, 842, 1067}}]}]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJwV0VkrpmEAh/EHc2TfDtAoZC9bJhpmcGQ5MKJQJLyWw5kvgfcdysewZIti isyU7cDMyPY97AdI/BxcXf/rvu+ekyc39KPre3QQBFGYxYsYiAmCdE5DKlKQ jCQ0YRxriPFuBCdI1DO4RLGO4A6N+gFt9uL7dz8EwZheRbQO4T8SdD/voNCb Z91hryFLT+sDu8Lu4S3k2hfOf9sldhFXc5hv0eCuXh/aldzLtfyL8/je/Wf+ o0u5lT/xAqfxqPs63tfl3MU1vMHZvOJ+1y62o3gY/xDv/IirnPfxNgrsJ+d7 dpn9jVeRaf903m1vIkef60J7Cjf4qu/QYs8j1ZsR3Wmv46Nefv+J9hD+Ik4/ ot1eQYY3EX2GAj2Ja3zRt2i255DiXUgv4RWDzo4Ra4dxinw9gSvU62G8AQ7E QfI= "]], PolygonBox[CompressedData[" 1:eJwV1EVYlFEUgOFR7O5ABexABbsTG+zCWLmxBUHsQN2pWNhiom50J3Z3rgyw xW5dKba+s3jn3u/M2cw8/0zNcQlDpuUPBAL5GOjlm+hdIBDow6iQQKCt85iz jvO79865N3aPcx6gsvtS82HuWYTrmzrCPZUPNNf7+EKMzqSUvbF6CTcIN1vE e5rpvXymu95NSftj9GKuE2a2kHdE6z18opveRQn7o3Uq16hhtoC3ROlMPtJV 76R48PPqRVylutl83tBU7+YDXfQOitmP1wu5QjWzebymid7Fezrr7RS1P1Iv 4DKhZnN5Ffw+9U7e0Ulvo4j9ETqPWL2fSmbz9SWq6jm8JFLv4C0ddQaF7Q7X 87hIFbPZvKCR3s4bOuitFLI/TM/lApXNZvGchnobr2mvt1DQ/lA9h/NUMpvJ MxroDF7RTm+mgP0henbwGaKiWQq51NdbeUlbvYkQ+4P1LM5SwWwGT6mnt/CC Nnoj+e0P0jM5Q3mzZJ5QV2/mOa31BvLZH6hTOE05syQeB591vYlntNLrCdgf oGdwirJm03lEbb2RXFrqdfyjv07mJGV0Ig+ppTfwlBY6nb/E6SROUFon8ICa ej1PaK7X8odYPZ3jlNLTuE+EXsdjmuk1/KafTuQYJfVU7gV/szqdR0Tr1fyi r07gKCX0FHII02t5SJRexU/66OCfyRGK68lkU0Ov4QFN9Up+0FtP5TDF9CTu Ul2v5j5NdBrf6aWncIiieiJ3qKZXcY/GegV59NSTyaKInsBtQvVKcojUy/lG Dz2JgxTW47lFVZ1GNo30Mr4So+OdR4PPgOfjPx0cpe4= "]]}]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwl1WWUVVUYgOGhW5Du7lLpku4ORVK6u7ulS7obJRUElJbu7u7u7vI5yx/P fPvd59y5s/aZu26Khu2qtg0VEhISMXRISDBX+VGXCPyl65Gdc3ow2bikR+Il Iav1z0Rkla5PDsKwxl49IrFaNyAn5/UQsnNZjyIsf+v6RGaNbkguwvGPvQZE 4W/diNyEJ0Lw9xOJyERhrfsaEpV/dGPyEJV19hoRjbW6CXmJxnp7jfmKdbop +bigh5KDK3o0X7FBNyE663Uz8nNRDyMnV/UYorNRNyUGG3RzCnBJDycX1/RY YrBJN+NrNuoWvLNeRHXC8L29y+YIcnNdfzKXUYtf9QdzCTUI7cGtNMPxhT+o E7yH+zabzYkZ6v8H/Ke5yfKjuTR4jb2awfuafwX/J2ZL199bLyas/skMZa4w w5thzc8spzYF3X/FHEkebuhxxORf3YJYbNatKEQstthrSWz+1a0pzFU9irzc 1OOJzVbdijhs0W0owjU9mnzc0hOIwzbdmrhs1W0pynU9hvzc1hOJy3bdhnhs 0+0oxg09lgLc0ZOIxw4dfNjis123pzg3g2cUPEfu6snEZ6duRwJ26A6U4JYe F5wj9/QUErBLtychO3VHSnJbj6cQ9/VUErJbdyARu3QnSnFHT6AwD/Q0ErFH dyQxu3VnSnNXT6QID/V0ErNXdyIJe3QXynBPT6Ioj/QMkrBPdyYpe3VXynJf T6YYj/VMkrJfdyEZ+3Q3yvFAT6E4T/QsknFAdyU5+3V3yvNQT6UET/VsknNQ dyMFB3QPKvBIT6Mkz/QcUnBIdyclB3VPKvJYT6cUz/VcUnJY9yAVh3QvKvFE z6A0L/Q8UnFE9yQ1h3VvKvNUz6QML/V8UnNU9yINR3QfqvBMz6Isr/QC0nBM 9yYtR3VfqvJcz6Ycr/VC0nJc9yEdx3Q/qvFCz6E8b/RvpOOE7kt6juv+/MBL PZcKvNW/k56Tuh8ZOKEH8COv9Dwq8k4vIgOndH8yclIPpDqv9Xwq8V4vJiOn 9QAycUoP4ife6AVU5oNeQibO6IFk5rT+hYK+uGqYb+0tpAof9VIyc1YPIgtn 9GBqBmeiq/LJehlZgt+ns3LWegi1grPQ1fhsvZysfKPPmUOpHZyh/mL+EVzj W33eHEad4Mx08OX+Z3CN76wvmMOpG1zSK4J9LjKCnwltf6UZ3sxm/gdswQI7 "]]}, Annotation[#, "Charting`Private`Tag$47585#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV0mtPjmEAB/Crk40UoaRhQjnNaVJTFDbHTa0MG0M9OnnDh0AHfA6H6Ghq 06iVbBSV+BoOHV5g4ne9+O3//1/3vefZ/dxPfuJ2za2kEMIQJ1JDeJocQi2l fEsJ4Q5bmLRbWMp7+xqLegd/qaOM787vspUpu5VlfLCv809/RoIs3/fI2Ulm 7cP80O9RwLTdRq77Ou1z/LLTGddrCTy317unV6/mhr3KfqyfYs4+wk+9hUI+ 25vc81K/QLu9zu7SK9mtj8jfzgv0V/pl9uvv5HLnE7KOJLY7fy07nW/Q+/Ri WSP3yFFZKutdXy2f2EXytNwph+QhOe/6Zjlgl8hLcp8ck2Wy3PVZvZUD9ja5 Q76RM67l6/36Rfbqb+V953l6t17FH7vQHtSvkGF/lAmS6bIbWBP/D/YZFuwK 5vS2+Lx8sR+Qyaf4u5NCt93IUVawMr7r+E7is8fP5ar7smUOk3o9qfTYTRxj LVPOGkij127mOPPxncVn56v9MP5PmLYbWUKfvdEzvNDPc9POtjv0g/Ks3CWH 5X8mZFgW "]], LineBox[CompressedData[" 1:eJwV0zVYVgEYhuEjJnYXgmKLqNjd3YWBOrlYCCYGtpsdhGDnopvd3U52F4pi TnbeDPd/zvNe33j+yLGJQxLyBEHQ38/XkCCokS8IjuQNgpF01V88lxHFXb2S StzU4yjIfj2RbnzVy6nPPb2KytzS4ynEAT2J7nzTK4jmvl5NGLf1BEI5qOPp wXe9kgY80Guowh09kcIc0pPpyQ+9ioY81GsJ566eRBEO6wR68VOvphGP9Doi uKfjKcoRnUhvfuk1xPBYr6cq9/VkinFUT6EPv/VaGvNEp1CNBzqB4hzTU+nL H72OJjzVqUTyUCdSguN6Gv34q9fTlGc6jeo80lMoyQk9nf780yk047lOz/0G eKynUoqTegYDCHwfqbbmvNAbqMkTPY3SnNIzGUge92m2FrzUGdTiqZ5OGU7r JAYR4j7d1pIsnUltnukZlOWMnsVg8rrfYGvFK72ROjzXMynHWT2bIeRzn2Fr zWu9ibq80EmU55yew1Dyu8+0tSFbb6YeL/UsKnBezyWWAu432tryRm8hiiw9 m4pc0MkMo6D7TbZ2vNVbqc8rPYdKXNTzKO92r+7LNz2cQrbNuj05ehvRvNZz qcwlPZ8RhLrfYuvAO72dBmTrZMK4rBcwksLut9o68l7voCFv9DyqcEUvJI4i 7rfZOvFB76QRb/V8wrmqFzGKou632zrzUe8ihhy9gAiu6cWMppj7HbYufNK7 acw7vZCqXNdLGENx9zttXfms99CE93oR1biR+591d8B7LEt1Bb3Pez+ivZ/1 /J77rXs/mvu9ecZ5/gctmaVT "]], LineBox[{1084, 605, 1039, 932, 836, 752, 679, 563, 1004, 897, 801, 717, 644, 606, 564, 565, 566, 567, 568, 1005, 898, 802, 718, 645, 607, 1040, 933, 837, 753, 680, 1051, 944, 848, 764, 1063, 956, 860, 1074, 967, 1085, 569}]}, Annotation[#, "Charting`Private`Tag$47585#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{1088, 1092, 1087}], LineBox[{1090, 1091, 1089}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->NCache[{None, {Pi}}, {None, {3.141592653589793}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotRange->{{0., 14.999999693877552`}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}]} }, AutoDelete->False, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{4}}}], "Grid"]], "Output", CellChangeTimes->{{3.717179662001368*^9, 3.717179669885983*^9}, 3.717179711404866*^9, {3.717179743012516*^9, 3.717179763159971*^9}, 3.717179798933648*^9, 3.7171810436264067`*^9, 3.717181087908266*^9, 3.71721229774891*^9, 3.717224324487462*^9, 3.71722435834477*^9, 3.717225057026936*^9, 3.7172251140119457`*^9, 3.7172253831205807`*^9, 3.717225718208309*^9, 3.717226047903894*^9, 3.717226713535191*^9, 3.7172268765442467`*^9, 3.717231289494946*^9, 3.717231350066669*^9, 3.717231421079175*^9, 3.7172350349233713`*^9, 3.738609753348216*^9, 3.793502842580624*^9, 3.7935040475964737`*^9, 3.793904844360237*^9, 3.823229446831623*^9, 3.8430721556660843`*^9, 3.843072231113327*^9, { 3.84307228289895*^9, 3.843072306621647*^9}, {3.843072468816558*^9, 3.843072491715177*^9}, 3.843072618957893*^9, 3.8430726845863953`*^9, 3.84307295864701*^9, {3.8430730632149677`*^9, 3.843073073378662*^9}, 3.843073233669139*^9, 3.843073327481017*^9, 3.843073446538582*^9, 3.843074824359099*^9, {3.843074955911928*^9, 3.8430749795911713`*^9}, 3.843075021660726*^9, 3.843075242164424*^9, 3.8430752981742887`*^9, 3.843091678332617*^9, {3.8442560022132797`*^9, 3.844256024370865*^9}, 3.8442589759698057`*^9, 3.844259031955977*^9, 3.845740960771641*^9, 3.845741043571047*^9, 3.845741126364316*^9, 3.848356458973077*^9}, CellLabel->"Out[83]=",ExpressionUUID->"a8a891c8-5b97-4679-85b1-1113fa6ab994"] }, Open ]], Cell["Linear feedback: Quasistationary approximation (Q=R=1)", "Text", CellChangeTimes->{{3.716613652345023*^9, 3.716613661762876*^9}, { 3.7166171500953703`*^9, 3.716617173133562*^9}, {3.716626783084096*^9, 3.7166267858131742`*^9}, {3.716631401415011*^9, 3.716631413565827*^9}, { 3.716726797650621*^9, 3.716726800769066*^9}, {3.71717868879108*^9, 3.717178722021283*^9}, {3.717222554881587*^9, 3.7172225567778807`*^9}}, FontSize->16, Background->GrayLevel[ 0.85],ExpressionUUID->"b346cb89-2ad2-41d6-a092-befc09aae36c"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"a", "=", RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "1"}, { RowBox[{"-", RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "0"} }], "\[NoBreak]", ")"}]}], ";", RowBox[{"b", "=", RowBox[{"(", "\[NoBreak]", GridBox[{ {"0"}, {"1"} }], "\[NoBreak]", ")"}]}], ";", RowBox[{"s", "=", RowBox[{"(", "\[NoBreak]", GridBox[{ {"s11", "s12"}, {"s12", "s22"} }], "\[NoBreak]", ")"}]}], ";", RowBox[{"q", "=", RowBox[{"(", "\[NoBreak]", GridBox[{ {"Q", "0"}, {"0", "Q"} }], "\[NoBreak]", ")"}]}], ";", RowBox[{"r", "=", RowBox[{"{", RowBox[{"{", "R", "}"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"ric", "=", RowBox[{ RowBox[{ RowBox[{"a", "\[Transpose]"}], ".", "s"}], "+", RowBox[{"s", ".", "a"}], "-", RowBox[{"s", ".", "b", ".", RowBox[{"Inverse", "[", "r", "]"}], ".", RowBox[{"b", "\[Transpose]"}], ".", "s"}], "+", "q"}]}], ";", RowBox[{"MatrixForm", "[", "ric", "]"}]}]}], "Input", CellChangeTimes->{{3.7171788964540787`*^9, 3.7171789008709507`*^9}}, CellLabel->"In[84]:=",ExpressionUUID->"d092d732-dee0-474b-a760-f9e210498dce"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"Q", "-", FractionBox[ SuperscriptBox["s12", "2"], "R"], "-", RowBox[{"2", " ", "s12", " ", RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}], RowBox[{"s11", "-", FractionBox[ RowBox[{"s12", " ", "s22"}], "R"], "-", RowBox[{"s22", " ", RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}]}, { RowBox[{"s11", "-", FractionBox[ RowBox[{"s12", " ", "s22"}], "R"], "-", RowBox[{"s22", " ", RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}], RowBox[{"Q", "+", RowBox[{"2", " ", "s12"}], "-", FractionBox[ SuperscriptBox["s22", "2"], "R"]}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{ 3.717178904945633*^9, 3.7171797114949417`*^9, {3.717179743112667*^9, 3.717179763265003*^9}, 3.7171810437304497`*^9, 3.7171810880210323`*^9, 3.717212297855709*^9, 3.717224324612315*^9, 3.7172243584685793`*^9, 3.717225057148975*^9, 3.717225114143673*^9, 3.717225383254302*^9, 3.717225718344301*^9, 3.7172260480335493`*^9, 3.7172267137106247`*^9, 3.717226876688633*^9, 3.7172312897284*^9, 3.7172313502033567`*^9, 3.717231421166551*^9, 3.717235035020108*^9, 3.738609753470704*^9, 3.793502842597746*^9, 3.793504047610132*^9, 3.7939048443752413`*^9, 3.823229446844965*^9, 3.843072155705584*^9, 3.843072231140347*^9, { 3.8430722829928017`*^9, 3.843072306647841*^9}, {3.8430724688411093`*^9, 3.843072491738958*^9}, 3.843072618982525*^9, 3.843072684609585*^9, 3.8430729586705303`*^9, {3.8430730632406397`*^9, 3.8430730734153557`*^9}, 3.84307323369453*^9, 3.843073327504671*^9, 3.843073446565875*^9, 3.843074824385214*^9, {3.843074955935761*^9, 3.843074979614167*^9}, 3.8430750216969357`*^9, 3.843075242189353*^9, 3.843075298198147*^9, 3.84309167837354*^9, {3.844256002249179*^9, 3.844256024395368*^9}, 3.844258975993465*^9, 3.844259031981011*^9, 3.845740960808792*^9, 3.845741043594883*^9, 3.845741126389612*^9, 3.848356459014267*^9}, CellLabel-> "Out[85]//MatrixForm=",ExpressionUUID->"d75181be-e185-43da-a79c-\ b8b9d3ec3d53"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"r11", "=", RowBox[{ RowBox[{"ric", "[", RowBox[{"[", RowBox[{"1", ",", "1"}], "]"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"Q", "\[Rule]", "1"}], ",", RowBox[{"R", "\[Rule]", "1"}]}], "}"}]}]}], ";", RowBox[{"r12", "=", RowBox[{ RowBox[{"ric", "[", RowBox[{"[", RowBox[{"1", ",", "2"}], "]"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"Q", "\[Rule]", "1"}], ",", RowBox[{"R", "\[Rule]", "1"}]}], "}"}]}]}], ";", RowBox[{"r22", "=", RowBox[{ RowBox[{"ric", "[", RowBox[{"[", RowBox[{"2", ",", "2"}], "]"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"Q", "\[Rule]", "1"}], ",", RowBox[{"R", "\[Rule]", "1"}]}], "}"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"sol", "=", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"r11", "\[Equal]", "0"}], ",", RowBox[{"r12", "\[Equal]", "0"}], ",", RowBox[{"r22", "\[Equal]", "0"}]}], "}"}], ",", RowBox[{"{", RowBox[{"s12", ",", "s22", ",", "s11"}], "}"}]}], "]"}], "[", RowBox[{"[", "4", "]"}], "]"}]}]}], "Input", CellChangeTimes->{ 3.7172118246547213`*^9, 3.717222533109516*^9, {3.717222575050982*^9, 3.717222650879713*^9}, {3.717222695577505*^9, 3.7172227002313957`*^9}, { 3.717223661534431*^9, 3.7172237021112022`*^9}, {3.7172237334555893`*^9, 3.717223734317487*^9}, {3.738609760781158*^9, 3.73860976364935*^9}}, CellLabel->"In[86]:=",ExpressionUUID->"d1ba565f-25de-46fa-a69d-fa7793e703ec"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"s12", "\[Rule]", RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "+", SqrtBox[ RowBox[{"1", "+", SuperscriptBox[ RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]]}]}], ",", RowBox[{"s22", "\[Rule]", SqrtBox[ RowBox[{"1", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", SuperscriptBox[ RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]]}]}]]}], ",", RowBox[{"s11", "\[Rule]", RowBox[{ SqrtBox[ RowBox[{"1", "+", SuperscriptBox[ RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]], " ", SqrtBox[ RowBox[{"1", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", SuperscriptBox[ RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]]}]}]]}]}]}], "}"}]], "Output", CellChangeTimes->{ 3.717222533739141*^9, 3.717222578334928*^9, {3.717222612696575*^9, 3.717222651422372*^9}, 3.717222700694817*^9, 3.71722370369394*^9, { 3.717223734829414*^9, 3.717223742857461*^9}, 3.717224324728549*^9, 3.717224358566234*^9, 3.7172250572667007`*^9, 3.717225114260357*^9, 3.717225383372221*^9, 3.717225718478265*^9, 3.717226048167101*^9, 3.717226713832931*^9, 3.717226876821093*^9, 3.717231289936194*^9, 3.717231350337583*^9, 3.717231421253091*^9, 3.717235035102578*^9, { 3.738609753582808*^9, 3.7386097673886833`*^9}, 3.79350284263556*^9, 3.793504047647773*^9, 3.7939048444220943`*^9, 3.823229446891245*^9, 3.84307215584207*^9, 3.843072231197795*^9, {3.843072283045177*^9, 3.843072306691966*^9}, {3.843072468884885*^9, 3.8430724917833633`*^9}, 3.843072619026558*^9, 3.843072684653574*^9, 3.843072958715819*^9, { 3.843073063302291*^9, 3.843073073460338*^9}, 3.8430732337516413`*^9, 3.843073327562373*^9, 3.84307344661652*^9, 3.843074824432025*^9, { 3.84307495598022*^9, 3.843074979658399*^9}, 3.843075021742477*^9, 3.843075242233839*^9, 3.843075298243688*^9, 3.843091678455516*^9, { 3.844256002348485*^9, 3.844256024439721*^9}, 3.8442589760365543`*^9, 3.844259032026046*^9, 3.845740960912147*^9, 3.8457410436384583`*^9, 3.845741126434987*^9, 3.848356459074801*^9}, CellLabel->"Out[87]=",ExpressionUUID->"312ce645-ceef-44b3-8a66-1e5ed71c6300"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"{", RowBox[{"\[Kappa]1a", ",", "\[Kappa]2a"}], "}"}], "=", RowBox[{ RowBox[{"{", RowBox[{"s12", ",", "s22"}], "}"}], "/.", "sol"}]}]], "Input", CellChangeTimes->{{3.717179288001001*^9, 3.717179317705001*^9}, { 3.717179348845187*^9, 3.7171794626422567`*^9}, {3.7172118530466127`*^9, 3.717211888197872*^9}, {3.717222664377265*^9, 3.717222702407914*^9}, 3.717223739607169*^9}, CellLabel->"In[88]:=",ExpressionUUID->"2fcb23c4-2498-46fe-ab81-b6f2873be3eb"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "+", SqrtBox[ RowBox[{"1", "+", SuperscriptBox[ RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]]}], ",", SqrtBox[ RowBox[{"1", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", SuperscriptBox[ RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]]}]}]]}], "}"}]], "Output", CellChangeTimes->{{3.717179301572695*^9, 3.71717931845965*^9}, { 3.717179355949151*^9, 3.7171793739424887`*^9}, {3.7171794075572243`*^9, 3.717179432848517*^9}, 3.717179463744042*^9, 3.71717971185148*^9, { 3.71717974348453*^9, 3.717179763748829*^9}, 3.717181044099288*^9, 3.717181088384487*^9, {3.717211837950832*^9, 3.717211889692996*^9}, 3.7172122981421947`*^9, {3.7172226748294086`*^9, 3.717222709831543*^9}, { 3.717223740123571*^9, 3.7172237445160847`*^9}, 3.717224324845587*^9, 3.717224358667638*^9, 3.717225057383956*^9, 3.7172251143933687`*^9, 3.7172253834885273`*^9, 3.717225718627243*^9, 3.717226048299127*^9, 3.7172267139495583`*^9, 3.717226876954525*^9, 3.717231290158572*^9, 3.717231350470663*^9, 3.717231421316781*^9, 3.71723503520306*^9, 3.7386097537023478`*^9, 3.793502842642775*^9, 3.793504047654912*^9, 3.793904844427849*^9, 3.8232294468964443`*^9, 3.8430721558494587`*^9, 3.843072231203025*^9, {3.843072283050437*^9, 3.843072306697198*^9}, { 3.843072468890213*^9, 3.8430724917886753`*^9}, 3.843072619031843*^9, 3.8430726846591043`*^9, 3.843072958720916*^9, {3.843073063324608*^9, 3.843073073465925*^9}, 3.843073233756975*^9, 3.8430733275838327`*^9, 3.843073446622052*^9, 3.8430748244379387`*^9, {3.843074955985837*^9, 3.84307497966387*^9}, 3.843075021747967*^9, 3.843075242239657*^9, 3.843075298249509*^9, 3.84309167846209*^9, {3.844256002354466*^9, 3.844256024445046*^9}, 3.8442589760414667`*^9, 3.8442590320313253`*^9, 3.845740960918192*^9, 3.845741043643639*^9, 3.8457411264409637`*^9, 3.848356459081172*^9}, CellLabel->"Out[88]=",ExpressionUUID->"d021578f-73d0-4ba2-b1d1-7446d8b624e0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Grid", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Kappa]1a", ",", "\[Kappa]2a"}], "}"}], ",", RowBox[{"{", RowBox[{"\[Theta]", ",", "0", ",", "\[Pi]"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "2.5"}], "}"}]}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{"None", ",", RowBox[{"{", RowBox[{ RowBox[{ SqrtBox["2"], "+", "1"}], ",", RowBox[{ SqrtBox["2"], "-", "1"}]}], "}"}]}], "}"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Kappa]1a", "/.", RowBox[{"\[Theta]", "\[Rule]", RowBox[{"\[Theta]0", "[", "t", "]"}]}]}], ",", RowBox[{"\[Kappa]2a", "/.", RowBox[{"\[Theta]", "\[Rule]", RowBox[{"\[Theta]0", "[", "t", "]"}]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]"}], "}"}]}], "]"}]}], "}"}], "}"}], ",", RowBox[{"Spacings", "\[Rule]", "4"}]}], "]"}]], "Input", CellChangeTimes->{{3.717178962481121*^9, 3.717179085416415*^9}, 3.717179467747013*^9, {3.717211893638874*^9, 3.717211896710474*^9}, { 3.7172119636711082`*^9, 3.717211970933936*^9}, {3.71722448833496*^9, 3.71722453085445*^9}, 3.717224629139132*^9, {3.84574099745689*^9, 3.845741016130295*^9}, {3.845741067244699*^9, 3.845741101342758*^9}}, CellLabel->"In[89]:=",ExpressionUUID->"2688b364-c339-4045-9531-9610abd9cafd"], Cell[BoxData[ TagBox[GridBox[{ { GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV1Hk0lVsbAHDOq3Peo3Q1UHJDpGSohJBTz5OEUqGimyGiQbopQ8YTKTIm pIGMDUiZihAXiS6SS6l4j2SIosFQyZhvf3/stddvrb3WM+xn72UOJ3cfZgkJ CX0n6/87VSHa2KPlumnT4FS8zzkGFPvL9WQum0KB+bSKL/FE3ppDbbF2MJT0 o8uPOH8UXs/LOQpNUj2l/sS9C53GHsWehGLdupJzxJFStWI5pe5wOzVDEEKc rmSTIpTjBXJyAcuiiCu1h9buSfUDw2KziCvEjGFQ1Z3YAHh2balU8v/jKc9R 5lcFQof0x/oM4pB1b9zulJ4Hq6ac1AfECzekljYWBMPtk54J5cRpm51FxrJD 4H43FD8nXr1Nc+eyjDAYQ7GJNuJSs99XtqdGwP2mTrt+4td2sSuTYi9BUPDt a7PPk3o0Vuv01ETDM9mEYzLEXtqX272qYiDzdardOmIRsFVMK70MX/y/FdkS 1+tX1WkVx4GcDW/JaeIYw5Uu9QVX4LrS3dSLxDK7hh99z74G3o6DUlXEH8wt rUOzrkPQ2uY5HcT3LEpn/syIh/lZ3QqTxDq2wcaGqTcgyz6jXCeIgd1/SzHX Y1OgErdmPCGeowMVV41S4VT02rI+4qES13ldNakwVX3655xgBh7986bwdFUa zDm54rUN8Zaa1N/JpbdAbvrNNtELDKwwemXWr3sb1jkantMhFq2bdUuj+DY4 RW99f5S4qcHZqLbgDpzNnMepJ7Zt0Ywezs6A5V0VcxNDGEDLo916qpmwwyTi 71fEy1vjNS9kZcLQbKXB2aEMDAh+ty7JuAvhTeMOZ4m9emqXGaTeg8SDbLZX GOnPiM3Dq7G5wJ+bpH8jgoGLEgm8SrE8sM9XX/eZ+GV+sKzW7jzS53xfXiQD 1gM2vTKCPEjfnyPZQ+xiPdt15Es+PPKw5mMUA3EbnULjxQtgiYeaGC+Ggba2 PcfnWhTAmM/yy2nEMp6w63x8AXz7b7E7HctARo7kwhPyhZD5yXAzQ/xYtiYF NR9Bgkfv4qg4Bt4Lyxd93FcMF1Ye/Xf9dVJfsliCTWIx6WvjaD6x04ZxfnNn MTAKIYGr4xkYcWvSLz1WApJrjO+qJJD5+ODfGOX3mOSfZbA+kQHlZ4JerZQy cDr+T2VkKgN6NdtF9d0rQSZOIhyyGBBvSf9P+3IljP3hsFFA/KGbdUXtYSVM HfSS977HQJRQqazU90q4etPxXOF9Brr1VLSG3J5A5H7ZxE25DIQ+mG2f7FYF Owpzd4UXMPAmpaFwwrUaGiqmPOlKMl85Sn5DMdXg0Tgvvp747D9B2JdfDVG8 sKGLTxhYJeA9bx6uhuQqWVz8lAG+ZHZnpmsNjJ7zPaz3jAGFixdn73N9BiPz 6L7SBgZO+e46+PBULfCeLn+QzjCw3YWXSUfXwlC9ulqEgJx3UB60za2FsYdv Xp9qJ/lsY5+hv9WCWY5PHnQwsFGq/Lrt8TqY8lp16XMXmb9itSbOkXqIXDY+ n9/PwJ2fc8DGugGYohsGgeMM+PdPBOf7NsDvVUVlERMM/PXuUwM7oQH2uu85 em2SvIeaaqv81gZYG1i898E0A25xfE+25QvIW9AbNyosANT4kp1n1ghxioNN xaICOFF8OIql0AQjddruiksF5H8wlxPWbIKbZ9X5p2QEMNTGezBj0AR8XtiP MlkBeEwueDN1pAnmPDfRtJIXgO+mqqW/spqAfj05emelAC5Uy2R/XtcMzLae ynPrBJDa9PZ5i/5LcBZoaO7ZJoCWT9u4GQ4tsL5u/uABPwEMxittPe/WAod6 zf0/8wUgasIJtDvXAkemxm18/Em+2dVji262AF8lnBsfKIB7rvAptKsFih2Z FZ9CBHBuQvNfZ/vX8FLD/X5NnADWzJELXn3gDUSiyJOAXAGErxkVerS/Fe47 65TMfCL5em1T6XNuhYZm5wrRzwI4VpFoIclvBc+khkOLvgrA2HRLlmdyKyiJ F0ZpDQuAczJ6j3ZPK/B3b3cOHhdAUI5yevHfbZAVKHvDXbQd/NXsTEoDGLBs 8qqLVGsHV5XaK5V32uG+yYHUeu92mHA8nvPOpRPMLNp5vXLvwOEfS7PoI93w oTImOPDtO3AcbqmsDP0ALhmqWX2lHRC5tuhk+oU+MBx4azYr7z2wKou0g3w/ gdlH9qZjdp0wT9mk8f31ARhSX9oWOqsLjFP0bw3FfoE+jliPdkEXLBpsMAwo +gajh0S+iIZ1Q8K/j4WpY0OgI+aXMODeA7ylm2fkDg3D3kLXhlVOH0ClU/zD GY8R+Hwva/plVC9kZ853KnT7DttX/hp7UdEH/A7bVyoXfgDr5tndM6qfwJWn Y5Ic9xNuVusJjhf3w0SKgcPn6FFw/MtGZr/JZ2g6lWDvdfMXJJ89296k+BV0 jeR/v0sbg/pe563N1CDUbdXNxMRx6LgulLaAPwR38uN1u+9NwAa9JxvkE4dB QkHV+cDdSbDpHfohUzQCL4Xpc1JlU2Bs7Hdr1a/vUEi7pzfVTYO9HM2Y8n6C qoS4s0PNb5hO8ihsdhuFwajRhRpvZqCje6vW6dpfoBASsuaksxBa+YW6y3HH odtKwOh/FMLydnuJE/oTYNz7arzQRRjzXEsTdWMnwdvtsJPkV2GMs5y27K+e gl2PbmyX9GShECPF38j5Dd+mnPnUKAslb/xnvkppBtLeBha4uFN4SbtBcWSJ EE44bbT3maRwICopMui2EC6djrF29RVBal1Pb4W0MPYZRdTTIrNQUsG891eM MD5d0QAyEbPQ33C8lJoQRmc6XWQZl43ZczjTaaYsfM4KvbhlNhv931osmjJj oer0MckjYmwsiXxvabGbhYPDakr35rHR3WrKYJYFCz0EhSZaS9jocKKx1cqK hWdyamK3qbDxwdqGx+2HWBi9t1fObScbc6eHd27wYWFR6vKNT2PY+GeIAexN YeHyGQO/J5fZKBe2RsMxlZy3PVxScYWNi7YstndNY6HTknStsng23j/jdiji FguXxK1cXZjGRinkLXyUwUJ+iLJsRj4br1nP/OrNZaG+y1rhiGY2xireWpBb wcKcBjMIe8VGUQmfkduVLJRWcT0T8pqN0WPf2QlPWPjjY/74+TY2ppi6NwU+ ZeGdgxoj/C427hRq7Tb6l4W0xfoel2E23pQ6O5jdyMJGPV7N7nkcxETuTGc7 C8OLT08aLuCgvWznHyXvWGiklauuJ8FBMx8r6+gOFlaulk9WkOLgdEZvGq+T hQ+X0V4/5Dj4TZ7zOaKHhdc5LUpX13JwSGSL9awBFjq+Oh7ZZspB37drVjiS e5czu1P1wpyD24KbHeV/sbC9oWPsyR4OisZdaesktnxmfjhrHwfLx3VPWI+z 0LhEe5OfHQfjD3xZZzTFwtUp1NCfJzko88fvlePCFI4539hjH8VBbxvNjc/m kDnyvcUJiOZg/0jSSV8xCleE3ytNiuXgiOSaArW5FFrcLVUQXOVgqvdp95g/ KHzwUfDdIoWDju8ta3fOp/DvQ3/GmeRxcLnTQEn8Igo7bZNa1r/k4LUb3PX+ yyj0OnEn1KKFgzr3fEMWylM490w2z+MNB1UPF3y6S7wx8Z/b+QwHmy02Ms0K FCYw7zxUeziYXv7cS3IFhXv3yUjI/+Bg/fHjUW7KFNaapViISdL4au106el1 FDpX95ZzFtMovrWkt5dYTEdVibWERrPOJJ6FBoW7ZUsmRpfS+MimwFVdk0LB 15cpnYo0buj/8Ou9FoXfwtkDD7VojOkXOy6hS2H07x17crRp9Ffc6eBNrOF2 uSxTl8aQHWIXGGLv/XKXkjbS6GLTvztxA4UspQ2aIVtpNFEVEZbkUShRc8Lf yoLGL/4Z6V2bKCzWKfi4dx+Nwm6XDmoDhVb3J8xM99NoOnzYOJI4+XKIgoEt jT09ZfEaSKGSQ1qt2mEaa51UtntvppA30zJf+DSNXgsWCdq2UNjhJs2f9KRR lL3MXN6AwsC+g70/vUk8u8SRY8TPXnwrGuCTfnysLxolNk2kbVuCaBzV3Lqd bUihgy4vIyOOxquTPWHTRhQe+/riZ/tVGsd2BYWAMYWn0uwM5sfTaN9a5XeW OIB7voufRGN42ITRDHFiW5307nQadQL8XIa2UXjrorVzSCaN+EhDTnk7hVmb vxaXZdFIeeysdSAuuStuuTKXxvyksMkm4jc++6KnimjkXXb6mmpC4Tu1/g71 xzSqUqfMXxJ/6PJVO1pG44vg2/dYOyj8vi25vrmSxuQJvr49sfiSXpGMOhpP Wu0Yn7uTwkWNnnvan9PooP7nXB1imXP0zXmNNPZ1fVlsT6w2oAL8lzQGLD8j nk28/bGbj7mARoPCNxc27KLQ3EWk9sI7Gm/9WmViTfyX/FXJsvc0SkpYzfIj Phpe8nDFBxot92y2LiJ22WTCsumj0XNmaPQVsedIu1nMJxotklxCB4mDrIS+ TX6hUWjNs0gFUwoj5sby1AdpPF4YP6NHHFulEHFkmMaXu1c77SFOUzZSav5J 49uDl5YEEGd2tHqyx2i0OmF56DJxXqxzjd4EjelPX91KJy6fuOiQ/pvcz7eP VD1xTY5svkCIi+OOvssZ4gaH/Blxiot5Rx5v6Cdukdyyy3AWFw9IpRv+IhbU tyT6cbj4rELPWMSMwm7/I5/zuFy8XO4D4sQD68Z0+2Zz8a8bB1SliYf7wkKl 53IxeurTXEXisQTpt2biXEy6u+ijGvHMrmzFC/O52BDeX6BFzKbAo3QhF83v 2nrziMWKmqqGJLlouMZdXZ944XGHeSukuJh7dFWnIbG07A87a2kuepcHBG0n ln8VnBO9lIunK0/L7CRWDlk0XSPLRXvp2Tm7iNX17ppMLuNiRxJomBL/D7Da 828= "]]}, Annotation[#, "Charting`Private`Tag$47658#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV1HlUjdsbB/A6L+e8R/iJikqDSjcNQkWj52kg1UWDJEqJBrmaUPdySKK6 yG3SbaBBGuSW0khKTqMkaR6NFUIDnebht/3xrnd91tpr7ee79nfvdU6els4M Pj6+n+T79aeeLmn4qOG9PcVSPfbmHR6s/1KmIxm5FypSt+T/8nSO6rHOCAfo eaG0OJo4dxxaBbNd4ewrqeu/3C/kNlkY4Qmq3OUm/xJfF61dll1yCmKeTOrE EKcp2CXyZfuB7ZveY7HE5dtGNlklnQOJPWUVccRdOy9zUyP8IVor7sCtX/sp LlXkcAPgUqu3bAJx8JY2n9SSQEi23yGXRCyknVTSkH8FuELCh+4QJ+u7L5rM CoYCo/c1d4k3mqjvXpf+N9hsz3RPJy4xn79pmnQNQm29DDOJWx0ifrsd8Q8c 8+NF5/zKo7ZR82NVGEz8XiCYT+y3LbLHjxsO819OcYuIF4H9+uSSSEg6OVz1 lLjOgPtcozgKvByy1lQSh+/8zaMu/yaIqf6RXEssuWe08GfWv1DxYmhfE3Gf xf5DIZkxoN2T599OfN+6ZGFteiz4W3De9RBr2l/ZtTMpHiq3ixl9Jrb8Q7Qr JiIRYjiJkfwpPFiqCU+jjZMgsivKgyYeeeQt+L4qCaZmI/3/R1xY2lZwhpsM oUZ5hpLEhlVJ8wklKVDjEL5vO7G8cbP5F627ULlp5O1O4iXPF6eoFd8Fk8+O yXuJG+vdjWvzU+FZMqf6CLF9i3rYaFY69H0uiw0hxv2uH3SUM8DAtaE1gliu I1Y9KDMD2LlTxreJB7vnO8TS74GC1L2Gh8R+H2vXGSXdh1fakc7viMN/2OVF RzwADb3Bxzvu8iBUOE63fFkOSBevD9hH3JR7RUrDMgcKv4kEHyU+NGjXL9md Ay1PZS0vEXscEvD+8S0Xars29HOJo/TcQmJX5IP5Pkl+81QedHZanVhunQ+5 FW8qnIglfWFPYGw+SOy+UH2GOD1bROikTAHo2Llcu0X8WKoqEdUL4a7lRqHv xG/5ZYo+2RSD3pSdXFwayZewLM7uVjFcLwwYyCF2057ivH5XDH6FxZ9riH/4 NBqUHH8EjoknssaJF/VdaLhx7jHIy5lq2qTzQLG6u18j8Qn8uL/FRi6DBzpV pksMTpWDR99M69A9HqxoSXu1LbIcSpuu3BTIJP34wLipklcOljWHQxWIb/CV SIn+LAcZw2XyR4k/6ChpjPg8g//u1c10EYc8FHBM8OHCrICFbut9HrQl1hdM e1fCZ1FX1bEs0q9shXMj4ZXweMMHvjXZPLhYehkHciuBm7RVQJd4Q7fui9ej xAL+dZeJOSJZ7zK8q2CDj8jYmgc8kA0NFbDxrgaGXemEWQ4PvM7uOZLnVQv7 Hrv39zzkgamHbgYdVgvO//uPYuWR9U6Kw/YPauF9sJrtZuI2E+Z5eqgWvqUq ZgYR64mWxdifeA4X/az61PJJ/4pVGlkudZD58kxZTAEPUnlLwe5QPXQbpW25 XsyDC1+mr+SerQfh9idGpcQHej/XM+PqQVaz9cYQ8dKqyoO5HfUQVCL3wuIR D3yiOL7M/S/h/P3RPrHHpK9q37JyzBvg7fDonaISHpwsdr7BkG2E8yMcP/Gn v94HC2l+9UZY0jd88ADxSKfuwwWjRmjhmATcJD49s6pt1qURBqNbo1eU8+Ds dq7ERGYjZHvuH2A/40FQpWTW1y2vYfeooRS7ggdJje0vWgyawN9UWU+7hgct n03Y6U4t4NkSc/J4Iw+GYxV2BPq0QPy3M3IPiZeYsQIcLrWQ+/V29QwxZlVO rr7TAm2DF/NDX5Pz84bPIe9bgGu7uLqgiQeXptVr3B1boZC6aynYygPVpdJX Nh5uA5sxrQPjnTy4qjrOV2jbAWMmfA5n+8i8fiZKA+4dMO8gM9RJfPzpLWsR TgeI5XFqtPp5sGuvYaZvQgeorxW2nSZmeYZZbfvYAfpPT09d+MSDy9mKacV/ dIK86Urd6EFyHioOZiX+XfDqmor63AgPvJVqb5an9sCFMPTKmSfv9dET2b0e 72DE2zVORWIcnEr3m4e5fAANpjxv7fZxODraUl4e0gfZAs5rlriOw/VNRZ5p QQNQ/e+lIN+IcWCUF227fPYz+DabsvS54yCoaNbwNmYQMiU1Wg/NjsOuRIOU kYhv4LkuzLJDcwJWD9fv9C8aggKXky5FARMQV/OYnzo+AtcPR52Ufj0BuhL6 C9LHRqGUM5KYKDMJSu9W9J0//QPO6M7dCAmchKyMlW4FPj9BdGe+osnAJHDe 2DcrBY2BeIrrxI2DU+Ctq2mWEMWDsPzkPvm2KZhONHL6GjYOa32H9bkW09Do Fefod2cC7DN9Lf3eTYOWscx8b/IkiF5of7H75Aw836GVgbem4OLI25lnczOQ mhur9eH+NGzWF7IOS5oFYVll98P3ZkCvYzJmud4cNPHTl0SfzMJ6sb+Obxqc gwL6VFrj8zl4a5+orRg9D8rCK9ydquZhZc6g1ujWBRi+MS6k1rYA2qNqgRv7 FkA2OFjV050PbWeM+J7p8+GHg91dBp/4sDolfED2Bh/u6m+eKvDgx2/GWhsC 3/Dhnz7ObiLf+fHfE5tik+X5cU9hvKmILwM19EQPKHvz49CsO4caZ6BvSf+5 Hw/5Mbk9IN/jFIWiTMOAi8P8OO2m5/jXDIVSE09rzigzUGIu/JD32UVY/zxb Ot2RgQPG1+roRYtRd9JCtS2SgRXy9SB5bTGeUk1u9ChnoDudtmgdm4lRG/JP NfUx8AUjJNRQgImBNjZzx/oZqDx3XMRlGROXmAytnyAeHlVRuC/IRIvnzVZi nxh4urvATEOMiR3KV9bZfWHg+eyqCBMlJr7/2cl5+Z2BYfv6pX12M1Fsb/yE C8lRlCSnVxHOxK8j+pqnmBTKLRidexbJRMc/xOX7icPsnR89vclE5pKk0v0s Ct3E0jSexJL5wiO/aNIUikX9trEgmYmhGKg+xaaQE6wolZ7LRKsX4eHHl1Fo 4LGJ/9prJr6S/aDPFqIwu94c/m5mokOzxUEvYnEl7/PBrSRfWal4O/HYp9yp wE4mBnPPxKYIU5h6RO0H5z0T/aba/TVXU0hbb/3oMcrE5c78YxZiFDbo6FZZ CrJwh1OjjaE0hVeLz8zsXMVCfRGZotvExhoPNusIs1Dz0XbuBHH5RpkEWVEW Xqyv6c5cR2HeOtpvTJqFXPkU8WWyFMawWhSiN7Fwbldv3bP1FB5tPnG9cy8L fTz1XnxVpFDaPJX70oKFMS6Lb+koUdhT/2bymRULT9auWXONeH+1hXOmDQv7 +Fet3KBM4a5H27afc2ChfNHQ0iMqFG5MpEbWerIw5eFa8WeqFE66x1s53mCh UD5fgL46hf+cTWH5h7FwOGhP+HVi+av3S25HsFDKyFmvndj6XolsdzSZz6bX 7YQGhQ8/df+0TmSh+vqQpf9spfCPY2ujzHLIekf7wApNCt/Z327Z2sTC+Lpe ofe6FPqdTA2xbiH7i/dFS+lRuPx8lu7pNhYaqOjl2xPr3Sq9m9vFQrPfu8o7 iOO6ek8rf2Rhcv2xdXXbKdxnIyksM8bCAN7wbCxSWGueaL1MhMaA5mx6yJBC 98r+MtYaGpd7DcevNaJwmaayAkOMRsUEtXZTYkupR9PjEjSuVizbkUbc/b0p 8d16Gut3JTNsd1A4dJU5mKdBo018+1TWTtK/+d+tsrfRuMbl4NJ2YjWfyCcZ WjQmRZZXLxD/aSv9z209GtVvq6qZG1PIUNBWD95Bo8n8scFvxMJVJy8ctKax d1Nio7AJhcWa+Z/22dD4t99FRy3ig/9Nm++1pfGE2IYYO+KEyGBZI3syD1U3 n0ys4JRcq+JMY6i65D0FUwp1F1pW8p+hkUM/8VpvRuEbH3HOjC+NtgcOcgyJ AwaO9PP+pBEkMlSPEFe/HCoa5ND4Nf730Hjivbdo+5bLNLLdo+SW/k6hk5Zu enoUjTFxi7g9xMe/v+T1RNO4OOfY2klir2QHo5WxNF5pTaBX7abQnx34nnOb xg2a8dHGxLc6n4tbppF5BK+F3CdOCT3kHpxB4+NNEd4VxJn634ufZNI41uT6 rYv40b0V+397QONNi7/+pfdQ2PaXTdhsEY01XoIVh4l7Vb682fyYxul8N+1T xH3vz6q4PqHR4NJlw2DinyYJda/LaUzYslggm3iFWP+i9Oc0jqcs9RwnXt3g a9XzgkbzsuOnWXsplLxE3xFsoFFo+pLAGmKVQSXgNNGoLTowtI3Y9LHPXxbd NFYq77/qQ2zhsag2qJdGQ/tzEheJD8hEizx5S+PHDmuDUGLXq4/y5Pto9Cj9 TT+N2GO7GcNugMbvJRLiD4l9f/SYh3/+lb86qJT48kG+oZlvNOp/V1rVTHxt eYTu5mEaE2c/qfUSR3Blr7mM0hgluG9ggDhZ0VjhNY9GK2ltvinijDcdvsxJ Gp+vynPlN6cwJ8K9Smea9Jmvy5FNXDYd6pQ2T2P1jCq9hrgqWyq3m4+N97ce LpQkrnfKXVhBsfH1M81xOeIWEcM9Oxez8T+DpzWKxN11LbfOsdg4cmxUcRPx hwsuX3PYbAztapDSIB7cMqk1IMDGokM2aVrEowN/h4gvZ2Nv2tUyPeLJOPF2 8xVszLro5qZPvLAna33QSjaK5I+kGBEzKThdIsTGHStlvY2JlxU1ckdE2HjH Z+GVCbHQCSdBeVE2djy8Um5GLC415nBInI0NhQUGu4llmq9kh0mwMdPtn/17 iBWDV89VSbGxsXjl7C9v1rlnNrOOjR9vg9pe4v8DIUP5KQ== "]]}, Annotation[#, "Charting`Private`Tag$47658#2"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines-> NCache[{None, {1 + 2^Rational[1, 2], -1 + 2^Rational[1, 2]}}, { None, {2.414213562373095, 0.41421356237309515`}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0., 3.1415925894756573`}, {0, 2.5}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}], GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwd1nc8Vf8fB3DuLQ3r3nuayoiikKRo4f2xyooSKqFSGRXRFKJsRUl9hTJD EpEoeyXJCpn3XiM72Xul3+f8/rn38Xyccz7jfF6f9+dssbhmcInCwcGhgH/I /3BXC67dF52V944sht51Z8JVpVu2M8J+cOqZVhjpnwvWz0eFQ6H6eEMEaYFn 9RVDaq/g9prSaNIWkoj6xyoSzB92x5GmLDj9mHSJAkcd5wTS9R1GgpMa0bDd 7O470vGlslcm+GJgr8jv96Qdk7izxptigMelIY20dlAv13jUa2hr1/pMerNj keGYTSz4qxnkkh42exUzKhcHEVILRaQL1e6MjizEATP6eBnpoB0GyiMl8eCr dOEH6Yv8O/2HA95As6hyE2mFqRXMIeMEiKCOtZNeweqUGBJ+C8dEHv0m3VyY d2uw/y2s09k8SToxPuTLnw+JMNyT/o+0i/8N+h+nd1DWfonHCVvvut7ZAbUk mM1FAqRFTu1I/s2TDIb/ndxBelxp2UJ/QzJor807QDp4VXZwn1UKLKUWmZNO v6N9/caGVFBf53eD9KuBfRsnXFLBPGPEj7SX2bbC67+wd3HHkLarYViNa3yA TwVjOaRPqnHwXU/8AKZK2U2k0aeh9DG+NNATdpkizXhVRhlrSgP/Cd19ztgL fJ/e2it+hExmwBnS3Q9eHxuN+ghXN0u7k66aDJy5tjwdrh9RfUf6k5VrxIhN OjT6/2kkHcm8onGtOh0kK9WWu2D7Hj09OCyXAQk3rRRIm+zZe3B4IQNcaN7R pNXit/yyPfcJOHblsUhLb+T3HSr5BJ08+zfew15a+t0wGPAZRlMdI0j3OTS5 XB3/DG1dbr2ka7pLxAaNMyEi56icK3Z0eaTDH+EsSIr41kB6MiRDst0/C9RN DOTdsA9bVXTVzWWBqP1MKOlB6oxR9s9sKF6vf+M+NtTx8L9HOdBpdqGfdFCU aFl0cg5UmhpdeIC9X0nvoJ9PLpQWRF1xx37EfXHCZTIXTJIuzJFua7mbZH8+ D4zPNAV4YHvejhM6dSgfogbfV3hiN6nnNOkk5MOipuctL2xJojYQ1hZAoMuQ uDc5n5RFisRIAQzK2kT7kOsDq8x5ZQphv8bUZV/sQ+LPD/pcLIRxrZVKftiP J99OONUWAkdv0cJD7EzW3prJFUUwfG2g/xH2r+KCJDvlIjAuCm/3x977tOGS xbsioEikDzzGNnc8p8r+VQTqkdH/nmD7nP0jZLyhGITqZISfYjN3cjZreRWD yEtNt2fYbuXS2rvPfgH/3rCKEOyED5/F3/33BbS3RyqFYdeFqFK3VX4B809R uS+xt1qdyt1woAR0E9o7I8j9oNcVEnStBDqYRQ+jsO/I293iiS8BC5k/KAa7 nOopw0F8hU+11i1x5PoN8HE7aX2F3MXLuW+wBetC+ybcvsLiEH/KW2z7qJSo vsGvsJLyriQZe50Si/GjtBSCfdRyPpF532o5ovm3FBTGHbZlYdtwj1UU7/kG swp7YnKwc1u4vD5FfYNAmcX6QrJe3ZabCXcqA46AGslKbH+zvJ/rP5TBdpWM vT+wM9Q1U5/2lcGAqI1hHfZKwtzGy/A7iKycbGzGfp/ix7oqUw4y1IbJXuwB xoC/9vlycFpIdxzAlritrbz9eTnU675lDGNHKXJHd82Vg3TLiYdTZN6++1ua fK2Ax5y+z5Z7MKFaemj9/tkKsLZg1a3C5g48+n2tVCWUVV+S4sP2NOaTrg2s BJe6kh3rsW93PRk7YloFdX/OWElipx0ejdn2pAryp9e67MIeeXvMkFpcBcp+ Nsl7sa3t6Z/zJaqBqzXKCrBN/ga5yE9Ug0Ve/2Fj7EjuCg+6Rg04SlM3PsRW VnI2vW9eA51WjjJPsdl2UvIjd2rA1ZJmHYK9oe5Rb2ViDTitT9V6g/00RFfL l1YL/tuEGkqxZcsXt8zsqAXPdprAD3J+C0nzl9RqISnomE8T9uqzvElqt2vB d00nux/bY1s13z9WLRz8/MaD15MJoidd+2ynakFWylRgPXahr0whm68OPjVW tYpgL/557JCtUgevfu4Z2ot9K02//tabOggJs1A+i20FtaGD13/C8GSmbB42 R8x0NuvRT7j440rYd+yQZZvZ5bE/Yfrjtf2N2GXfLYXeNv6EBP0WYhR7u+Fi zKWD9bDawem0uBfu/9OWEsMT9dBvNXZ7L/apjUd61K7Wg9PptCpVbN+2pxKi EfVwsCx2xznsfmuJpDbOBuhMvpMcjn2/QreqSqABcmds3iRjb5C5Ppy7pwGi Frrb87A1J3JlX15qgLSUbfzt2G/vGWSc/N4AscOTd7d6M+Fy0L38msBG6P0W KpiLTZmKaS94iy1sdKIGO+xkGUdKcSNsEOyp68Yu30yoBUw2gv2ae2l8PkyQ epPwTetUE6SVvFlpiT2Y87OmWLgZ9OgKeWK+OF9Cc2Mf9jdDokHHH0XszQ+E iOjjzaC+rNzeGFv3sI2Rm0czrC6Ivv8QO7lmqeVQXzNsfnfhxzS2Xc+OrvT3 LTC+wa+nw48JHeYtK4u+t0Bi7Zf7lIdMONHsK1PV3QKdSV5Pt2Lvr+i72yOA cxAsvuEyNvVDHG0dHhfz4XTLPHaIyxblO2dZMLk8Rn6vP75vuuaChxMLcveG pZth37t23+/JfywoDZ/O8cG2sGivf1PBghjiu3UrtrRm+JXmfWzQvfbJ7EkA E4qIjaEHaK1w+7ZzLd8TXB8DyvI1pFrhmI2onQp2PJdj9/HDrZB26O2bm9j+ c427Lru0wqT8h2k2tnH789Kw/lbgQ86SGYF4vyfSJhcK24DHKnOzVxATTLcW blzJbgPt/CNSxdg/wq/Bmpk2QJOswX/Y6YHVD6V3tgOfWOPje89wfb3tv8Us tB3SLtXefvAcz2+Lp0T7/g7w/0kXTQ7GeVR8ustVowPy5yk7x7C9T0XsEzTo gOC7Pv3yL/D6B2YeOXOlA5Z9PXm7CHt+adCqKbwD9nda036FMOEP2yjhB+UX mJbuNVd7ib9fZi1S7fh/QXlcEfczbOs19pm8m39BruNj1y7sbp2HZTryv8Cg BbK8X+H9np3f/80KP/8kP6ExnAmVIRI7Cit/wXbZlujwKCY8TN+7+2zLL3gu ePnwPLZmjcqBpZ5fYOIvW3oymgklK0y1FP/9gtkxfrO1Mbj+3g60ydzdCQ9T R/hfvsb5MZx7mxrcCXo3aNW18fh8o1VIRp/rgsmRCd6ZZCZk7RPM0LPrApmd godd3uPxmV+DRecuGBzjzKSk4PMxmTA8+aILGmNox4lUvN+0TO/xVneBqkBt oFoa/t7wGPpx91A3LFMWZHR+wvlMBBMJrW7Q1RpmOn/G+6X2aXe9cTds/+Sw tC6TCaPCCnO7rneDrCyP+fEsJkTkuor2JnRD+YZbOY05TJid4r9lsK4HFqvF f24rYoKYoMW/f2I9UH7cVasRW0893S95dw/YH9BX8i1mQlzQqYiVR3tgQ5hy /OgXJhjsiv6W79EDmsl6uT9L8fyt5QSkxnqg5EjxdHclzi/LsIBa2Qt8maoj akych5e/bB1aekHag/fMVhau7yZ2m9t7eyG2NcWVi433C9PnbjZnH/TnlE// aGVCbHP2Hod9faA6TR2884sJvQ0iCW0xfeDdvm1R8DeuHzWDgVl3+0G64/3L n3P4eyPwLkj49IP4N6G4kXkmZOtzDT9/3g8GR4XSeRfx+fNDWMc+pR8G9/8b 1F9iQlKVwXKJnn6Iv5FPH6KwYLg88+7zY7+h816XtT8PCxy+elpckxiA9O0C nx22sECo+zDX9J4BcBL4EJcjyoIKyqpEFzQA3t5E1IqtLNiGAsb8Tg9AfrVC UZw4C1qy/7sf+2gAsrckTcxLsUAlNT6iZWQAwpJYa7n3sYD+soyplvkHBrM8 7tTpsSA/66FreckfyJaW0Lc4xoIrzbqix2v/QM3P7y6Tx1nwdW2tjfnAH5Dp L+oSNmLB3cCWWcfNg8B05dj67AwLfnkNrHt/fxCWPQgNHLJmwQd7nhMbtIZg ZbCGk4cXCyrDiLvJxkOwONpt+ciHBb0lApGqF4egMifPPtiPBQIbd/y56jYE ZffO/s4IYIFnkYZHUcYQLOlsqhAIZoExw+3jZdFhGMwVVHZ7w4L5j2NE3sIw NDpQcssrWbCmbfaAwaoRKK3fwlb8wQKZlRzn+taNgOImAZ+0WhZcMOVLosuN wKRAyqOERjyeZVLqltYj0Dwe97GggwURRhdv8jeMgOsP0YTwKRZEO18ZkD05 Cu7PXrXvFmWDbOGqWR+zUUhPepcysJUNhcsSlrdfGIW2uKbFeAk2dAR0iwTY j4L/N65NkjvZIBRldvK33yjEUBvzTfazIaxEvyQ6dxRy881trPXZEMS7N4Ih OgZRjd9/6txng6hB3Tub7WOwocfV0cmDDR+C7bMKZcYg9mstZ7I3G2qEk+vt Do1ByPncH4IBbOCTE+euMByDT+2Sn2XC2PDQeIOjhw+2XGUyLYMN7pGLxycH x0CIv/nK0BAbjslmOkhNjEGJc8Rr/zE8vqIbTy3mxsAxsJcqO8WG7M6Bmprl 45CUFqDjsciG8W0t+slC41BWUWJsyt0KFkkZRy2PjUN5R5E5a0crqGTZaTV/ HAfxzLSEbZdxHdeWtOHPHofSksCEY3atwGb2+B4uHAeTq2oq96+3guOiaVl6 5TgEnnuuM+TUCqmgc+RpzzjQ+uUl/z1qBZFSCQ3t9RNwyq5Cc3lKK3D87EC5 ThOQPpeilDHbCp6/86OdHkwAz6tXwZ1/W2EVRzjlgO8EfHIf7F1LbQPGztMl Gf9NwKRR6IPHvG2wzaf2SErqBHh+/iVZJorPkUPFejG9E6BLJT6f12uDZ69f m/oaTAKt2+/l8cQ22JD9IO/w6UlgTq7LPZLaBq9qzgotPzcJwdfYjuqf2iD+ 76aOB7aTMBDuwD5e3AaZJ59fcPadBMWZQ525zDZgc3tdtsufhHV/RmKbedpB /Kalo6HkFLjmffc9ersddh5sPxEpOwVs+rfHSS7tsJfj1K4BhSnIfP9uhO7R Dqr+Wr1ualMQBQX1I0/awTxW2vCd6RTQ/hW8n33bDsH147soT6Ygttc+T7W9 HZbLu/WlTEyBRQGr/KpEB/AszBTPz02BQIjYUy6pDmAU2UdocExD79/Dta9l OkDkqIURi2ca6mYmy/rlO0DxksYXLvFpKFygsl6pd8DN/7gjzU5Ng+Ru94wU iw7onnphzJ03DcoflBueRndAjMqeG61fpqFW49zf6bgOOBtQ/SSlfBpOZYyH nkvsAObW5d9PNE9DvK+/ksrHDqg9cf3Qq4lpCOv48XD/V3zuftAV2Sk5A5/P TIpSBjrghS3ngN6LGSjk9EresO8XaPdcvhfkMAuzx0aB3vELDt8TS1J3nIUT 79enPMPnoOpaNnPadRa+2+Yc3PTnFxzUOLr/jP8sHPENST8w/Qsk43ZNiL2Z BdcFr8fpPJ3AfWnSOoM9C4u2xVmxBzuhsvueYfOROYi3uMz0CsPnZHeglJDQ PLyccZvnuNIFlVLd9aZb56FJWEjC1qELdG7sc30pOQ+REuOObXe6QJPSVrNh 3zxMPlQIrvHE56KI1G3i2Dxc2vFqcTyiC+RNvxaudJ+HNa83R8nVd8Hm+jmj iZ55KD6dJPhetRsGvljcL0tegGNyvHlrZXtA+Gnz5cfpC9Dbee2a9/4eMDTX MzLMWYBwf47mv6gH8mcPSHaULYCpA2rgMOiBoJ30+pmuBTDXGS46ebMHDr0o kJAQWIT7iTfO62T3gP/lzT+8vBehOQlcT+n0ggy9UVDt7F/QPSrnfcW9D1bD 1Hn2xBKYHWfZKxIDcGTIZEbUiAPdurM6xkFzCJqLL3KaSHMiKzfhQwnWo5Dh W2IuMsWJPtz1Mq+RHQfL5bc6qqspyE/meSWPwiRcuO6cwRNGRZaCdoKRwtOw y0qqWvf8MhT2wLb56+wM/GBIc986sBwJRdxUEemdg5z37i+lqVzoDr3TbT54 AZw5JY9VtnKh6N7cs+eO/IXVbCdNu/QVqE1iHaW3dAl64rc8j3RZibxOS3ma UznQ8+0bl2UZrULa/gYhJ15xoMAwy2/nRVajOzJvTF5v4EQmz82qefpWI2+5 T/mH3DnRrHrcXGQ+N1JY/Mr7r4sTueREepQUcaNtw1e/6vZwIg65MN7fJdxI Mo0jKrSXE60QfrJFroIbBZXoFsj+5kTr5hy1Spq4kbocPdVwmBPtSdYN7R/l Ric2HHxzY5YT2a2d3L9bjAfpBTScoPFQUFePqmOxDw8Sm2b0NMlSkGpkdYzk Ix40mKUat1KOgqJOmVQFPeZB7w+4Ou/fQ0HmFQ6iF/7jQW9rmq78J09BzNSo SuprHrSoecha/SAF1TkviWjk86D+r7Tdd9QoqJie/f3bJA/yiXyzeo8RBcUo 7d5UdZ4XPVerG9x0G1/XW+2xcJEXhf0aZCy/Q0GdZ7sGdljzIpr0sOcQtpj7 f9nedrxIeYail3uXgmJL504jZ16kprrK9fg9CorTLw75+JwXpY6VRZt4UlDC +RPrwr7xIuazFScHnlJQstctutVOPlQvwb+P8Y6CBhXN3L1k+dBSQadKFbb0 pPrE6z186Nq3Lek+SRSUaLGmoeMAHxI22lQzn4zbg48hJof5UGCx/3BLKu5/ blRY7ywfaiz0W+XyiYLCbK/KyD/lQy4SFxuOF1GQj9EFHeoUH6puj7tu2IDn q882vTTLh/5ZzbnOYudqGdl9W+BDT9Skhl82UtC40pGnjyj8KP5q1HRHEwWZ iks1ETR+ZPmBnn2BSUFyM+MWW6X4UeqH96a67RTUFuLupHGeH707JxWS1E9B c0ELj95c5Ef+lZLpSr8paE3AzfBV1vxIqDhQuRpb64FlYZUdP5oymI8cGqCg dBttLmMXfhS6fUfktiEKeniQEWT5gh/dKg5qdRqjIHl29FufKn40TztdnjtH QTQZ69mUGn4kYWPZuWcevz83mSPNP/nRb24tr0TsWLGc7u1MftQ3mHg1eAH3 f6VeuLyXH7n2hX63/ktB8y5UHS4OGkpAuXMzHFTUwq1QpLmRhs6ql20qXkFF pXtD+9kCNBT2+Ng6qZVUlG62yO+wmYZCpS7EPsMOTCk2DxWmoYJnB1wurKIi zRP6i7+30ZDejS2iS6upKDPMet8jORo6bKnmLsxHRSE7XiZX6dCQhZ3KlTVr qGhy4nCcx1Ea2iT6issRWz9//NUBfRoSM3KRZmFzndD2jzOgIZnbghuj1lLR LZe5y/dO09DDj9xuW9dTkcGPk9t3WuHnuW6VrhegIp5ba177u9PQyIrTXonC VGQNhWGqnjRUDNwMDhEq+rLqatCsFw0tdT3eY4TtFPHlwUU/Grr5SFdhCfv3 t+vnFANpyP3MZTUdUTx/gVrBwXAaUjA3Kq7dSkVuhQEhOln4ffx56xq0g4oG Wgufz2XTUHT/haEWbOOFicA3uTQUEXlySUSSiqQVTPyohTTUMU9f+R67+Z24 U04pDRn4txR/kaIiuRcFZ6TqaUjezWdt204q6rUdE+IeoSGT2NAdNbup6Pij rZuyRmloxU61qzxyVJSbcHK91TgNKStLmWhiP+vK4/8yRUNPVtTtL8BGpx9y OC/SkES0wqq3e6goTF2sc2AVHd2ordhjK09FRzcZxZVvpaMI8fwXWfvxenTL FJ4RpyPFYD7bfuzu5JWsQQk6Yl7YwbH+ABW5oFwavxQdJb57de4GdtIlMZcT u+noqpEbbcdBKlqdOmbAVqKjOsYxU99DVPRN/THHsDEdNfZ83bJBmYoYfNab 3E7RkfwaBwHANm9SUaCZ0JGM28emS9jTNlNX5MzoaINhfVQatvgT06bbF+hI cO70DS2gIs8Wyff/rtHRi6MdR64iKlKx+3aG7kdHbE11YV9VKppv/n245CEd Fb7dV5iIna7GI3fHH48vlU+sClt84/GVrU/oyLHAbhddDeejhJmeEExHR0+I XQ7Gbt44zIti6ShquXXUf+pUFORJmxuPw+O5vc81HVtnRK477g0dKa1Z3PIT O7/kTjb3OzrS07PM5degothrnFZNH7CXStW8se2/rim0K6Cj84Zx9daHqUhS dt+7LUV0dIazcpcndlfY6eD6YjqipXYbRmIb20dcPVhKRyqav//WYytu2r6R qwqv1/NNdUpHqGilw6Hr4Uw6sqFNZC3XpKLIzRZbK6foaFhL6YC9FhUd3CMl YzFDR7tD/Ho9sOu1JvfNztKR5LD9lRfYK+9462xdpKM8+YbFPGz72sTrLhQG 2v71uNoqbZwX74lCaX4GWiNX5heCzXyVW15MYyDfL0nf3mLf/OhVf4rBQI1c +zqysRM61vd7rmWg15f/RrOx6YcU+Vs3MZDGukBbIR0q6hzxNAvYzkA0O0+9 l9guXHpWYpIMlHlP6mgi9jrB9Q5ZUgxEKXHYkYWtrf3Ws0eGgUzMXzg3YqfF Vr1Tkmegmi7LR/y6VORxet38kAoD6Wc0PXDG3vrlTbDeGQZaThPiUTxKRdXS s7FsUwY6vuxvx2Fsx2DNj5fNGejusxNhx7ErbH7/8D7PQDfK+XIssa/TpFYV WDFQp4dB1hPsArP3zrtu4vGLO1axsa2/Lfnl3cLPXzj9twebsVs/ROcOvp6v tWYE23LZaLqVEwN9EFuY4dDDeXq3ezjyPgNxbV/7UgzbZDb9HC2AgVxzb9+4 iL3MYvm1iMcM1J+hLnEV+32F0T3pQAbaIB5fcgObM3I6VPMZA8mdK8p1x07Q 2P/zfigDKXrGx0diTwXlaIzFMdD1hrMeDdgRi9yGbm8Y6KhAUScLW9PS1IL3 LQPxfN4q04n96sBf1x1JDBSV9chvGFu1QznzfBoDKWhRTnLp43q9s1iyLp+B Lhp528phJ+w/s8q9kIEuX2vj249doDbZt7uYgbx5b71Uwh4+LR739CsDfRrZ eEcTW8f7ofDxSgb6O3xKyQzb4qnYEkc1Xt+oAiULbKdXuezUH7j/a82SVmT7 acOhtJ8MVIKaKuyxudoN1tS0MBC8XCbjgS048GfcjcVAfBIzIT7Ye6c8a3e1 4vsvco0/wr7A/fnxkw4Gcg/fee05duG+Tav0+xjo6jWnsFhs58Cuv1WTDLSr 5RyrCDvopQv73jQDtUkWKn7FToxfm7NzloGSwqcel2E35x5xDFhgoOoLj7h+ YCv8fjeuSyHQoMPsYRb20Un12kUqgXgKI/a0YV/815qStJxAlTnWjF/Yz9bS bHlWEajdhftNL/aoys2+Cn4CuVX/lR3DXnmUt9SZTqDT5Xs+TmALn4qPlSII dDywZvs0tp5d8/lH6whkzdM6PI/9LkyRrS1IIKe9jwaox3C+JpbVfpckkPaP mSIC2zxRvdpUmkDBvlft1mIbn/esGNlJoKWFBfp67MM/qKVrdxNI40CnsgC2 +DtKzvl9BLpow7VHBFvIQjVzcj+BHizzf7kFe91G9wyfgwTyq1u3KIrN5cOZ mqxEoObr7+O2YfdYcMTNqRFojepSuCQ2eyOK8dcgkF5+6Xcp7Poat0jhIwTa J31rWBq7RPlfqIY2gapujonuwo4VWHr89BiBkP+ZQ3uwX9Uq+W81wO3f1Nq9 F/u57z2/zycIFDU+ISKP7Tm96NFqTKB+994hBeyLdQuOO8zw+/GgqxzENvU7 dDvXnEB7xdJXHMI2RM439M8RyHt9exlp9ffztrcuEMgkSvaQErbipYNXVl7C 67HOd5D03s1O1i8tCVQS/z1EGXvrwzmLIhsCbV+63AnYm1UOnDO8QiCzLfNu CHvNrKNZ31UCRSjWbVDBXmY5e5LXHudBKVtRFbtLZUb39G0C8dv+1lfHZs4q aA/eIZCxtUo56bqU20fc7uL1Un6BNLCLBadV4lwIZGD5bMth7Ox6edjvSiDn mIv+pNMe3VKscCMQ65nfBOmYuUmFMXcC0TVFPx/BDkvdu9fTE7//SwWEJnaQ 1c3d670JxDFFsSXt3jAhpeRHoOL6qrVa2BYfxkX8nhBoxiBMVRv7qvuJRe2n OL98eo9J3zqR3sTzjEDxWaGNpH2nbj0ODCaQ8rGzZjpk+6WNNgYhBFodw/2K 9MsX+zTWhBFoMjW9ifT7A3MLL8IJpCBqflgXO3O1SdPpSALvt8d3SRexstM2 RRPolI5AIun6ey42kbEE4rsSQz2K3arXqn4+nkBlJyukSfcKK4uIJRAoRzLx BOm5on+N8e/wdev2MNKUZ+fSrJMJZN9xNoc0z8WiAMkUAjFNBlpIr5UXtRlM xft3LGiatBCXh/r7NALNnrWl62Fvb+oStk8n0GVqgCTp3QnqC7s/EYjKWqZK Wl2bKy0jC7enduQqab1NVgF3cnB7Q/JupE8OfrM+kIfzNV8SSPpc3nb1hXwC 3XBdHk368mM/4bxCAjVKrUwlffPswLxrMYGy9VvzSN+T1WlEJQQybHxeTtqb M+kDpZRAuYrKjaQD63gCSr4R6Hd4fwfpsNe21t7fcR6SYwZIv75ZraZZQaCM TKcJ0kkau4RXV+H+Y1wXSH9aFzhfUU0g6Muh6GMX9o02BNQQqOYZrCL9PfP4 B/06Am0+uo6fdJ1fmj+9nkAJurprSLNNCOufDQT6cnZoA+leqZtq/zURyLZv mSDpkcV6oZMtBMpsDBchPVslP7+BhfOXWixGmhIZ3MBkE2iZ7z1x0tz2M6mv 2ggUSm3eTnqNyil/8w5cL41ZkqSFGFlWIp0EWqURKE1aomujWmcXgRSF/u0k LZvuJBTbg9sr2LWL9EEv1tylPlw/AnfIklYzVmyQ+E2gl74T/7euRHjq7wEC 1W17vpv02e/mVrbDBAr7Zy9H+voVEaGxMQItVA/83yEprx/NzuJ6e/TgHtL5 E+Jz//4RqDcc/u//ARRWahU= "]]}, Annotation[#, "Charting`Private`Tag$47707#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwd13k8lF8XAHBm2mSbmQfRYomyFS0qlTpXtlAUUckSyVJRKSWUigpRisqS lJA1u5CEbNn3XZJddmasv7z3ef+Z+Xw/d2aee88959w7YhZX9S5S2NjYZPAL +R56z2LVTkuXwx/0FIJehTPhyiFHu1kRLxC8d+T/rl+0CZgQCYKkKKFg0hYy iPrXOgxMS6xDSDvFc2ZNNYdDolZFKOmNTvmnJm0jgMPQN4x0nsrtifHFSLgp X/SB9EtpvcPjhVEgnE98JG3Ju91nzPcTNHg9iSC9l7m6bdQwGtYpi0eRXt3+ R3JUJAaKM4c+kW7J++Y4MhgDKZ2dMaRjowJ//E2OhSNfKPGkXX1u0P86x8Go 1bnPpHUcdMyGVeKhVPpvEmnRM9IJQ1wJIH8mPZX01KEVi4ONCcC6+C2D9GuO 7NcD1onwyvnVN9Jpt7UcbggmwaGZK/mk3w7vE5p2TYLcXS+KSD8y2ZLn0J0E NXtWlZG2r2FYT6klQ4ZQTRXp0ypsPA6xyeCwbrqeNMoYTZvkSYGwRzdaSTPe llImm1OAEfquj/QiT0bMNaVUqH6oN0K698HHExPvU+HAqVvTpCtn/GavrkyD Ews8i6QzrO+9G7dNA15XMepr7LC2y2pXq9LgC1sqJ2nP42dHxnalw4ayUj7S RrsVDowtpsPL6tdSpFWixLrtzmfATVmj3aS3CfF6jhZmQBRn5mHS//4NNY74 fgGbaaPTpAeuN7temfoCPkS8Jema3kLxEcNMMPub6ED6Q1nY9b8iWXBZb8iP 9ExgukyXTxZUmPiHk1a3Lu+pm88C63G5dNIj1FmD7PpsUGgz6SQNdVy8n9FX KFWhTpN++X5z6YeEr+Col8vxBlvxkM4Bryc5sOQWcoD0U07LadeZHPguVnuK 9K/WO/HXzL8Bl53KNdIetyKFzxzMhV+rV8eRblb92qwdnQvKenZlpGWIWj/g /w5M5QN/SdckLlEkx7+D1WqFnYHk/gCHKbdcHpw+fduQ9MGtAQeeWObBtcM6 d0k/m4mZdq7Ng3d/+6pJZ7Yr1MyszocNmbmLpLsLvsfbH86HsS3npIOwFV40 XrSIy4dlgu5N2tTp/JGO7nzYL6P6jfQTs7/ChoIFkMVvP0W6bTt7i+ajAvgv rd0iGNutbJvWTrMfYNT6ziQEOzr5y9a4Vz8gsXV1OOm6wCPULRU/4FFE8yBp CeszOYL7C8H97sDdt2Q96PQEvrxaCG1U9QrSt/fYO3JFFYKy7tFNodhlVA85 NqIIio1vl5CeGebhdNYsAm2VQtF32Jvqggam3YrgkQLTlfS194nvB0aKIGBM 7XAYtsChdkZ1cTGcfvig/z2Z7xJW40f/KwauDRVnPmDbck6WF+wuAerPR1Wk c1pXPcp4XwIHpp8XhpP95dau2VDnUjAL5+2MwPYx+Va/LrkUNE52X4nETlc9 mvRioBTWKn5li8JeQ5jaPjr1E1T9WxQ+YX9O9Gq/IlcGxez/1cRgDzOGfbTM y+DcyLnbsdiSt7QOSwWUgUlTtVgc9nslzg8982Wg4HPYPZ7Mt58+VkZF5bDC X9E5Ebtq2+g6xblyKNEGlSRsTr/jP/llK6DLepyWTOaXIc+2Wr8KUA4Lyk7B vtXzfFLDuBKi9oFmBnaK+kT4lueVMNWQtf8L9njMiVPUgkrgpt6Tz8S2uUb/ kitZBXd89spmk/X530vXPdNV4Hgh52IuWc+c5e50tRoQCTi3UIJ9+JCL8X3T Gpg2fa/5E7vDXnbP+O0asDjjH1aGLVj3tL8itgY0W3vMKrFfBB7T9KTVQuue NoV67B1lS2Kz0rXwbvWBnAZyfYvxCxdVamHNBm7tJuy1ZtzxKrdqwSjihlsr tvuWKp7l9lpQjRFU/429+fS9ATtmLcz0DnL+Ifu7p1xeB08drLf819qDvfT3 2fVs5TrIirn4fADbMUW3wfFTHWz+IGMxjm0NtUEjDvVwea9VHttHJrCFs7Lb n9aDXnUHJxU7cMXGjrKIetAUXz6/Erv0p5VwTFM9GPBkS63Fljq1FH7xQAMs yx3YyYedlyFWeEq/AbJ/HaoUwD4jpNGncqUB/B+03BDC9vz1QnLzuwbYp3es Wxh70EYy/hd7I9AivJAM9v3yY5WV6xtBx/y9wnZsQTmHsZzdjfBbWl1hB/bR 6ZwdIRcb4Sst13AvdsxdvfTTPxvhl96grAr2pZd3c2v8msDrk7CCGTaFGd71 PaYJSjseT1hgB58uZUssaIJ1RgHZVthlGwkV35kmGBuTdbLHlv0UXaJ5phmY l3aH3sMe+VpfUyDSAoK6tz5/wPYQnp9MVmyB/zhFDaOwNz4QJj6cbAEh8Wzu OOxj6rYGbu4toC9slJCGnVDzr/XgQAt0xXimlGLb90n3pH1uhaDVVrPT2L9N W9fk/2yF6G8h2xew9Vs85Sp7WwH6Pe+wReD+Wj5wp299G3CGm+lzY1OTI2kC T9og1P4vnxR2oKvY4dtm7XCOUrVsjr2WVXPB3bkdypjycbbYd6/e93r+qh0q HxRevY5tYdHV8Km8HbKp9moPsLcdDb3csq8D/Bd3Sodj5xNCQftpnZDycsXq IWwF39JcNdlOUFhzz3wKO2qVU+9J9U7glZ9sWcT2mW+Sv+TaCcMa+SK8kUww 7AooDh7sxOccO98+7OFY2sxi3i8QEMuu9sE2lsgTWtPxCyL9VwoGYleHXgW+ 2V9A8TJ78BE7za/Ke9v2LriTq5OZje12y0fMJKgLksZCcoex14p5SHYp/gYB u3Hbk1E4H5VeyN9T+w3vM2DJBPvxmXf7Nun9BlkDqcRL2BS/TI1zl3+DckjS bQ/shX8j1s2hv4HPe1NwFvbfDoPoako33EsxPyvzCd9f5iyS7Hm7gX/Pdfp+ bBu+a5ncG7vBJqd/VAO7V9u7VHtPN/w0Wuazwu7Izh0sse4GsYmmzRHYFYGS 0nkV3XDi83FHyWgmeKcp7DRr7Yb7WmkvFLGP1ijv/9fXDccWvZo0sQtXG2sq LXdDl+mztivYObf8bDN3/oErNdr1adgJp+Zjkl7/AcE1XD+OxeDzjVYu8+F8 D/DSFd3fxTIha9+mdB37HnBeZbbhC3av6VVYcukBI2mD0WrsgwnEqdNvekDA SBpR4nC9aRrf5a7qgbn35XG22Cruo9V3DvaChs2/MZV4nJ+xYCSp2QtKnsMn zmMH177obTDshT1eCVOu2BMie+flHXphxRa12Qzsdzn3NvdH98KXhjheuQQm zDF5HfUE+sBx9Euj1GcmiG+yWF4W74PthchSE1tHNc0rYWcfzAfNK17Cjnx5 5t2a430wFRuUEY+tJ/+hJNe9D8bSuXn2JOL12+xaLzvZBwt9/t76STh/2099 p1b0g+3B2KSyFJwPId1211v7QU3RhXcGO8XIfmNXfz9cPEX/vikV10vbkzvZ 7APAz1JiOGBHtGTvvr5vAHr/3Q4QTmNCf6No9K/wAVivZW7zJB33j5oRv6w7 g5Dw/KpxSCa+b/jdAckng0BXeBZbjZ2tu2osIACPu7ueXpGFz59qEe1riYPg L/Su2h47vlJvpWTfIBR3VKsdzWbCWFnmnYATQ9DTnpvMncOE60UeFlclh8Ff b0Nj33cmCPeqr2LtHgbTQ7YPN+cxoZzCEeuKhkHs+/nnZthbkO+k19lhCGrt /9mG3Zr96n7E02E4PeJa0ZjPBOWkqHet48Nw4vx5i18/mEAPKW1TyfwLDau7 E5VKmZCb5X2vrPAvvLA7u/Ex9uWWY5tP1v6Fq02fmNXYRfy1tqbDfyEl8u6E 5U8m3PFrnXPaOAJb77MYAWX4vvRoWODz/RGQee56eXUlE5KvcekLao7CowR3 J7U6nO/BxJ0Ew1G4v2a4KAK7v3B92BHLUYiRrPq4op4J64Wk/15xG4VBxfNE MbZHvpp7fvooDAg11Oo24n7BcEu9tHkMpG/a6ri14PpMnSS+LY6BfEWDjV4X E/h+ze3X4xiHvgKOoUJsuTVs5wcExmHSP5NL8TcTLhjzxNN3jYP1qXEk2o3n s0JW1cpmHJrDpu3m/uD8NLC8yds4DhKjI5al/fg+7HJ5eMfpCTjWNif9dwyf v3kcc09MJkAhIVbp0jg+v1ZEr+y6MAFezQbjQ9i/fXtFfa9NQMJi6t6/E3i/ 3pucHvKagOv+VsbMKVwfhbqFH3ImYOFyi7PULL6vcCu8Y2yehIO7rH5ys7Fg s15dnK3UJLD2cPR9wE5+fS0rT24S8gwmk/eys6BGJKHB/uAk7Fv509yCwgKe XVs5y09NgobUbumCFSzwNhR0cn8yCfwh5xs+crDgYdjSyZkRPF6L/KcJFpzY kXlddnoSRMvln4XwsfD/uBsvLOYnoeDplKoqPwuy/wzX1Kycgi+yWwbfCLBg akurboLwFBy/k8B3VIgFFvHpx61OTEF7svrDCmEWKGfZa7akTsH5ub4gWxk8 Hy0ZW97sKZiathKXkWVBR1ufp3reFNxVTHL+i+20ZFyaVjEF0jHdAde2syAJ tDVe9E3B6+rOJx47WCBaLKmmtW4aFKXrh+r3soCt/jfKcZ6GV5LDqXyqLPAY yv3g/GAa1CQ4SihqLOBgC6Xs95yGvKMefyaxGdvPFqa/mgbV0ZA99Ros2PKk ViMxaRruQKp5uDYLtA4W6IT3T8O9qKa7N/RZ4P/xo7Gn3gzIxZkr9F9ggWD2 g2/qZ2egfM/WOpYlC97WmAmvPD8DyielXqyxYkHUfxt+P7CbgWh72i15GxZk ng644OI5A/TI5EnvK3i9nI8u2efOwGz7D4s7jizYetPK6ZQMPpeOvynb78mC 7Qe69MN24D52Ukr3nBcLFNjOyA/vxfcIw/6+u94sOOKj2e+mgv+XGjw/VuzD AtOIbafijPG4iizd8gULXjdMyVOeM2FI+hhXQzALVu5xG0icxvdEubOO3p9Z 0Mt8Y8j5jQWXXZRCb7WyIFx5943OHyxwF+h1Y2tngZlv1fPEMpxHFzc1P+1g QZvEyp/6LSzY/e9zf1QXC2r1HQ6+nWaBxPcd4WN9LMhNPia6XWYWSnI0NYum WPDGjn1Y580sZOSnqr7ingWtvkt3X16fg7Whr5+PacyC+l3xeFWnOdDn49ta rzkLR/g72lj35mBExtswS3sWDqgdVzznMwfap094euvOgkyk/LT4pzlwOZOq gk7PAufFGZv0jjlATM2v81azUNF791SLxjxUXJUNjHkyCzq9frLCwgsgLj7W KlaFx2V7G4wlFsDOplVbq2YWtG/suxciswDHUhnqN+tm4SjlV43gvgVY4NjU WNGE5yMqe4s4sQC6vAxbv65Z2GNclLfm4QIYtiTlm0/OwsaGeYPpvgWIX/Wy VF5gDoZ/WNwvTVgENHv3n5flHMjRmzapmP0H4klp7x9KzMNaYJp3TP+DuBwH /b1T86AxajS72YANbVQ2WPoxvAAtBZbsRtvYUauK87qoqUVI9yw0FWWyo0MZ P0/vml4Cq5WOv6uqKEhzBXEkj/MfXHBwSecKpqLpvZ9S5LiWQd5atuqY+QrE 5cz8YrG0DNWMbZyO+1eiTH6JjJLbbOjr54ch26irUNlVn7iPXWzIhV3mREXn KpR2I/nwjCo7WtvhfNQ+bTWqvHjv7tBbdtQXJRYQ5roGTS4sqM33sqMAKaEV WQYcqMZA52ybFAX5BVuVmIuuRZm3Kk4dM6MgowCTKq6Btehtma4ujy8FbUxd u+Hy8FrUKehoWoTdVfvF+ufoWvTB5d2oyzMKsuRlsD+eWYt2zw37DDynIHvv 4t3L7JxIcddgY+ZLCnp4Xz5ociMnSk1WK1IJpKCYK+yWTXqcqOxnfMZSOAXN qUbOh+VyopPZNUmrv1CQ69cw98J8TiRiVGzwGpttVzD3UCEnUhanBEpkUtBq kediu8o5kdXgCny5oSCBeSfNwmZOlMlUFXD4SkG7E44FDU5wInPlFcKF3/F8 +GcUd4pzoQ+hVHfRUgrq6TviVPCECxWt8vEobKagI2FV4TJPuVAuNb1PrYWC 3p8xqnz5jAtd4Vj3uxjbtPz65guvuFDQkuWHklYKakt6X0H9yIVCZBSMC9sp qM7ln6haLhfqden+E9tFQQX07J8lM1yIETCasn2AgsIP7dxQac6NXtf9FhRg 4nGdte6LltxIiXHBxQn7j1nPsLQNNzrgOPS8DVv84avsx/bc6KZaTHUoi4Ii iufPIhdutG3jw8+icxQUqVsQmBrAjYRVC7gFFyko2lxfILiEGw38XX+9io2K Eh450q2386Bv1hR/C04qGlEyefhoBw86aOIqkYy9bUZ1+uNuHoS2vL25jB1r wdf4ez8PytU0ORnCRUXRkBpopM6DkkIa2Wq4qShifkJEx4wHXZTqMdxOo6Jg uytye17woPUjm5sz+aioTeJUmH4AD6oaVHq4jC3UcZDm8IYHPZu4OKHGT0WB WpxTn0N5UDP1qkAd9ivJ2HSpWB70dq+Y74AAFfl1Dyht/MGDJlOnj6wWoqIn Bhe0qUwe9HzF0W/rN1FRuG6H8cU5HrRJTtPKDDtH08C+ZJEH2e54UfERe+qQ xounFF7E+z60VlaYioy3yjYTNF60sgUKFEWoaNfslIWELC8Sl5WxUBejol+B D53VzHmR4Ae1bzu3UNH8y8Wnnyx50f52RzN7bD7fm6EcNrzo1WtaYSy25gOr vEp7PD60pXHzVipKs9VaZejKi/TYd26gSVKR9wHGS6s3vGjHjOfZLikq2tPx IeZJJS/yr1VNObmNimhyNnOJNbyo+oTcBXfsETc5jZZ6XrQ5I+1PGnaE+Nde qTZeFD3Dp7NuO37+5QaRsn5e1LX5UWsr9oIrVXsVGw1doqz7ZSBPRa2ce/OP CtHQHV7zGzK7qKhYIWiwYz0N2aiq7DbETjNZ4r2+kYbKNjwveoDtl1hgGiRC Q1aVbeYt2Ef1dZeGttDQygQ3V/fdVJQZbLPv6S4aenf/h36tAt4v6ZCESm0a 8ruiZ3hsHxXNTKtHuh+noayuVVWO2Lq5U2/369KQKc2ZLwx7lb6WT6QeDQ0E bOeZxHZ0nb909ywNfb/8NfOlIhXpVZ+W2m6Nf3+piqNyPxVxOfJ99HlIQ+I7 hQOElajIBvKCj3jQkO6qPKkj2D84rryce0RD1Ggfv4vYzu9+PLD0oqHjYjva 4rCHShzOK/nRkHGR+dm9h/D619duGgmloWubbLeoHKYitzzfQO0sGrrssaVb CVHRcGdewHw2DRU7mvoZYRsuTvt9yqGhNdPXBZ2wt+018qLm0ZDktcjUFOyW uK3OX4txvHI+CW1Vxvnz5vs52QYaGt6j8H3lESrqt5sU5hzH8ZvYpBGjQkUn n0psyJqgoYY6s+MF2DnRp9dZT9HQflHdHe3Y/j3feH8waSg4KsGHS5WK0Flv NpclGsq1TAy3ww5WFf8zzEFHM05ZJtJqVHR8g0FkmQQdTbhEdj5Rx/vRK5d3 bisdraO8Ph6C3Zuwpn1Eko5+3p778BnbFeXQeGXpyLv92lwDdvxFcVf9nXQ0 L5BpKqpBRWuTJvU6DtFRb0C7RAp2ieoztjFDOjq43LCv4CgVMXhsNridoSPt xUCLOmzTZuW9NCM6OqwSe/MPNsuWeXmXCR29f8GjS9Gkoq3PjZtvXaAjxQTd LoTt0SrzefkqHX1jk3qQha1sX3KO7kVHbjwulkFaOH9bhtQLvenIUiEp7xN2 mgrXrts+dHSBR4iagb1V6OSazud0RGudPlCHzVXYlhb9mo7uX6y8w6GN90No jBtF0FHa9z7tG9gvPWjzU5F01L9fXPA+tvb4rt7IT3Sk8Vyjwgc7t/B2Nmcc /rxG0kgkdsRVduvmZDpasJykNWNfK+LLs/9OR04nPP8pHKMimR374sTy6ajV JdsAYfcEn33dUICf73D3tTa24bV3Vw4U01G4gUijObbSBimhVZU4vmKJmr7Y a64fdAhto6Oj8U1bf2OHbbSQqGDS0RbBfxdvHaeiA7tl5Sxm6aj7fprvPewG zZl9c3N0pJwYE/EYe83tx9oSS3Q0tTn8/Wvsa7WxDq4UBorqW1Wfjo0eT+dt 42Wg6pjzuyex297mlBXQGOjiL+8zc9g3Ux81nGEwkM+3ffbL2NG/1w168DMQ /0fby9w6VEQ/qMTbuYGB5KWME6Ww/4x7mPhKMVCwXr29MbbrKh1rcRkGemvt FGmBLbBp3fUsWQY69Lmj0gZbSyvGo0+OgXQTd8zcxE6JqIw7tIeBRD5KBvlg u58VWBhVZiBLOhhkYUv8+PRa5xwDNXO0beDQpaKqbXMRHcYMtKspLZAb2+n1 0dRLpgxUfHLrWgZ2ue1Q9WNzBoouZJSvx3agyXJ8t2agBPO5Ylns7yafXeRv MpD/PUaGNrZNyT+vb44MVOd0w0MXm7FTN1D7NgMF3L6HWxsVWa2YSLN2ZiBH 9aZkI2yuuJ1jYfcZaJ+WFactttFc2nmaLwOZbfo86I69wmLl1XfPGMhg4ZnQ E+zP5QZ3t/nh+W3eouyNzR7GCjrqz0APWlJu+mFHqynW3w9ioEzfjVffYjNf flWbjGSg4zJnvqdgv1viPOX2iYH6vspcSMc+amVswR3DQAV/0v59wX67/797 0vEM9FhNftM37CO/D2eap+D4Erfmi7H9thfI1OUyENgwlVrJ5yme43iYx0AC XzletpPxUJkZ2FmA4xHt8asTe+zs1sgXRTj+2ksmf7C1H3uLnKxgIPMwnvlh bIsX4v/YqhiIctyRcxTb+W1OR1I1Aw0Fd/CPk7+fMhZEq2cgie45xjT2qi49 vppWBgp1dkpawN40/HfKrZ2BYvxmPJawFZgetfKdDNTxdLXeP+wLnF+ePf/N QDcPKjWxn6CivH142wcY6E5pj+cabBe/nv8qZxgowoD7Ex/2yxDXjrssBjp1 y4NbADs2iv/r9jkGcr2XarcOuyVHw8l3Eec/v9uG9dh7h+KmjlEIxKxJkRPB Pj6jWrtEJdDB4GpLUWzL5c7E+JUEknWTeyWG7c9Ps+PiINDsTVavOPaE8s2B cl4Crb7y+IgU9prj3MUudALZJDw9Jo0tciYqQpYgkPPQmZMy2Dr2LeZPBQg0 RvXV3oYdF6zUobWJQIp2m1fswLaaXlH7U4ZAXOmL/nuxTWNVq4y3EcjP2VFt H7ahuUf5+HYCqY/BNGn1amox/04CoUNzKvuxt8ZRvprvI9Bg1bGvB7GFLY5k zigS6HVU+AklbAGhh+lPDhAoXSf2D+lVT9iTEg4RyPPWv6VD2H0WbJHzKgRq vErhQtgdQijcR41Ay5fkPUk31LiFiWgQKPLEZXZl7MLDy0FqWgS6rnzoL+mI 9f+evThBII66h6Eq2G9rD/lI6BFoA2FOVcUO8Lzr9UWfQJZSn6xIe7CW3DsN CRRY92qLGhnvukUnaRMCGe6VfKyObex18FaOKV6vmX0L6VPI5YbueQIVFlyX 0sBW/bxg53iBQHz8TfmklS4euLzmIoEcVLQ5j2IrbHS2CbHC3hapR1rCe94i 35ZAGYNy7aQ3Ku8/f+oygTYbOWzUxOabczIZuIJdl3+O9AqrudPc1wikqRvX QLpHefbY2VsE2v42OUkLu21ur9bIbQKx1Zr2kK5LvKXhdodA4/MWfNrYBZtY ypGuBMqTCrhOOrthDyjew/vJrAslnfLUUancjUDm6j6lpMPnZ/ZOPsTrEXkh dAw7OElBwcODQIzSUSD90vrmznWPCVR+YMCS9MPGadlDXgSSqqiNJW2RPCXq 9ZxA66UvSR7HvvJQf0nrBYF8HxWpk3bUT2vm8ifQcPQXS9KeTMdnfq8JdDnN +y3pl8VNtnqBBKpzvZ9BOuTNPjW+YJy/lXurSX/eP7/4JpRAK5S5/yOdudao +WwYzgdRZYYOdn57dsqGDwRqXW2ylXTDXVfbsAic350O2qQ7dTpVzaMIdM/a zZh0v8hhUfFoAhlsC7pCej5/uSkqjkD8C+u8SVP8z6fYJBCoye7ZG9Jclvm+ MokEUplWiCDNv2ez7UgSgTo7iSTSwqvcVT+n4Pie3f2VtFRzj8i1NAIpXAkp Ir0zWnVxZwae/4x+NWlVrVUp6VkEEhZo/E1aZ4O17+2vBBKMiB8kfXqkxGb/ N7zfvlPjpM9/k1JdzCVQe28Ci/SlZ14i3/IIpP+qb4n0TbPhhXsFBNph9p6i i313h3YTKiTQr7be1aQfs8cnU4oJ9MMhi4u0Xx2Xb2EJgcJsJOikgz/a2Tz+ SaCn9bL8pD/erFI5Wk6g0LBGQdLxavIiayvx930lN5LOEPBbKK/C+bZbUoR0 3sBEo28NgXrnW8VI/8w8maxbRyC7jWoSpOu8UnzoDbi+4+y2ku4wImzqGwkU 8PSMFOl+2Zsqr5oJpOqwVob0+FKD8OlW3O8Gn8iSnqvcsyDYTiBercZtpClh rxvbOnD/KGBtJ815bTbp7S9cDycn5EjzKZ/xMf1NINuiInnSwowsa9E/BBrJ c95BWrJHSOVPD4E40/FJi+1wWVR4cpJAU64bd5POnd46v7xMoP5Q+L//B5cS /UE= "]]}, Annotation[#, "Charting`Private`Tag$47707#2"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0.41421356237309515`}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 5}, {0.41421356237309515`, 2.414213562373095}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]} }, AutoDelete->False, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{4}}}], "Grid"]], "Output", CellChangeTimes->{ 3.717179033851159*^9, {3.7171790652756844`*^9, 3.717179085960745*^9}, 3.7171794752563868`*^9, 3.717179711962817*^9, {3.717179743615103*^9, 3.7171797638737707`*^9}, 3.717181044219812*^9, 3.7171810885010147`*^9, 3.7172118977463818`*^9, {3.717211965426773*^9, 3.7172119714065447`*^9}, 3.7172122982632008`*^9, 3.717224324973205*^9, 3.717224358784422*^9, { 3.7172245042699413`*^9, 3.71722453183823*^9}, 3.717224630142774*^9, 3.717225057574504*^9, 3.71722511459408*^9, 3.717225383689946*^9, 3.717225718829658*^9, 3.717226048507535*^9, 3.717226714142476*^9, 3.717226877162706*^9, 3.717231290641699*^9, 3.717231350675565*^9, 3.717231421482024*^9, 3.717235035375712*^9, 3.738609753919271*^9, 3.793502842736746*^9, 3.793504047783485*^9, 3.793904844533474*^9, 3.823229446987715*^9, 3.8430721559345007`*^9, 3.843072231269783*^9, { 3.843072283129847*^9, 3.843072306764455*^9}, {3.843072468963128*^9, 3.843072491861334*^9}, 3.8430726191035357`*^9, 3.843072684731413*^9, 3.843072958828972*^9, {3.843073063395472*^9, 3.843073073534189*^9}, 3.843073233827516*^9, 3.8430733276430197`*^9, 3.8430734466947527`*^9, 3.843074824518618*^9, {3.8430749560550547`*^9, 3.843074979732637*^9}, 3.84307502181971*^9, 3.843075242315209*^9, 3.8430752983217297`*^9, 3.843091678547537*^9, {3.844256002433299*^9, 3.844256024516903*^9}, 3.844258976104087*^9, 3.844259032105895*^9, 3.845740960997487*^9, 3.845741043713024*^9, {3.8457411025771723`*^9, 3.8457411265038557`*^9}, 3.84835645915149*^9}, CellLabel->"Out[89]=",ExpressionUUID->"794857df-e77b-4d18-8f6a-d9d6bd039531"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"TestSwingUpFBqs", "[", RowBox[{ "\[Tau]_", ",", "\[Tau]1_", ",", "d_", ",", "\[Theta]ff_", ",", "\[Theta]dotff_", ",", "uff_"}], "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{ "eq", ",", "init", ",", "\[Theta]", ",", "\[Theta]dot", ",", "t", ",", "ufb", ",", "u", ",", "\[Kappa]1", ",", "\[Kappa]2", ",", "\[Theta]s", ",", "\[Theta]dots", ",", "us", ",", "ufbs"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Kappa]1", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "+", SqrtBox[ RowBox[{"1", "+", SuperscriptBox[ RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]]}], "/.", RowBox[{"\[Theta]", "\[Rule]", RowBox[{"\[Theta]ff", "[", "t", "]"}]}]}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Kappa]2", "[", "t_", "]"}], ":=", RowBox[{ SqrtBox[ RowBox[{"1", "-", RowBox[{"2", " ", RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", SuperscriptBox[ RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]]}]}]], "/.", RowBox[{"\[Theta]", "\[Rule]", RowBox[{"\[Theta]ff", "[", "t", "]"}]}]}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"ufb", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Kappa]1", "[", "t", "]"}], RowBox[{"(", RowBox[{ RowBox[{"\[Theta]ff", "[", "t", "]"}], "-", RowBox[{"\[Theta]", "[", "t", "]"}]}], ")"}]}], "+", RowBox[{ RowBox[{"\[Kappa]2", "[", "t", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"\[Theta]dotff", "[", "t", "]"}], "-", RowBox[{"\[Theta]dot", "[", "t", "]"}]}], ")"}]}]}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "12.99"}]}], "}"}], "}"}], ",", "0"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"u", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"uff", "[", "t", "]"}], "+", RowBox[{"ufb", "[", "t", "]"}]}]}], ";", "\[IndentingNewLine]", RowBox[{"eq", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Theta]", "'"}], "[", "t", "]"}], "\[Equal]", RowBox[{"\[Theta]dot", "[", "t", "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Theta]dot", "'"}], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"-", RowBox[{"Sin", "[", RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], "+", RowBox[{"u", "[", "t", "]"}]}]}]}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{"init", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Theta]", "[", "0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{"\[Theta]dot", "[", "0", "]"}], "\[Equal]", "d"}]}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"\[Theta]s", ",", "\[Theta]dots"}], "}"}], "=", RowBox[{"NDSolveValue", "[", RowBox[{ RowBox[{"{", RowBox[{"eq", ",", "init"}], "}"}], ",", RowBox[{"{", RowBox[{"\[Theta]", ",", "\[Theta]dot"}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"Method", "->", RowBox[{"{", RowBox[{"\"\\"", "->", "None"}], "}"}]}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"ufbs", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Kappa]1", "[", "t", "]"}], RowBox[{"(", RowBox[{ RowBox[{"\[Theta]ff", "[", "t", "]"}], "-", RowBox[{"\[Theta]s", "[", "t", "]"}]}], ")"}]}], "+", RowBox[{ RowBox[{"\[Kappa]2", "[", "t", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"\[Theta]dotff", "[", "t", "]"}], "-", RowBox[{"\[Theta]dots", "[", "t", "]"}]}], ")"}]}]}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "12.99"}]}], "}"}], "}"}], ",", "0"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"us", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"uff", "[", "t", "]"}], "+", RowBox[{"ufbs", "[", "t", "]"}]}]}], ";", RowBox[{"{", RowBox[{"\[Theta]s", ",", "us"}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"d", "=", "0.7"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"\[Theta]3", ",", "u3"}], "}"}], "=", RowBox[{"TestSwingUpFBqs", "[", RowBox[{ "\[Tau]", ",", "\[Tau]1", ",", "d", ",", "\[Theta]0", ",", "\[Theta]dot0", ",", "u0"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p3", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]3", "[", "t", "]"}], ",", RowBox[{"u3", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{"None", ",", RowBox[{"{", "\[Pi]", "}"}]}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}]}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"2", "\[Rule]", "Axis"}], "}"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p4", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Theta]3", "[", "t", "]"}], "-", RowBox[{"\[Theta]2", "[", "t", "]"}]}], ",", RowBox[{ RowBox[{"u3", "[", "t", "]"}], "-", RowBox[{"u2", "[", "t", "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"2", "\[Rule]", "Axis"}], "}"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Grid", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{"p2", ",", "p3", ",", "p4"}], "}"}], "}"}], ",", RowBox[{"Spacings", "\[Rule]", "4"}]}], "]"}]}], "Input", CellChangeTimes->{{3.717178735137196*^9, 3.717178756368307*^9}, { 3.717178796496066*^9, 3.717178797927217*^9}, {3.717179517275275*^9, 3.717179521923316*^9}, {3.717179587413188*^9, 3.71717960532754*^9}, { 3.717179728690877*^9, 3.717179729034823*^9}, {3.717179950523847*^9, 3.7171799623151197`*^9}, {3.7171800327038403`*^9, 3.717180118309691*^9}, { 3.7171801628847847`*^9, 3.717180208403758*^9}, {3.717180302095316*^9, 3.7171803157485247`*^9}, {3.7171803471933317`*^9, 3.717180364070889*^9}, { 3.717180653437889*^9, 3.7171806695452223`*^9}, {3.71718085726085*^9, 3.7171809004385233`*^9}, 3.717181022961149*^9, {3.71718105557362*^9, 3.71718107938892*^9}, {3.7171811335295067`*^9, 3.717181135353099*^9}, { 3.717212318054606*^9, 3.7172123643382473`*^9}, {3.71721240556768*^9, 3.717212418654786*^9}, {3.717212450785758*^9, 3.7172124522421494`*^9}, { 3.7172125029971237`*^9, 3.71721253753196*^9}, {3.717212572055203*^9, 3.7172127292612886`*^9}, {3.7172256141317177`*^9, 3.71722582624921*^9}, { 3.71722588075552*^9, 3.717226023335924*^9}, {3.7172264419754457`*^9, 3.7172264451649933`*^9}, {3.7172264974465437`*^9, 3.717226499382354*^9}, 3.71722668902172*^9, 3.717226863148219*^9, 3.717231339748611*^9, { 3.7172314067929296`*^9, 3.717231407063953*^9}, 3.84425601160783*^9, { 3.845740904681745*^9, 3.845740907215625*^9}}, CellLabel->"In[90]:=",ExpressionUUID->"af7b3276-2a0d-4886-abb6-ec8eea8ac5ba"], Cell[BoxData[ TagBox[GridBox[{ { GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxlunlcTO///z+0W9K+7/sqKWnhXE9Fu0pKq0q2kCQJ2aYUyRbSIiWEbEko Fc0oEYW0KO27Svu0U33Ped3eF7ff59c/bo+bmnPNnMd5nuvM/S7vu89x+3wa jWbJTqNR/443fXyndC6WoGVGry4tPE9M1ay8NlRTgQwcf3lz3StGRWb3077d bkdWZka5+X5VSKo5t8tXqx/1c3p8eFHThIT8vR9ymbFQbtza2nuCXeiKrnm+ nfMkGrYsPpK2ZBD9SFjGHOabQdtEr3yYWzeKzqWd/DpffB5wST5YJ315ConG tp+9mswG9NeKk3cjZtEZJyuiYpwD4v/81hN2nQcHjG55fwznhvYDZQub7Nhg 7eB0aED7Aujblqe/soEdwlZt2CJhuBiENnE9alLgBOOMxBcnGEtgV/fKwYm1 XOA/OUwvWcwPcmK5ze4S3DClydek7SwAanOcDluZ3LDq0ePUuDhBcOQL+fpA iAeGBax9NhUKwePsnwX6UjzQcd5nUxCXCPD5Xi64JM0DVoOHrDoNRKH9pb9B jAwP9G3lPvDipBjsbXtltEuWB8yVROefKRQHW9vbkYvkeEDgs8rFzEEJCJ+a TQkjs1TUUwcDAylo7V5xqo3MCZpGfII7pUFLVZFdVZ4HPkmsWcG6LAM2u5Nt 3MlsLFUYo/NdFq65hFhGkJmX7XbwlnA5+NO7IvMWmWXCZFe5qcjDk2Oxp3PJ zKPsme34QR5iXaQrPpF56Wrxp4c2K0ClwP2m72QOahIosqYpQuqrTUktZB5k nXe2SlAEk4fu7j/JbKHz/rqVthKIm+Rv6CNzAcvk98QXJXASidw4ROYAreV1 37YrQ9vOegkWmVcPbKty41GBrLj7zmNkXqcktn7xbRXw4XnSME5mNXr04cKV quDat/D3BJk1thsxlOtUIX7N19ZJMm8v8It4sV8N/nj206fIzEit2jYsrA5x 8Wtp02QeTZ+b0MlRhwbxIQ8qb1V+xHN9vQZoe5gnUXlY46pB1pAGOJm8+kzl V2m/W8eiNMGbmB2ksvta8r3JaIH58Fvu32SW3HsmdylTC5wWgBSVhRf4P1vv og0ZnpbqVE7Zmzc2N6cNPTk79ahsrtTbOFxTiKIXKSXw3c9BTB2zwY+8jSj0 Se38NuOvKPBy5rrrO7vRm11xtoI2P9A37aaLN/qGkGDZr2yx6DZU+aViuWbZ GGLMf6XSsLkXeQrZ9Us+54HcBTtyZqXZoU1YJeDd4kXw/J2v2+RpDvA6OBZd dpQXJhxX/ZnI54R3O2/2F4Xwwf6yX10x2VywXCBM5+gzfuAvreb3CeGG63u8 UNuYAPT3XtgYO8YNIt5H6SFaQtAldMXksCQP9No7e3RsE4Zsqa2efWSfRYi+ r5o3RWBscMFuUbK/19WhybZeFI7b3KhnI/sr/u5SnrS8OJw5YuHCJPPjSZkS STcJiGm0qbIm+xqvsWcf64okDCaZh78kc51bcGbaFymQ5CsV5CI/L13FNwqn /khDN3OdjymZw5PmbeXXl4UgxsfqQDLHRYWlvDaQA/PiK/NiySxS6OO6uUoO KtPLwzPILFS5eqo6RB46P2yvKCSz1LO85dsFFGDjp8G138hcvljEqDVDAXR3 JUo1kHlZj/0ia1tFSBP5YNhB5qTL6oc/tinCKntptl7q+PzzSuVOKMEHH8PQ Aep4fDm92ySUofWUQfkwmTddsKm5lqMMZZ5S9qNkXnO2IOa5swosXH1aleqv geO3tp99KiC84s9Bqr8PRlolR6NUgVfY/xDV3xL+b/L9ymqwwFB+JdXfK09T RiuK1MC//F4xleuUdmfE7FCHpMpEXaqPWjuradvna8BkUt1xKmuoycqp3NQA Ge7wbCpX7bRYVLVKE9JN1FqofDZ4yeWESk04d9Fuhsp5rtV/9PdpQareBkGq nwn5R1YULNSG/SaOilSuM7laee+RNmTGNy2lcvNru32jNVlI9w3TtqkvHTWc Wm26mVWD9GJfXfYJ+4Su92qOreDoQhuOi8kvLfmOvKVN5n8JH0Qe9W0yT/tb ULB0YkDimVFUqfYj/JhGN+q+d+jeiAQPmB5Ji7v2ig2uhscEJx5eCKkyOl4n 9DhgyFUxhPVjMdyJ52M7tJ8TAmXH76zR5IO1lcqcR09ygX2kUe0tb37wFnfJ j7Tmhk82ObxRdwVAaP2yS+cbuUGdIzbmdKsgPAty77xIHifg2dfNyYLCsCmA f+lVsr/Ht6sI2m8UgW0muZHV5DwOWtQgKH5WFIYEtv0qJfs8X6hMZFe5GJwT sjOJI/t7hFdy+7fFErC9OfqRFtnXqt8lsxvWSEKlY+vRG2T+PXSZvjdcCmiy M35jZN6melS89Jk0cD+OVV1Bfn4qHvK289tl4EFnxvR2ap7Y7Nfr5ZODqeCa 3eep8+0btsP7kRxsWJTtkk5m8YcZ1+Pt5EEhk9+tgMwCe86N1vfJA3vydbUv ZD55VzRY67QCeMq5xP8g87etz3ZaqyjCSEp2aBuZi03rd5x9owjlt+vyusm8 LbV9+UtnJaj2zArsJ3Nv2FRQxqgStNF3iFH9bWsoqH1+URmkTf7kUfOYkX85 67SOCrDPPCik5jGRPxof+kEFYjk4tKj++hkZWHv4qIKa610Tqr9HTCIDeWhq EM3FxUv19U/2qddF19Vgl0ZKGpXLfG/yrCHU4c6hH+JU//iidh/71KAOmtZH 9lL5vUqnkE+IBjy13/2Ayr5We+WLRDSBPcCihsqp5yONLDI04fn2znEqR9sd k3llrgUjiWa8VD/dY+mHxju14HPKgCyVJ2+fNA0N04bxJyu0qCzVqxXRY1aG Wi+Yy1b8YiJzwxVxsx970bBwns7vyXpUdvnDzbvSS0Ah+kzzgflcIJZpudK8 kA88hj0S9Xu5QORmyWknNgHIc18r/CaZG/ac4whcZS4IWWOH94hz8wB7rm/g jkNC0BFb0lhLzstMkazz3L9E4IH2nThnsk9F5mnpdG0xGO1zMTYk+7QseKNX xX5xmKgvy/lJ5uY2Bc0daRJQ6KsqtZPsj7vb4pbYDknoXv2hvIzMuYWbWuol pOF7X2KcKPl+ZmXmNE0sZMAiXeGNHZmb6luPyEXKwo4ByV+hZK4ovsxzyVMO PO/0CyeR+bo8WHvMyEFrkJ3xC+r+/6fMReimPGisKJl8T2bliZ7AgZUK8MFE VLOKzPIhQrPXahQgml04qInMMQEDmVZBivC6d66mk8z7Ww6d5eFWAo1TTfq/ qPMTLrP1/D0leGY5sm+QzKYpwb6SoAxRDc5HR6j9yOra6kMtylA1d6aGmo9F m34FtBxVgQ8ZlpHUfNTpeUJup1SB7sqeT/Wr99GF/vPPVGG9bEoG1S+RbqnK chs1GOrbvZnqk1p6rlZbnxq0mMh1UPlnl/7Glovq8KQ9yYLqh6U5RM6pasCC vTIXqHxR3U2z74MGbILrhVQ2Py0/0eGrCVkPfLupHOSZ2N0zSfbtFLBRfen1 XVr/LF4LdppNiFL5e1sQK1JXG4w79qpQ+XXVvW2V1dqQY7xWl8r8A6JXpmpu o659DVmbbyWi3id5v+5tr0YHl7n4m0uUoKXxPWVsVR1oxonn/uXYakScCA1O cBlAqyThAF29Bb1be+y8QycLKX60SfSS/ImWBi5ia/rCDcVPdHPWRrBB36vi CbalC8EluKvZmZsDXlnn/eI8uxiWl98WeGrNCeZH5U/SOfigTnl6yX1fLmgq uKb10oAfPuuv5Zpczg1t+VvH3Y8LwGpJ4lXcV25Y7pqawPtaEB7/fljvIkb2 sW1R81SvEKS8j7+1jZyPy44UvfDRFgE2uqH8c3I+Ns08WDrnLQqBkR/PZ5B9 njDpfcebLgafVfvE6WR/fcQT9bS6xUEmXKhOiuzrgY5D5mFikvBSb7n1JTKf f53avcFTCpYVPpfpI/MJ9TqhfeelIXeziv5S6no1fsYMzZOBbdwJhA+ZD7lV /J73RxZmp17siaLu11mX97bEycHsZz6hu2S+Ibxzz2FjeRAu2P47n+pzyQFn 0Tp5MFFpjSij7sf7E/gr9ivAAYHHa2rJrCDve81aUBFO5LtcaqXmhaS+V89D RVi3uGAxNR+//6zacXKNEnxGc+3UfrUqT2JlZasSaO3KyKH2q+kRh3+YhipD eMQef2o+zjodNQuUUoGcxysuUPOxcN/pkaIXKmAUI8RB9bfE06eV11YVYrr7 JKn+Ojo0x4v2q8IpM+dJKmcah8itOq0GwdukrlL9fT/PeKW4hjrUeNgupvoY LrbCeOajOjzkbdxGZSEVyyUzWzQgePbY7f/u98a0x3lsmrDVKq6Cyo8TmBdS kjRhJVc4678+f7R/emS5Fvz5enkh1c88WkSCQKUWlLbLyVD59Pexqa3+2rAh 7YMGlXXPLHzWf+ED8is2kF1S/xrVd4zsLUvoQbZj2m7oRh26dspLOLeMFzpM alJfNnPCwMJggcgbfCAX++bst3IuSKtVqt9Zxw+ifIXnb0VzQ/jvZy5LZATh bbHA8IU5bli8aN/hgQ1C8PzJR5UH5HzcqmG/VKJYBFbq3Rw1IPu01DCoaAe7 GExd/nNEhuyT0o39iw5bicNaPw/PKjK/70+dYp6QgONL4pe7kf2ZXPNa9V2+ JJjGvPJ6S2bri9stmaNSsEeJ48gS8v2IyXupNsvLQLit3QNL6vPO3z+Q4CkL tgbrJw+SWf8+T9VdKznYfCMiKZ7MtfsdNjR0y4FsR4j/MzJf3hmpNhYtD46t cYPvyCznVPFNXVkB5lzOF1RQfV1zLcmkSAESy0XWN5K5RfNmk5W3Isi/lFpE zUfO3HL6rjFF4PbISqH2j/yflsRvuqIE8lHBE9T+UavmmgpoK8P+T36q1HyM 6bz8nbNMGXy+3oul5uP8oaq5j34q0LTU0IWaj1nJKCplTgWuOWokUv2y/poT Acmq0L3+wlWqT4N/QqabDNVguvyWNdWnRs3HMe61arDls241lVsiv9JfharD vJRvq/7b/31fYLZcWANeS6RGUrlB7bXy2ecawM988prKiw+9CGuw14RV7906 qHzCr2rVmi5NCGTfRKP6UtE4z//AKS2Qks8UpvJK+xCh2zLawN/UrURlG25p qTdMbfjDEF9G5az6BaovPwtA8llhH+NebpDLOhM1yykEzQdCxMzJPjhJukXt ChCEZd9LedWW8ID2rWVPenq1YUbTazn19yEOD2vYaq+gI01aDotp0WjE9Aiz VKYKvdvyaq1423t0eG/Jq90mHYj5VXATc6YKPVl6/cnM23500bM5/83VZuRf u1dSK5aF5nzq2a7EdaHyqk3PKtO5wbG2yOTFLjYQc/IxyuVeCBKHBE5sH2GH G0WR92J8FgNvWK5UtwEnbHUM+IE6l8DqfNeO3o1ccLe+6DuhwA+/Wp4olapw wwDLaPfaXQJQOLtDUKmEG3LC7t1wfCAI1p/U32WIkOc39JFs+nch+HTHp96W nK8L2K5E7pIQgfUec5dukfM1dpxvVZCNKIyXztBvktfDiP1UUutVMcjp5SwM JvtfKVN73a1aHIJijzCFyL4Xutr3irFLQsBOrogoMjsppEuttZKC2NvmHj/J fO7hWYG3R6SBeFx9R4P8/Fo1pqYN7snA3RlR281U342t34v1yAKH62Ov01R/ 6sSHU8/LAbJcveMOmTfbFFX6LZOHutLBojwynx//yfGyXB7mXfJ7Ukrd32tc W9J2KkD8zsbLNdT9/aTx4088iuDnFihCzde0My1uibcUQexJ7Qvq+4CL5z7T t61UAv+0K0nUfLVy0UzcXqsE/EfET1Pz9ZxrtduCQGVIrhZdS83XFPmhhZ0C KiAbmrmfmq/s1l9v+j1SgbYb/MPU9XA4YOxx9xpVuKN9ZyHV/wL3849S2lWh Il67n8rRx/Y5Th5VAzEPyWiq/6YbuOw45NTh1LpaTqrP+T4SiXFMdQjJ2e9D 5dd3j5wvddGA/ex9Kf/tF7Ks9htMa4CljHY5lbNkmlZaX9GEQYt3w1TuOp17 yF1NC6xfaC/4b7+QzfEg9aMWdLUsl/5vf1Ad+mFweTGqevXVNdIyD6nkf3PT o/Wg0zcOxJqN/EChf9TLTdN4oUGm8Pv4Z074kctDTzvLB8fv69aUFXHBnjHH yOFifngpmi5zl84NF/WiSid5BOFCic28gmluuLLi4LHlSAgSxIdrYsjrZ9UL 6TmFLBFYyPHGVpXsT8eyH+U/BkXB/MWIOT/ZH5lMerv1CnE4oee27xOZjVjN PgN7JMA5DwQcyb5YZl8t9bgvCdbD807kU983jfofy2qVAsc94fYLyfejdHux su4SGejcFn1uHZkTH+WqOVvKwqEe6b0HyNwZv85IF+Tg2OILFdfIPJFYW3Wj SQ70VXV+P6Xuf8mtMZ10efghEt1eRJ3fcPPwD5IK4Ku5k42apx33nXfz5ipA hYZ9NvU8HhV9aOyjsyIYt269Qz2POygfPybepwhoV8IGap5+2sv9zCRKCTac 259LzdNbB+5FVSgqQ/mswR/qeeZA7sCmL2+VwVbBMIiap7dfW5UQ3iqw/sU1 RPVn9FDUCrNxFTBufHOGmqfTLbYOEldV4c2C1EiqP55cSrw7dNTgq84EUP15 tfduocgXNdjsTP9M5c3VN+LTAtXBKtpsJdUHlszQrdKFGqC09n0YlU+l9992 eaABV6tv5lI5cHDG3NVcE9qVzNuoHDEw3NXXoAnvxqpn/9uPJu3RdzqiBTaP TwlR/SkQbL2ekisAHFl9Sxd3cENa/YXzpqOC0MJe0iJGnm+fjTp/HN0F4duL jI3fFvJAxtLrsZ++CMLNvPAVd8TJeVlU3668XBB0W2Rd57PzQFJUWESeuBAU jBpu8Cb/3rI9XIgeLgi3Rb5elhTgARD+6itWG44uRpldurIsFIVcqNXwOlqJ wlxqmuPWvkcptTlLZQbbka6k2UfO51Wog1PDetmhfuQhVHzDcUUzgttdbYl7 WIixlPWp2akLKXAdi/pyjRvWark3bfBkg4xb2nWC4wvAM01SatNPduCl/zrl bLsYSuzNcn9pcYIdjd3Cu2IJvBjmMztsywXcvXWP2MT4QW3z8I4kOW4YXaKs ZOQtAG3XNLesf8cNoXEPUkZvCsK7rwH3c4R5gPl+Gp0sEwKftIkaIOfrhMVU fz+fCJjecXuaQM7XgaB3hZprRKFkZVJ7PHl9DP6gc5WeJfcb1pNs+8jr4fyt Q3ZDpeIwa736Ph/Z/14Bk9cdUxLgkbFDOJLMhtWPDN4gKXBbUTvcQV0fe7bw 7w6Uhrd7+6rVqP2jgrSY8A0ZOCOb8tmDzGc1T2umNctCl1+uUyS1XxxoXB52 Rg4KskzP3yYzsWOYa4umPATH0FSo+fppsUITW5k8jFoQQM1XwwW5Fhd9FWDr 2kxDar7KPL2Xs4BDESz8NX5Q37d+epPtMnxDEUaXfj5DzdfdjR8XuyxXgrdZ VSHUfI24q/cpo1IJBreM+lPz9Vghm8TAbmVIz43ToebrwBmNQFleFXhz+/VW ar4q5RwYz7unAu3vfnVR14fDBONK9SpVCD20hY26HkabfVe0NalCjkfkTyof lvbf8z1EDbqFoiOp64E2tdftt4Q62O67wkb1uZb9gmV7vjqUvdDzonLMdoHS LEcN4PogmUxlZsDAxuAxDRi3Hv1C5XnHsyoCOd4hxg7DfblTr5CNytuvXc+7 kdX49LmNKT9Q36tLT7hieEEn40/A3DtO+BJTZaBP5wNNjZ53K95wwRe23e7Z +fzg0W2ccu4oN8TaH4jsnxOAzvSYdfqT3OBkffhE1QoheJp35GoE2X/1qYid 99NF4EdWia8s2Qf05LzL1U5R2Fq8OWEB2QcpY257fU1xWMZ87VdM5pGDJ4Ui fSWgU3zeITvy/AcGnkxWTZaE8FvnTr0i8/i9wDjNWino5xzR4yHfz0PfTsU6 DhngjEyaMKPuJ3ca1+kRsjDS+1shiDr/Me2/QkzI53FLgV/U95ecGTdEjv+Q gyXDHYial3qvlhQ3HpUHWbcbHtS8bEyku4uIKkBXQVwa9f1lXd3LbxPPFWDv SMUual425LbTFmxQhPOBjgHUvAzx2Bi6/yc5PwPPaFDz8h6DnVh6SgnYlf8k UvOy4W1GrqSsMpy0c+ii5uU2RWnRrNfKILaE6UPNyxGFCK0j7iqwri1Jj+qD cKfW+WvDKmCQ2HWCmpcVu0QNuC6qAnPJpRNUH66cn45/oKEGTWf4V1F9uMt7 u360RA1E7yR8pLLUcbY71/eoQ4BqkP5/3/8U+W4Q49KA9IcVJ6m8ye90K5Gm AVF9Aq+ofPvRbfW4NZqgeNSwlcrvdMqcrj4VgOz9Lvo1LdywYyjmYkevIJzL SjFukeCBHfsksi0cBOFD1elt8xaQ58csOc6/WBD4Dm/04iHn4bHm98kSaoLQ q+WTVTmPB7ySI0578gnBzK1HBY5kH+zm9n4JPiwIee9prhl8ZN/971zPzBKE RwoJPRdFyX7/9yMEQw1hK1aRv+++cq2p1zZB8N8bMxG1mAf6xOOvqNUKQhSP haIyuZ6qFLEja2qD0D2f/CVrrXajV8u5fe6rVyJGHgdb0FgxWnbxac9ESTsa dnhfWHmhCtFY+xM+buhHmcGi0rs5m5EG1533Di4s5J5cLq2v34WsU3lHbc5z w6mrKkrXndngiGWsxtu+BfCsuzyxpJUdLL1SRlaaLgahdSaWP1U5YW3Nl5mB kiXgs+ja11xLLjDev0OkS4AfFo9dMTkuzQ3jyRJheu4CcLm59617ITfUyz26 uS5JEKqNxS/pkfO01l+hfPcHIVjIUv5iTM7TgF4thWWLRIBX/bdhLDlPpXRl TnOvIver0nO8seT1M5Cy9g0jQgy0xH3k/MnrpcfXIt3kgzisvHEsnpe8PmYH l939NCoByY+1PE6R+WHGk6IpYymIMV6a305mZ5vPMQV7pOHx2oh+il+VyzxV YY+XASnFJYupedqmqNTUUycL2rptXyh+xTnF2DgcIQesnydkqHmacYBboVFN HjLcQr9T/Gq3OLJ+9FEe2Ipteah5+lxx1+/5Pgpw1/7DQmqelrz3fPNwviJk eTnmUfO0ofbWpuTrimBVL7efmqeunJZO5TpKUB28cRs1T2+V5fhu/KYEHS1m PtQ8PTghMe3tpwz6pqBMzVORfIvbrxeqQJVFtic1T1/0F8tvS1MB63NfW6nr 57XJXQ5bY1Uo0DOao66fSwp206caVCFl8eMO6voZ2Nt7aF2wGgRprD713/Oa rbx3iJg6eET2zftvv7nJPPVsrjp8uC6wmcqhxV67VRw0YCpb9waV0xzsXJ8F FCHufTwf2xxeoab6V9HMC93ok3dUWnLwD6QcbyrVG8kLFR935RxncoLVHyOB Y0f54MFx5SWduVxAOzf2LiGbH+aPlYpOHuaG+Ea/tp/TApCX0bPk5zg3vKw6 clJZVwgkf4zuOkH2PzXpVVLPHRHo37TWT5I8//57uiQCW0TBadk7Ey7y/EvM lbKrq4iD32mv1kIy26+0DyjfLAG1vHH3bMnzHbH+4OnFCZLwurKILYfMfvQg Rb9KKQgc3a/ETX0ephvuLJ0nA6Xjm7Wo+Rl1c5+TghF5/q2Lj+2nzu/55cXi RnIw6301hJqfvK9OrOz/LgcOzrGtFP9JK1ZpdjsiD2LuGqLU/Dx2N/n9GyEF WL+yKZian86j2yP9nylA1Oh6M2p+nv6WyPnQThEOL7mxkZqfUSHEEelORUi8 0ihCzc/Y7vCI+3QlKJVUiqbm51T3ckemlDJsKbKqp+bnZlf9CcU8Zdj+lOVC zU+JTbe8RFxVwP5qrDZ1/u9JnswhBlXAI/ZAKHX+iYw/6cfPqcKlmrlQ6vxr f+30tFFTA5VX143+m5fect1b36vBrbnUD1T+XZ6dLrxLHVQbOPWo8y0jLPWg gF0D2JfXnKDyhzdvn114KABCP7mC9Zu5oST0yqUVXYJAuL28lUfOI7+ZJYKm NoIQf1tlOx8PD3z7nBL/hikI6w48ufhcjAdO7n09LaQoCLKrrj17TuMBhurp M08WCsG+Bs4AW/J8b7iwVXPfAUFgk1u9YYB8Pt80kZY0L0MQrh4+lytPzkez DefPDU8KwpqhtY2a5O9vLja66epN/r+rjF7mIh5Yn5Zw9UilIOg4lWj/JOcx x45LF64OCkL23rf358j1LclNuib5SRB2LJU0cyP/P2zV2bP284WgtnjyDSJf L/rStcs1DeS8P1e9eDP5+399g/9+hhjYN/gyOHHC/P17BvYN3l8oeFpl0f7X NxifWOHvxxj66xskJ3B8mE5n/fUNTvhm+7pYs/76BnJP8kVNO4b++gbZ8kyL oLe9f32DFclPHhZWtf/1DcL61g3VoQaEfQOZjGKBjNpvCPsGhUVWOn72RQj7 BjV5ZXe+Cach7BtwXJoUss9+zsC+wZ9617zrh0sY2DfITi65P8+tmoF9Az/5 ns5hvRYG9g0alvs8XrBqI8K+QQz7jxf5FywR9g0eOzJlvioDwr5BedLBTP5w fYR9A/r4xThpMw2EfQO5dLmTJzbKI+wbMCV75jgFRRD2DZYpPjngPL0IYd8g dXdDynltNoR9g5bTUxFvwicJ7BssW5+yx05xiMC+AS3/zUeOyA4C+wagtWqg yq6OwL4BU3Udv6vPNwL7BvRDUt7iGu8J7BuAIPcdSdk3BPYN6Kvu+hvZPyew b0B3er6GVpFOYN+A1nVNiLYplcC+AX1fq/OFwlgC+wb0mC8n6O7nCOwb0KNy 1q0xCCewb0BbvUJmyPMQgX0DGkPYM7c+gMC+AZ075Xbpva0E9g1oq4YWEXOu BPYNaP/7wb4Bztg3wBn7Bjhj3wBn7BvgjH0DnLFvoNgd91VMqoOBfYP3Z4T8 y6b/+QZOW2mt++i//voGHcyVPy8/GPnrG1jU5es//8FCBtvzV8s9n0Y8glLf 9puOoMmh+KdHb82hPcql++S8BhD2CU4IFQtZXCtnYJ/g3eEHXQsv1DGwT3Ds Qcf84HQXhH2CqO+8Wp/z7RD2CbppH04d6DFD2CcY8tbytH5thLBPkBrwcR1t 1zKEfYLuVcW/8pyUEfYJypccFnBJl0TYJ4CYdREmbfwI+wQwkPWB4yoXwj6B T23jDp8HswT2CYYCfjYeamcR2CegBc3yKr7uIbBPQAvd3Vi9t4XAPkGL5s0v x7ZUE9gnYK6wfcdilhLYJ6C9CPF7PPGWwD4B81ONYfGLHAL7BEyzIk3F8QwC +wTM+DN3s1TSCOwT0Fqln7WyXyewT0D3CnI+WRtDYJ+A/sAneIPzaQL7BPTN FlkLtY4T2CegH6mU1pwNIrBPQH/+SfD9TT8C+wS0SvX53/y8CewT4P5gnwBn 7APgjH2Amqb1hi/LfjGwD+CQtdroeO+9vz6A6rxUz02Pf/71AcQdnNtjKof/ +gD0tV+2ezWw0LZS+rGVEVPors7hl+GVI6h7bUeOgdssuvVBy6uGdwhh3r9A inksPa+MgXl/459Hn51bahiY96cFV3fxPm9lYN7PbJkINdHdgDDvl3MdPnla yhxh3p+wfOlB36pVCPP+2mmeYjfX5Qjzfu6CFxOaj1QR5v20M3vyVcZkEOb9 Dm0OdoebBBHm/eXntkkOKyxAmPe3vOjuuqs8D2HeT2trqFUVGicw74fnLTp8 FX0E5v1MTQXLHZ5tBOb9Pok/Jnfl1BCY9zNTYPYW71cC8366W6nT49EiAvN+ 2m6r96/W5RGY99MXbQ1WsnpGYN7PHBHxH/e6R2DeT+d9vu+LWjKBeT+dx+IZ W+YVAvN+mvvD5jevogjM++kTbDvHbOkE5v20A4cLA/gOEpj304TYdA5f3UNg 3k9fk2+59doWAvN+mobnwkuXNxGY9+M+YV6PM+b1Et23R5kBPxgVe5XsJIVb kcO6hIgF3fV/+X2kj7X3+eIBNFKWIlUhOoKuygrEFa9loeX0RROv+SaQNoo6 OnWPhbjnxma5234jtejS2qakYYT5/aoalT/btjYyML/3rExCM07OaOdAnatm tjDEtIvwBR+2QZjnM+Ucvu4bWIMwz3cYTbJdO2WAMM+nV3SZ/vDQRpjn+zUW 7okyUkSY57coez7d/FIMYZ6/7PGLX51ifAjzfAcvGW3CjANhnu8T/GK//O7f BOb5TPbeGMveYQLzfB9rDf3e6S4C83zawjXzb+1oJDDPZ+qc2+BrXklgns/s OVPu87mEwDyf9mbzp89aTALzfGajU8OLbS8JzPNpKYducuc/IjDPZ9awjbCU bxOY5zNPXPp5Z3U8gXk+bedrRxPvi8Rfnq+Z8KdONYLAPJ++3npei0wogXk+ zdp2e7HUfgLzfHpyS6DI3HYC83yamJjBbnZPAvN83A/M33HG/L1keFBxZ94g A/P31ODEGs7wTAbm713eG+nK5zv/8nfWAcvu/RuG//L3BgXdQ2UfWejoiXbJ or5JtLrbgTtcgIVaAhasEno5g66e2z8jf3QIYb7uoxc27B77iYH5uq1mZ4RZ wncG5us+b9Qqk4ZaGJivJ1jnzbfTcUSYrwfyZgmN2logzNdpXEZH95wiEObr MWeM9cO36yHM1zPdZpujBtQQ5usJm28+cPeRQ5iv04r3mHgMCyHM1328b1Qa Ry5EmK+X8479cFGYjzBf95n/hd3WbILAfJ05SdvVfHKAwHy9pfvoD7Zd7QTm 6z7i7syI6VoC8/WW1KBtOnvLCczX6Z8z34xwFROYr4PncFR7ej6B+Tp9P0dn 9tosAvN1GudJvYiY+wTm67RGwxR6UwqB+Tot8qJgxrOrBObr9Iu0iF20aALz dab87yiNVWEE5us0b6fsmKUhBObrNC2O361aewnM1+lNWRre8b4E5uu0wUaP 9BwXAvN13CfMx3HGfNxyl0THhFcLI4vj/Tr6jWZ02shOdK/E97+8PFu3Ve+l fj/yPV7gvDJ8GNl5Z+vYzI6g8PuDQsEB48g88u6R8WIWks1yTYm1/o1sdlpz XxoeRpiXqwz3eBaM1DMwL2eGShpxHNqE1GTF6s5cEIbULUPc/rzrEebn3cwE PftOU4T5uY/SBb5CB0OE+Xnqwsy71xfoIMzPh3JNraVACWF+PvRax8NISQJh fr5M2r7l7AQfwvx8qEPQL2IrJ8L8PLXoeKvE7B8C83OfhaffW7aMEJifg0/p q4sbugnMz31q/hSVCzUTmJ+niovE/7atIjA/hzbTjRGrPhGYn4PDdm2rRW8J zM/pK7fuEI/MJjA/p7XcXLJt/RMC83N4+vu2gOwdAvNz2ti7U3rxCQTm53Tz 6O+Gs5cIzM9pXV7PrQ0iCczP6Y1+9b+uHyUwP6flPr7VyxlEYH5OZ8gK5azb SWB+TjtpM1P+cDOB+TnuB+bdOHMQAdJ+Bj9RT7z8463pPQiaZj7McxlCOxZo 3FI0H0FK4y8d2tTHkFbQuJV/KwutF5NpfCQ5jcafntw8emEEcejcb+lkJ5/n bGLOJf5xRVIrOGqV7pD3axAYTT6bRKRM3CyIHyTXI3ql83GSM/Hs3KGCZb9/ oSsGe3Ofiw+hU1In2/2fjCCmLm3HyeMs1Oaq/oPj+QSqXX72dziZMV/H66V3 /H525ud3hDPm69yJ3GHfOgsYmK9nxe/2owd0/OXrL+1l5vYtGP7L1zdX6D41 yGchztrYX9y3JlFafaikpw45V09Jz87fOoM8oPijXOYQwvw8oa4w3zDyIwPz c4Wni5xiJqoZmJ/LyNsuuHK5hYH5Ocw9XPzxuSPC/PywhVLT6l8WCPNz+noL A4ttCGF+Lre4y+bLsB7C/NzhR8urG3HqCPNz+osPFitq5RDm5z5J0/us6cII 83O+DqLBa/UihPl56uc7OwXvzUeYn9Mv2LT0t0wQmJ/TH37q5PIZJDA/9xHJ 41sw1k5gfk7rX116+PYPAvPzVE9xi8Wd5QTm56kRF+qk44uJtP/xc6bmtYqL W14TmJ8zBUe1FpZkEZifMz9VpLcuTScwP6cNSlnbv71JYH4OWmK9ToaxBObn NPMthtMPownMz2nJb869zAkjMD+n8/M2JBeFEJif07pUzgfMCyAwP6evbDu9 Xnorgfk57bLV8GdXVwLzc9wfu6HM6tot//qFeXiozeiTGeM2Ru71CIm7zk2o Jgw9zRWu/MvHudSX8HJ696HrznYju1YOo/I5maE31SNIw6T1jr30OMqIhXrL byz0cOGCgLrZaSQkWjB3W2IEYT5u8atn7CJRz8B8XGrdopbCxS7obE62hMER YTC0vFQr1rYeYV5uaBRY8Xi7GcK8PFNU0nWYzQhhXg5q1w/K/9JBmJcnLEwb TS5RQpiXl5/57H+xXQJhXj50/5Lxpj38CPPyGOOkSMcpToR5eeo0j25B+QyB eXmqWZjnMh8WgXk55AY3m7P3EJiX04LerxQcayYwL6fLft4UXF1FYF5O961t nv39icC8vKVR8PNB+lsC83LanJ7dhEQOgXk5bOM2+CGTQWBeDpkhvRK37hCY l9ND7Y8etEkkMC+nCSGBg7tjCMzLae+7ZphFkQTm5bRwWu59n2ME5uX0NdI5 cmFBBObltFmrYyZDOwnMy2mpi1a0nvYiMC/H/RBQqJ3Qzf7XFweh9Txfk7tQ xHTy++aMbnQ4+8I2/UVDKPiB9aFi3hFUdvZ+85vaUbQxw7H4bAsL1e7/+nj4 6xTi631ZcurZCMK8/NyWd+pnRdoYc9y+rn0J5Ps7Hu4uv+kGUYMipXW7yPUQ ckEhfJuIP1s2PYz3/YXaT/EOlNMHUd4oL/2mL9mr/UePVPiyUHSfhF/rlgl0 b9cxu7CrLDSa9yvKq+Xfer98djfR6x9AV8fXSB6JHUZSz6Jngg1Gkc7BZwsr qlgI83mDju0lohtaGVbl9vVbK8nj671reinjQmjcXZrL/nkYFWhHXbRUZKE6 wdnIBMY4Ymd5P6/MYaFjvu/ech4dQyJPxD5KNbMQ5vmj3oLKehauaPKYu0vA JPl6Jz6GORk5E7ZrB82NJ0fQQHbG6QZyLhsXr7TWYJ9EueUqCqLbWWjHmYPf gsf+rd/p7QntJAHevxnz/47ULuKIWBED83+dE38sbRra//J/PVW/+L2dQ3/5 /8PNpS0Xs1ioLGJvpebRSTSqsO27yGoWcudV9Z42mkELU5+a230aQpjve8hf mbo+W8LAfJ+wGTHlSK9mYL7/IW1y9TXfFgbm+/6EhdW+CUeE+X5mcqD/qIkl wnzf0ixyjVwNQpjvJ3DvWrHPSB9hvl/Odu7S+j51hPm+q15rwm5heYT5fozV BlPtj8II8/2hlM9Dq5MWIcz3+UaJ45t65iPM92m7DB3tdCcJzPfpEUd3hlUM Epjvg8nmkDOrOgjM9+WEG7XFJn8QmO/TZzoCzRS+EZjvy+3bskCupZjAfJ++ ebFqDuM1gfk+pBYuVV74nMB8n95YrPbuZDqB+T6tL7SwWiKVwHwfLh3XmDkW S2C+T/P8OCM2/xyB+T79+N2guPEwAvN9mtztP3lLDhGY79NWGc5W7w0gMN+n P74jnrBlK4H5Po0pz7X5kSuB+T7uz/LjF82uev7rF+b7U2yv/fs12hmrOtsj VmY1Ij0Ptpdz57795f0ty1Mv1A79Qtlr4oBNYBh9iXF/IsUcQbPs7nvejI6h qDVmYQ3VLBT4qs15pnYadR/NNHuxdARh3u+eafr+cGcdA/N+NbfJzUnuLiiP jdNk8T5hsLzlYaxjZ4cw/w8M/Rwtf98MYf4Ppqu1Q7yNEOb/ryLdQluXLkOY /4t1NhxbyauMMP9P3eWlbrpOEmH+Tz+xZte2e/wI8//AYAXdjHVcCPN/OpJ9 ZrtqlsD8v3zttYYdt1gE5v9y17PmLnj3EJj/w4sH8z7qtRCY/7f0nC9kl6wm MP+nyaHLHzaXEpj/t5ycrcvIf0tg/g/6C3y8duYQmP9DXXQt42wGgfk/02NX ekj7HQLzfzoRphRxP5HA/B9WVx6SuxVDYP5Pm8kqVlp0msD8n35pX3hK8TEC 83+6yPWH9owgAvN/Wuwpt80WfgTm/7SeI5HSE14E5v+4H+MZL7f3Zf7ry8GT q06Gb+hCYxp+kq+XdiO1dY+2J30eRE1lYh/vkc9LqRvl7mtmjqJ08adpTU0s lCKTHiv0cAq16M+/kF04grAfUGjlJJXU0coYCooRK79Kvj+Xl6b5BTeI0faJ suOt5HqOCrQfs99EyH9eJ2cj8guxF9kcW6c0iL63bPpiuHoEOTEesxk5sZBX 9lUde6MJZHpqNO1SMnm/sfg4Llb/b72c93prtt8eQDOM4yrBB4bRUChbcdvi UVSxt6+Z8ZXs6/98hMU854YfyrUydgQXRmd+IY9fNbwmb5cLYX45hCvl/jAy TTzVZcxP3i8aQ9Zzxo+jjdKZN1YzWMhBa/XZYMcxJL/88MYH5P0O+wsdq7cF yCW4ovCN2ktsRsnX6+3in97uTPgtW3mtsmIECZyo64w7y0K8lzL5E+on0Je9 AyqJ+1nIWmgj0hn6t/4E3rGNBa/Jz7Ey7s9oIQtt2u/X0LpuHK0+kbjydykL TTKWijnMG0OXL57L9SWfV36Xu8pK/BaE2VZ2fjBpY+QlCQR09JLH94xknKpy JlK4P+hyRo2gF/dEhq4GspDlT34DLu9R5PQpu53jB/l8YB1ZoNE9jmJMyn7m P2Wh9ASb6YQ7Y+irw8oXHxtYaJnr/clUaRbat1vX3/EmC4VPx2/Nm/633v8v /6PRsF/Rsahxi/vAOwb2K9I8GmVdr7T/9Su4v5/dd65i6K9fYdb77XzbExbS qXezWO03iUI2pES9N2Oh65WPloQoz6BZ6arz9jVDCPsTATbHvM/klzCwP7Fw u8/NIHo1A/sTMUWF+w1tWhjYn9Dfmi+dIr4RYX9i8ubom5fbLBH2J1omPshe 4waE/YlMpx/sqZv1EfYnMjWWBFwW1UDYn3BIDIh21ZdH2J9gXglY8LtfGGF/ AsY/7bz9aRHC/gR0HhhxXMiGsD/BpMU1tbtNEtifoJt7r9bmHCKwPyFXftbq nk8Hgf0JWlTVY0fFOgL7E7QlgQW6a74R2J+gb/a/OcP+nsD+BNP57p01g68J 7E/APf1PS7SfE9ifoHPq+RanpxPYn2BuqO2xMUwlsD9B22i1IP1mLIH9Cdr4 liGFpecI7E8wH1qzOYqEE9ifoGvflFtucIjA/gSt39k/Pi2AwP4Efan3LqGI rQT2J2jbdmxRrHYlsD+B+5Nmdjx0yO1fv7BP0Wdz09bzTjvjRLRgHt2nEUlF m/nYFZf/9SvYuZ88//XqF3q3Mu+n/dwQivO1jB99MYK6d4nYB7eMoXeg/KS5 hoUqeb9+5CX3MBIv3e8nG44g7FcoVE9Za+fWMbBfse1edsjOMBdU8UC7dHKX MHCHWnWVRdgh7FuItYc8XVpihrBvkRlWviD7ghHCvoVhq+/Ad5tlCPsWk+dM 33voKiPsW/Dx9UJqiCTCvoVct26GwTt+hH2LwAItC2N/LoR9C1pixIW7QbME 9i0clj/r2FjIIrBvIWeZFppxoYfAvkVqcPS1lw4tBPYt6PoTcYpENYF9C6ZT xa9ll0oJ7FvQ7N4Nx/54S2DfAuZJxw9fyCGwbwGTycFvGRkE9i0giO/HJHsa gX0L2t3eEu7viQT2LZiDYpy5r2MI7FvQ3kbN3l92msC+BX3Jn9N3J48R2Leg 39Pdc78piMC+BW39llN+B/wI7FvQ3Jv9S3S8Cexb4H74HUy7YZXxry/cK/SN PTW7UNQN8ehv/T/RWl3Wc/30QSRwpPh7Xtswin7VEN2WNIpqP7/3yG1koXkH Y7lV4qdQXMFMknrpCMK+Ri17x/eS0lZGz/37k2suk/erSY2iONYNYr7BMyWl ZnI9W1/TlAM3ES/CV9crDfWiuBMpxUvHBlDH99CDkRojyOaV4ePrtuS8lXQQ 5FSeQK8fSdq53SbnPe8r7ZDaf+tVuLJcZe7YAMpumnl/xXcY1TUz0hOnWKjq h0pYWxkLYT9k/ldTRjx3KyP4/dG2TWXk8U17jJ1jXAinM9czesnnnOijSv7N XCyUYKqn+yZ8HPkFWHllkvcP48tT/prEGOoxGl2mRN4vsE/i+tuP/Q/TFcXc 7doxPEy+XvLbsAC6MxGi4rFKjtznGa5LO3X3FHm/YfmP2X2YQKdURqxvHWKh 13VrQs73/1t/+IFnKw+ms9C6E8z65eT9Eb4rMRN0x9HB0t2SuV9YqE3p12/O /lHEVjXkykceH/spTeX3jO7qtDFK+kuLo7vJ4zfFy0mMOBOPZ3trHQ+OoFar RqEvu1houe0X8QLrUbQmdfQKF3n9DmWsud1aOY7cCxQ2NT5noSszXE32l8YQ IRnWtJDcfxB2pTf7F7CQsGmUne518vmQefq66OS/9QqlJp/h5BlHPMxpiYeV LJQ9sLUo+N0oyhqpv/eFfJ7DPkzgMq3vkTOtDE4Ri1ZNhVHUcy98cFsF+bz2 gX73zY4xJHg2j+8P+fvB84Jz0sbJ9Vsvf+hg60zwegTpJwqPoaZa2pow8v16 hTs7OhwYRcmnJrw+17FQgd4lkbacMeSW0ZmxqZ6FZh/NM3SaUf+7Pj79B1qb Z/6t96hQhkXrtDoY3Y4Npfyi//v7//d58/9+X/l/9wf/+xTAUxK9e7u0goFf n3GS+vt1hOfR+34F52/97/vHIQb+e3w8/Pr/v+P/7+f/AbJ6rwU= "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[{ PolygonBox[{{765, 968, 520, 1093, 681, 608, 570, 1006, 899, 803, 719, 646, 521, 969, 862, 766, 682}}], PolygonBox[{{960, 1094, 861, 533, 534, 975, 868, 772, 688, 615, 577, 535, 976, 869, 773, 689, 616, 578, 1012, 905, 809, 725, 652, 536, 977, 870, 774, 690, 1054, 947, 851, 617, 1045, 938, 1077, 842, 1067}}]}]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJwV0VkrpmEAh/EHc2TfDtAoZC9bJhpmcGQ5MKJQJLyWw5kvgfcdysewZIti isyU7cDMyPY97AdI/BxcXf/rvu+ekyc39KPre3QQBFGYxYsYiAmCdE5DKlKQ jCQ0YRxriPFuBCdI1DO4RLGO4A6N+gFt9uL7dz8EwZheRbQO4T8SdD/voNCb Z91hryFLT+sDu8Lu4S3k2hfOf9sldhFXc5hv0eCuXh/aldzLtfyL8/je/Wf+ o0u5lT/xAqfxqPs63tfl3MU1vMHZvOJ+1y62o3gY/xDv/IirnPfxNgrsJ+d7 dpn9jVeRaf903m1vIkef60J7Cjf4qu/QYs8j1ZsR3Wmv46Nefv+J9hD+Ik4/ ot1eQYY3EX2GAj2Ja3zRt2i255DiXUgv4RWDzo4Ra4dxinw9gSvU62G8AQ7E QfI= "]], PolygonBox[CompressedData[" 1:eJwV1EVYlFEUgOFR7O5ABexABbsTG+zCWLmxBUHsQN2pWNhiom50J3Z3rgyw xW5dKba+s3jn3u/M2cw8/0zNcQlDpuUPBAL5GOjlm+hdIBDow6iQQKCt85iz jvO79865N3aPcx6gsvtS82HuWYTrmzrCPZUPNNf7+EKMzqSUvbF6CTcIN1vE e5rpvXymu95NSftj9GKuE2a2kHdE6z18opveRQn7o3Uq16hhtoC3ROlMPtJV 76R48PPqRVylutl83tBU7+YDXfQOitmP1wu5QjWzebymid7Fezrr7RS1P1Iv 4DKhZnN5Ffw+9U7e0Ulvo4j9ETqPWL2fSmbz9SWq6jm8JFLv4C0ddQaF7Q7X 87hIFbPZvKCR3s4bOuitFLI/TM/lApXNZvGchnobr2mvt1DQ/lA9h/NUMpvJ MxroDF7RTm+mgP0henbwGaKiWQq51NdbeUlbvYkQ+4P1LM5SwWwGT6mnt/CC Nnoj+e0P0jM5Q3mzZJ5QV2/mOa31BvLZH6hTOE05syQeB591vYlntNLrCdgf oGdwirJm03lEbb2RXFrqdfyjv07mJGV0Ig+ppTfwlBY6nb/E6SROUFon8ICa ej1PaK7X8odYPZ3jlNLTuE+EXsdjmuk1/KafTuQYJfVU7gV/szqdR0Tr1fyi r07gKCX0FHII02t5SJRexU/66OCfyRGK68lkU0Ov4QFN9Up+0FtP5TDF9CTu Ul2v5j5NdBrf6aWncIiieiJ3qKZXcY/GegV59NSTyaKInsBtQvVKcojUy/lG Dz2JgxTW47lFVZ1GNo30Mr4So+OdR4PPgOfjPx0cpe4= "]]}]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwl1WWUVVUYgOGhW5Du7lLpku4ORVK6u7ulS7obJRUElJbu7u7u7vI5yx/P fPvd59y5s/aZu26Khu2qtg0VEhISMXRISDBX+VGXCPyl65Gdc3ow2bikR+Il Iav1z0Rkla5PDsKwxl49IrFaNyAn5/UQsnNZjyIsf+v6RGaNbkguwvGPvQZE 4W/diNyEJ0Lw9xOJyERhrfsaEpV/dGPyEJV19hoRjbW6CXmJxnp7jfmKdbop +bigh5KDK3o0X7FBNyE663Uz8nNRDyMnV/UYorNRNyUGG3RzCnBJDycX1/RY YrBJN+NrNuoWvLNeRHXC8L29y+YIcnNdfzKXUYtf9QdzCTUI7cGtNMPxhT+o E7yH+zabzYkZ6v8H/Ke5yfKjuTR4jb2awfuafwX/J2ZL199bLyas/skMZa4w w5thzc8spzYF3X/FHEkebuhxxORf3YJYbNatKEQstthrSWz+1a0pzFU9irzc 1OOJzVbdijhs0W0owjU9mnzc0hOIwzbdmrhs1W0pynU9hvzc1hOJy3bdhnhs 0+0oxg09lgLc0ZOIxw4dfNjis123pzg3g2cUPEfu6snEZ6duRwJ26A6U4JYe F5wj9/QUErBLtychO3VHSnJbj6cQ9/VUErJbdyARu3QnSnFHT6AwD/Q0ErFH dyQxu3VnSnNXT6QID/V0ErNXdyIJe3QXynBPT6Ioj/QMkrBPdyYpe3VXynJf T6YYj/VMkrJfdyEZ+3Q3yvFAT6E4T/QsknFAdyU5+3V3yvNQT6UET/VsknNQ dyMFB3QPKvBIT6Mkz/QcUnBIdyclB3VPKvJYT6cUz/VcUnJY9yAVh3QvKvFE z6A0L/Q8UnFE9yQ1h3VvKvNUz6QML/V8UnNU9yINR3QfqvBMz6Isr/QC0nBM 9yYtR3VfqvJcz6Ycr/VC0nJc9yEdx3Q/qvFCz6E8b/RvpOOE7kt6juv+/MBL PZcKvNW/k56Tuh8ZOKEH8COv9Dwq8k4vIgOndH8yclIPpDqv9Xwq8V4vJiOn 9QAycUoP4ife6AVU5oNeQibO6IFk5rT+hYK+uGqYb+0tpAof9VIyc1YPIgtn 9GBqBmeiq/LJehlZgt+ns3LWegi1grPQ1fhsvZysfKPPmUOpHZyh/mL+EVzj W33eHEad4Mx08OX+Z3CN76wvmMOpG1zSK4J9LjKCnwltf6UZ3sxm/gdswQI7 "]]}, Annotation[#, "Charting`Private`Tag$47585#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV0mtPjmEAB/Crk40UoaRhQjnNaVJTFDbHTa0MG0M9OnnDh0AHfA6H6Ghq 06iVbBSV+BoOHV5g4ne9+O3//1/3vefZ/dxPfuJ2za2kEMIQJ1JDeJocQi2l fEsJ4Q5bmLRbWMp7+xqLegd/qaOM787vspUpu5VlfLCv809/RoIs3/fI2Ulm 7cP80O9RwLTdRq77Ou1z/LLTGddrCTy317unV6/mhr3KfqyfYs4+wk+9hUI+ 25vc81K/QLu9zu7SK9mtj8jfzgv0V/pl9uvv5HLnE7KOJLY7fy07nW/Q+/Ri WSP3yFFZKutdXy2f2EXytNwph+QhOe/6Zjlgl8hLcp8ck2Wy3PVZvZUD9ja5 Q76RM67l6/36Rfbqb+V953l6t17FH7vQHtSvkGF/lAmS6bIbWBP/D/YZFuwK 5vS2+Lx8sR+Qyaf4u5NCt93IUVawMr7r+E7is8fP5ar7smUOk3o9qfTYTRxj LVPOGkij127mOPPxncVn56v9MP5PmLYbWUKfvdEzvNDPc9POtjv0g/Ks3CWH 5X8mZFgW "]], LineBox[CompressedData[" 1:eJwV0zVYVgEYhuEjJnYXgmKLqNjd3YWBOrlYCCYGtpsdhGDnopvd3U52F4pi TnbeDPd/zvNe33j+yLGJQxLyBEHQ38/XkCCokS8IjuQNgpF01V88lxHFXb2S StzU4yjIfj2RbnzVy6nPPb2KytzS4ynEAT2J7nzTK4jmvl5NGLf1BEI5qOPp wXe9kgY80Guowh09kcIc0pPpyQ+9ioY81GsJ566eRBEO6wR68VOvphGP9Doi uKfjKcoRnUhvfuk1xPBYr6cq9/VkinFUT6EPv/VaGvNEp1CNBzqB4hzTU+nL H72OJjzVqUTyUCdSguN6Gv34q9fTlGc6jeo80lMoyQk9nf780yk047lOz/0G eKynUoqTegYDCHwfqbbmvNAbqMkTPY3SnNIzGUge92m2FrzUGdTiqZ5OGU7r JAYR4j7d1pIsnUltnukZlOWMnsVg8rrfYGvFK72ROjzXMynHWT2bIeRzn2Fr zWu9ibq80EmU55yew1Dyu8+0tSFbb6YeL/UsKnBezyWWAu432tryRm8hiiw9 m4pc0MkMo6D7TbZ2vNVbqc8rPYdKXNTzKO92r+7LNz2cQrbNuj05ehvRvNZz qcwlPZ8RhLrfYuvAO72dBmTrZMK4rBcwksLut9o68l7voCFv9DyqcEUvJI4i 7rfZOvFB76QRb/V8wrmqFzGKou632zrzUe8ihhy9gAiu6cWMppj7HbYufNK7 acw7vZCqXNdLGENx9zttXfms99CE93oR1biR+591d8B7LEt1Bb3Pez+ivZ/1 /J77rXs/mvu9ecZ5/gctmaVT "]], LineBox[{1084, 605, 1039, 932, 836, 752, 679, 563, 1004, 897, 801, 717, 644, 606, 564, 565, 566, 567, 568, 1005, 898, 802, 718, 645, 607, 1040, 933, 837, 753, 680, 1051, 944, 848, 764, 1063, 956, 860, 1074, 967, 1085, 569}]}, Annotation[#, "Charting`Private`Tag$47585#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{1088, 1092, 1087}], LineBox[{1090, 1091, 1089}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->NCache[{None, {Pi}}, {None, {3.141592653589793}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotRange->{{0., 14.999999693877552`}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}], GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxl3Hk0VW/7P/BtpjIe8zxnLFNI6r5SUVSkEg2SJpU5KTQcQkhSKZoQKk1C pUh7n5ISGqhQZE4iw8ms1G/vZz13z1rfn38+6704++yc637fe2+v9dHwDnDd zksQxBZ+gmD+O9r86rn28ZQFxI+i0OpniQsm6q3ODtbXopOdlvqX/1agskXX c2qyOtCz0+cid3M/IeWW4i5voz7ksTxRr2y0A0n7br4ptGgIzTpqk5zzuhed NrV/vHLtOFqrQ320z/mJPqWZcLgSU+jGr4WpBivH0PGcI295FXhge/w0+LPi N5JL6Yg/c5kPivrSPEUDCTi2ZtmC2lEBeBO60CndjRf2zr2y+VWUMGQs4c3a qMIPiwcmw/07pkGizfpjvEcFINJ21RZFa1FgfZ0x6ZorCDZ55+8fpsSh4hC7 MeS2EPiOc9kVopLgmJtcY71HGCYMJZqN10pBZRnBfjElDLa3bmeeO8eC9NUa 7rMWiQBXytHL7Zk0HNm0dhkXiUBnopdbsJAszNb9Qjhai8Cygf3LvlrKwcHq NXItZiLwY6vw3vtH5MH15/xlQbNEwF5bjvfYMwVwiFkRYmEoAlKvdZPyBxSh 22sFe0BPBJTj7rpYWiqDzM8Nb+RmikCa4VwJ1k4VuD+RmvVWRwQqFRfOGTql Cofc1xh+0RYBG+VnybPr1KDHNL5Zns5ifFkhW6LUAVG2VLKWCKhGqtl66GpA iumn1Vp0FtHZWOT6UgOe9wzFftAUgVnzFe7u36QJ04VVxi/TObhZqsyR0IJL 4QoqwXQeGEpcuyxNC660XG1dTWeH2S8uLDPWhv2uFwvn05kcmvdr7I02ZNeU fjKks7+R2eea7Trw65vLcTU6z+/f9sFDRBdul/wqkKHzEm35FaJZugCSmX1i dNZjJxx4ZjUTqpx6JkXobLB9LqXzeSZk9TrxCdJ5O+kTfT9ID16jiqV8dKYy P2zjyujD8ZuHlHjoPJz7d2z2Q32QzGhK/KshAlt1bolcWGEAapX+4X/ozDU4 Y1k4aADatk4ZU3R+lPOrbSTOEOZrhokwef1iLZinagRX/AMu/aazkt+x4lkc I2jn5C5hssw034IV64xh4N77aUxO9ysZ+fvXGAxjOxt/aTCfZ88Xbv0zdH18 qcbJmGK0UXpln9I9+nPfln+NW88P7TK6/s9FZ0DAlrS4bcqC4LlvJKE6Qgze borZnGsqBM93ZvSVhUqAw3ntLC0pYTCTipwdUSAJw1uWB3WVCsOFPZ6ofUQK rGSKnovR8yK7OYIdaiQNYr7tOYsWi0CP89oNndtkINj98s6GefT3F/x4a5gh C1PEicntc0Tggj40L2+UA92Y5PWHTURA4fnJEhUNBTjZPXXgvpEI3B5XrVDy UIRL1952TemLQKrBnoCh00qwyK6+jkvP32ePkPycN8oQetVf3EdXBEy1nmge /a0CNxU9v62g5zHqIs9WSQs1KHF2it1Lz9+5uMj0Ukt1qDWIGXxLz5vsMy/3 TR/UQbRX/eVaOku/nz/xMVQDog3ufBunPz/lghKz7VKa4FN/xPEhnd+Jys5t y9OEkQXP1sTS2eS78wzH5VrQM8ju3ELni6f0D7xq14KsEpE/DnSOkuSpUj+s De6XdaQt6Cwr8bBnm6IOdA19RDp0djvhVH/2oQ5smq47T5HOC+PJ5HtrdcFE 6au4FJ0tXWvav/3QhSxBb/sZdL7xs01pOG4mBEuuqheic4VkjUafjh7E5ocm 8tP59N304doyPRjZPKzES+fP2rvzknfog67jqcUEnY12fiS28xqApf7pCWb+ DPTU1HUzDGDRT2l+Jn/Y6TDjg60hHPd8upKZv/gQ8VNp7w2h6EffG2a+Stw/ /rYIMIJHwjF+TE57HDaHnG4M0Dekw+TP8868v3bLGKYV2nCZ+WspXRkwXF+I 1gtYjyZ030Dd1/Zf+6koAh2cHWuyD/LDmajkkPMHpoNfyVMDvxoBGHTXCh36 JArq7H6Dun5BCFQbzV5oKAGXy/I7P7cKgXPM3IYrmyXBqv52jPg5Yah0eigW d1UKki0LNzXKioC+QEpybBsLQkMq9qjb0+u94O2myywZSP8UvKV2vggc2q7L cl4tC3Me/T5fZUn3yYwmlkK8HNzWjDuabSoCvNLVsrveyYPLTenSBGMRCBNT 2l4jqghfO/lqzhjQv59fFX9WLVQCt67XbXvoPvw1eIrtF6UMKqBeU0rP37aZ EQpVBSqgOs/sSCI9f7obNJbzdqjCIM/51dfo+VvvFGTeI6EOC5NH5IfoeTvt Hblj8y116OrOUQmms8LNvAupKzXA607wClE6S+05Ptz4QwOUSpZ6l9Of35Gr ciFGsZpwT3Nv/ik612wt2OmoqwWq277e30XncrvGHfFPtMCEbHu0gs7bMjvM HqzVhm/399yzpnNP5ERw3rA2xM0Y8tOjc3sT2XAvSQc2r3WsUGb66/GpwtjZ uhD14elbFp0XPB5ODX+pC95+xSdE6ewz19Jxg9dMMA3d1CxM57B5MYEihB68 WT0BAnT+XXS0tOyCHjQHrLvNzF+1d4bIwgX6sHF39S1m/iTidh+sbNIH2c4o YPrwhe5Xaa9QAxA499WWmT/vZX4aZbKGMDR0dB8zf5mJMXMd8gxhe5l6LzNf CSsPqj6yN4L+WcLRTF6fwt4/+tUIlnw3ncPk8awjduGRxkCuDpli5q/61MuM qyriYCXgWvQpUAjk85da2T+TgIgmlWsOIAyyGRWxa/ikwLAmc/aJFmHYc1wg 0NaeBZ+Xauv9nisC/MXegTv2S0NE1qZCYTsR2Nn/2d2wSAbGUtP5eWxEIF+2 MFG4VxaWkX/S5SxEoMw+J5dtLA8V7d0y/rPpfghZ7VkbpAASC3K29dH92NKu abgjRxFG1prwBdN9tt5DtDWlUwnKfEQL2HSfFT9za21UVAHv69/UFeh5+qP6 13Cegyos/uBwkkXPU3NjW5h6jBq8OiKxfzE9T7Xlp0ROblSHhs6EOXfpebmg AY4bptShxoDv1Dw6i/2uXiedoQHy7FP8XfTvX2fse2C/lSY957lGN+msESr9 52y9JiRZfnsfQedk//78ZcFa4BQ5lLmezkGt++NFhLWhX6A/147OmVGqWxOv aYPf5rbXs+lslx7irQQ6cFRQ2EmTzpXzGz7ub9WB9MTLLXJ0LnPr9W+N0IXA 6K4ACTrP/n6HvnyZCZHsnzLTmXm8daIvsWAmHLvJ6mT2U9lu5ffvnOg+m5ff yeynernFRu0/9CB4bfY5Zj/91mWxujVJH64v1/rKzM9Se4j5O9MAhCxuPWTm J0nfw/DHSwN67nLfMvNjH6sx1ultCHKL3howOXjj+e7v44bQYUbeZ+alx3tW Y0GqEZyQKHdncl178FCMqTFsIxrlmFz64dq29x+NIfO7RBczT5L9cqcn6rPQ XcnGnY6aF9CswBl8zW+E4ZNf/jb2Cn748ah8jG/WdGgRW/Tw+k0BeORY0isY LwrtA+Et06sFwT5C4whbQAJ4+fbOn/5SCJrJs0YPLCVhIFjllEakMLQ/3jq6 /pAUvEnaF/JtmgiYuWemiZWygPPQWGPTEnqe2me0TPRIw5/WcIkvC+gcVnbf y1gWPF5NXjhmRc/H1I1ZfzfLQYu62M4F9PXd2Lye52K58rAr62bXL7rPvBTO mxt1K0DLgCmnne6zvZ377SPllaBjzby9t+k+SyzN7F61URmcpPkjv9Pzd1j/ s3RAogrkWz0Iv0PP37hNASe8RBUsX3vPfUrP336P2l88v9Xg04jAVQE6vys8 5dd6Th32sIU1I+n5uySzc88BGw0grhUqyjPzWLF3rdxnDTh+tqymmtn/gtIk a4M0ocXg1oNUOmtqeJ91ZGnBhnaXj350Xq9k4fn9phaw910jXehc9+3DjiML tWFZWKruPDp/KFG0et+mDXsjm5QM6JwbfeCTXbgOjBhUa6rS+c+aiEWByrow HrWzVJrOzwJif5bd14V4wYM2zPVdxUavNrHlM4Fl/nEXc33n6tKSKtc3E2xV 12UyfZZvE6puG6sHBtv+jDN99oLHxkrBQB8yi463M30WJT/HZuqVPny/83s7 M4/SukvFp7YYgNxX0Q3/2V9tiNslfIbgT/IlMPN3O41zIv2iIXz9KzDJzFfw K+e7YWZGUNz4++R/9lciOk3qvRGktCyez+TYupGJrb7GYNQ1xcfks0c9ZYqr xaChvXnL/VVC0D89RCrmkgTITsTzXNQXhpwG7cadnyXhxFmlLWX0XEb9Klgn rsqCw2U2mnPMRUB0RsCB/lXScOX5SJoGfb+gpyb/+dgJGQgV2Xmsm+6zrQbO sxTLZUFYNf3XY7rPZlkHl+3glwepA2OFQ3SfaV8KmnFgmQJ0N+sqOtPXZy/6 Mic4hxXhSVgTWUT32fjC0pnPH9ONIJdo+ojuM8ek7Us5w8pwSWikA9HzJK/h ObNFQxVit8hbm9DzlP84qD9toxpwS/KOb6Dnx+K6yIery9TBVY5nKUXPS0OQ y6qmbnX6cvzg7qV0PrUzRm8kQQP2XbzhMED//tXX1Nbo62jCBvvtl/M1mfc/ e3FemSYIfRWZZNO51TCjedlmLYjOJk096SxY/I69a0QLHI6bOyyhs2SleKrb aW2YvLmqy5S5Pqo/qwvGOtA6kEBqMX349VSdYLUOSPEECCnQmXfww99XPrpw +PUMW0k6F15Gcel/dSFnzfZbTJ85vn0YDZdnwmPVlRuY67OB36GTzdZ6IFA9 3Yq5PvtieDt5fYMeFKydqGf6rDXmLftRuD50WvaymHkqqZu2yEzGAE7u4mtg 5qdJr1Qn/p4BFAWv+87Mj+j++5FNzoYQFx9ky+TDPh9sF3YZwrU3qU+Z+aj9 wuO796gRzM3o92aylXOodJaqMXya/lyVyU7CKspPOMYwIhLTy/QZx+nL0aQ4 SVC3bq2YuiEMhY3TZj54LQW83vvtU+nvqxcei/sjKA0PR7YrBdD9s0bJI26X Pwte7Fx+fw19f2l8xeTO9x5j6NBsamWOF+pys56v4TQSFCOLly5MQO8+uBW8 zxWGtqITz5Pm8IP8Gq+5xcLTYe6NS/bccwJwqSzmWrKXKCx86+m7okQQtrr6 f0JfxeGOgFtHQ7EQXG0sq1ugKQn1N/OXLg8Vhv6hubsX75KCPwnFvyL4ReBh 5LVLrjdYYOG5ak4wfb+RHH5LLbdOGjYcqh/dTp/fNL7TMbsUZeGiveKfb3Q/ poxK2AY7yYG6qCNvEt2PP50nLradkYed0afFLOn73/eqDRc8PiqAz0c9mE7v 18/cnXvk+ZUgjb8j9zXdj2s0c5UXL1MGpduyewl6vo/fjJd6GqYCi0WjfEh6 ntsMJiYtr6nC7o/zJd7S89xg4/hC/rsaXEorMhSn88BnBW5mojpYjGl/iaPn eZNT2XsfEw3QfpZwQ4XOiaPfBB680wAJOJT9jtlf691bc3Zqgu9y6bcXmP31 iM3tShEt0Bs3Gw6gc86xVo/zV7RAM1h0uSudk46/Zm+z0obmgoBdtnRets7w /PYGbVBnlY8z/Xjc/aPHtEAdmHNsyUemH9M1Bqd/ldKFHW5ilsz9L7/j2wyf W7pwt2n+GaYfD/iP3O5eOBPEUG4B04/k+sRb6R0zwTxkYw3TjwkHA1zHI/Tg 0tRBdWa/tlsltFJAXR+uiTz5w8zzYy/F8+c4+qCqhcKYfiy9GpZYtc4AVtw5 t/s/+3XhsiDLSQNoEkhKYea5ULXZyvG0IXzcf4eHyV2xxfvX6xnB1xm65/6z XxcJ3Mh8ZQRh+3wXMnnlYP7Hhi3GoKO0WYjJ4b/139nliEFRMcupaqEQfCoW YefESwDwdCWMq9DXdyOuMdxySZDXnl09Wi4MSeZxVeMiLDB7JT64nO6303P2 HTRD0pA3fWxfAd2P8Q+LFC3DZCCgJG3nZvr+1fa+yl/NQll4oda2SIK+f+00 +fTu04AcTM/M9bam719V89kdjnMU4NSGRa6RdD/OHWrx6t+jCJ4npvF/pvtx adGZqg3XlWDV2dXkB3p+pIZ9Dxa2KcN8n+aq1XQ/ameJ6piKqwJ3aE3/Anqe zt8q1lu7VA027b26Zyc9P19Tl8w1BXXQiDCPf0nPy9j5hg+XmtUhLVFR2JnO rpfbkr+yNWAzf+30YebzjbKPeqmkCX+Q/Y97dO68vna3WLEmfN5ckHmUznEJ +0derdWCv/vfCHrR2UXn0EGFH1ogf/1whj0zb37CBfPitGGtd+SkGZ2v7L0W V6ulA4n3/A9p03lvcb/bm6c6ADkvMph+zCpdVrFgsy4IhfzJYfpxeH/cnEWj uuASNHuc6cfJ1uUuimdmwp+6e2lMP24U0hbbMVsP9uZv2sL04yO/q89k3+iB il3mBNOPmz5eSs0J1Ifd+jxGzDwNqQ5eqZpuADfnZncz83M0ty9r3Q0DMH18 ZpSZl8CBKXt3e0OY63F0CZOj+7ldP5oMQVbEvIKZD/uLeyzWhBnBmQlDHyb7 CIxrm8gYA3fSVZPJUpoNY6ZFxnA2YV0/02dxPtNnyYdIQiT/1KRupjCQrLYL 6cVSYJnSIbtFmV5/jScS7YZZMOB67ekw3Y9eq2f/dl3PAhXHjvn1tvS/v6Q3 zrPVGIRJ/w7meHmzLqRUvmGB4fYns/vonw8ta+zQMWOB/2Wdw+X0/ejFuMjo EgVp8BTym9VA99nSjihpdhQL2rQ7AoMXisCOY/tqQkbo++1a92bmeCDz1lu+ IQoNUhbC3qvCkabQwbg3Z+nr0cJZFYf0+SHvivFn1ug00NV/MUqcEAAxdu/R tctF4c7Sp4/WFQjCSoLfYXOtOIjNuChjfE8IhHs+3+KTl4Rm/mrHykBhGBbX 0Z67WQq2OrruNuCh19e5G+nDGSzwQNr2jfT64LyYREeqpaFkfGrVLbpvxxwm +vokZEH7qnqVvLUI9Ac/f2a4UA5evtLbVET37cAntlBVvDwciV0Uv5ru28Qr +1cOVilAktLRMjW6b3uk5pV2TihCw2IzdjPdt9Yfb1k+QcqgcGUfawazXvZs kdwdqALaW/p/vaDXR52mirzMJVXoSZolU0evj3jDWMOcFjV6Hzn5l0XnP/1f zCKPqcOFP4tfJdLrY8EOrtAWQw04OTQ3Qp3OlaKazXzVGrDs16/TtfR8WU8r dkjy1gT+oxlbLtFZ9e61h9MEtGDPJ2+hIGY9PClax72kBX4rg2SY5427v7wS XWemDeYd1qLM88boq+aVee+1YcfIEx/meePBZ3yK/bt1YFN7/WzmeWP/MYNA NTFdiD32eC/Tt9oP946WXNOFaXtsOEzfuoxRpz/azoRHPYp1TN8Ot3jPaW+e CflXLXuYvj2g4runLlQP8irjLJi+JSb8PH4p6oOK/XRRZr008J9Y2vFYH4J8 eI8yfZu8Xaqq0NUAJjgHgpn1wvHvXx0yYgC9pl3nmfXxoO3HjMwThrCpJEng P/fb2/sbHbWMoPK2/XlmPfCeti/49twIbkwdW8Rks0NJi85sNIaKYVkRJv94 dPKOULIYPDkeJvV0rhC8Sf5gacGWAPfEv17S8sLwhm/3+qLHkvScfBPa/1QY Upz3xvT9lYLv3NsR1vT9yBrHA4c/zJGGOZ9y7CbpeSrhE5wnGiADadenZV+k +1Z/Inrn9VxZ+MaZwbWh+xbdSVx35qscpGyynbOB7ltlG2FnC0MFOKEQ9/IC 3bc/9x2RjvFWBL2nyW29dN8GBh65PPOyEoyvGbHuoOdn9FrgOcMGZdjbL9++ ie7bm95ftT4LqMJsws/bnp6npOwvS8wXqMHmbSeD/Oj5WZDc0Rs6Tx34BsUe VdHzIph3SfbQJ3Wortmx1ZXO5o/Ey79EaMCLp09DR5nru/Ps9bJympDWsff8 A+b52+cHNWP3NGHpVuGJaDo3FXcQ01ZpwbD8qWGmb0M3rA4P+qYFrH2TK5jn hdco/gWzjmpD2ZzsWHPm55/mFSup6UBZtUkz07fbtFTkCkt1YP4K6T6mb39q RhuFrdeF5Ayzz0zfynw1SjzL1YWa5UpqzPPC2l1ylkJJM+GVceNDpm9PJ06m 3jDQgynBmlCmb6+KZTUOV+hB357705j7G+VDfNkX9ujDs1dzrf/zvKbMe5W8 kAHceyDBZebHzSe2bUGOATzJdppi5iXrVpb+uYWG9H2dsiOTYwuIUrsGQ7A8 lFjFzAcRnpm2OMQIbvF+3M1kdqu18X4JY6ibpaHN5NG8B9t/5BvDLoGXA0yf /QjV5PuySxLeoZXLtC4Kw/PZ1WvO3JWCCDd/qVwFuv8Gk5M6e1jwZUzhrKw9 nQMUixxcWCAwtnTJPnpeGhxejco3GsPOL086meMFLrp8zrecBbfuNWfl0317 sOXFZUU9FmwbKfQRpufJ83J07EYJer/P61unRX9/5V+/NyEHWPDbKfxWANDX 89Kr0exBY7hyNq2FOd6wb/aF/EIWvE7W7/5J9zPxny9pOLf2YOF1+vXrrRbb eW5jgW/vjTca9P35D4XU03oNLNitpx8vRZ+v3cvU9ccTWbDsiOXTjXb0/eNk 6taSSWPge6f8hTn+h3T5sIUNwahAfN6OYo/dyDFTbNgpURhmbPpqE6DFD2FL Uwye/pgG/i+eHuWLE4Clnuk/rexEwTD+8Lz624KwuP7NVH+FOGS+0YutvSsE NkE7ZLukJOFb1ZmDfP7CMHpZMdJ8vRToR756Ev5XGBrVb2UsucgCjVM6x4/R 66/BV/Pd7pfSEB8tZvOG7nP/HiNNkxmy8Hh5o7sp3efKpqqxwrZysDreIa+S 7vP+9MVPqGh5KBdM8vKm+/y7t0PuvJcKQPBZyBrQff5nwORq5bAibMxR/9VF 9/nNvDtlEzbKIGGe0idJr8e1Tq+TyT0qMHKhYXkVvf7eqd7V5U9VhYv+8umf 6PXXrqXd/P2zGvSdvuYnS2fBCWo1N1odQj34y5Lo9Ze3V1jzi54GHNpxs0uD zrsVkOOtVxowz9gn8T09v/e0dv3i9dKEeWs3GzF/P6p4sfHJTV4tKB77cYrp 86aGK26XL2hBi01NONPn7oJL17ybrQ2it4s2M31+pfqh9+oabVgfqXyF6fN9 Y4qTm310YKnf/k1Mn8s+dsgqna4LvwxenWb6/H5fuca2HF3Qmd5ax/R56byr AsttZgKMhHYzfX5Sc+Xk0aaZ4PGleJTp836/nv1LQvTAUzhrAdPnrcs1NofK 64NoP5Jm+rzLzT4zvlgfLmf9OMb0eXi5525dFwNQXBQUyqzHhmpYwhoyACWF 1EvM+rNcFDLmeJy+3qmIEmLy1AdhsTJ1I1AU/nyBWW9Jf3fMOf7MCOQepi5m sk6qnXJPjBhMOFyOK5ojBMt+z5U6GCEBD0MenlGREQbi+MjztCJJqD5g99GE EobULz7t3yalgP3Jeoku3bcPPoQd0TGVhkWziTZVej3U3jCuGt8lAx0CKsPF 9HrMvPjo4vdsWci6ZrnbhV5vvnu6FANb5YBP5egTX7q/Ff9W8evrKoCq/f20 6/TxnK2c/d9tUgTeIPOWYbq/o1fsixVNU4JK87CjPfS8+LCDtXzeK8PC5V9G vOn+7rdblT2LRxWkRCs0Hen5icsIWKM5Vw1uP5QID6TnZXeiWbnCXHVQz5Z5 /5p5/vTosFVfnToEd1tIr6FzTrlui0eYBkxI7M8bY/brq5dfPJHWhL7kQ0FF dF47vD3Gt0ATtP0PXIuhc2zNecGbK7Xgm/wiX+bvPXGhC8JUvmrBiqC3V5n+ TumOir7O1oYPatavmf6e6DZz5SjrwK3GLjHm7z2b3C3GtEp0gHWMX5r5e4+i 2xVPWXdd8OT9Pcz09zWlIw8XDOhC38J7Zkx/L8j7nXvo+EyYvyjxJdPfxm+/ bnTS04PMuMuRTH8rb1bv3vpCD6o7V7KY/v71rihXZpc+3MrdsoDpb1UZ5Rsk vwEk9q0cYeYFKmrZhVcM4KJSHsHkxyIjinOQIdy77becmRdhVty1vo+GEGZh +5qZj03fSypLg4xAVsfIl8kzVnoUKIoZg9pvkf/8vUf1zx0/apskuLvN97mY JgwvnzwtOHFTCu4qjhkslqfXW/jpk3O6WPQcVEao0v3nMyXOsnNiQVWSTOpj GxGoeZ2e+oTDAtETFaXxdH8e8SudlNZiwak5rcc0LESAmhl77M50aZCV9tBd Rn9/1YmthgF7WSA/3GX6le4nt7Gcizx5LPgrqL7+AT1/i1YlHueOs+Cl+8ey z/TPbyqfm+G+mQWm8qH7j8wXgRU5aWfC3rOg10TuJS99PkvWnngYc4w+Xnzn rR76+lp+Ru7l7Bz6+jbcL1KfPp7AjpMnzgywIHmm9V1h+ufFiy+eVapkQZ4D p6qGPv6Z9ivnNz9kQYEcWW9A50jb+HhnXmn4YmxtdZbOCSfPnqpvYkGrYISf Mv167BV+mk4p/3lbT2GvsEZ1/YEjV1788wpu9f2flo13/vMK90LDsuuP9v/z Cuo+4yv4w7n/vMLRtsOZem7cf15h+FRkVHZF/z+vwLG/2uq7o/t/XuH0JiHH kjaEvULlpfJUC98GhL3ChxRKRmDRa4S9QtOd6f5pB0sR9go9VneFlr0+irBX IH7dCzs18ojCXiEkbEl64ZJKCnuFnmtmuV79HynsFZKf5Hz7s7WVwl6BnSGU cUN7B4W9QuDqmMykRRsp7BUyP9SLjJ91pbBXUD+cWbH9ggOFvYLXlkmenXMX UNgrcI47JAQOmlPYK3DOG6oq7tSnsFfILHnfY31bncJeweuZ6Z1+KVkKewVO iND3ZosZFPYKmQpbXFee5qWwV2AXLEzxuDxGYq9AsHViVOz7SewV2I1iy+3+ dpDYK7AX26zhifpEYq/AeSIwuajsHYm9AjF4VEHX6gWJvQJb59PzO36lJPYK 7ProhTJPCknsFdgr256qNF4nsVcgOvtj1ztmkNgrEJWhx4YLUkjsFYgNi26a +SeQ2CsQP3Obt3lGktgrEA2j37cLhZLYKxDKO49azvclsVcg/vuFvQLO2Cvg jL0Cztgr4Iy9As7YK+CMvYL1yycR3ENFFGf2ooFXYl9QSGyHEutNIwo8lb/k ws5u1GB36vTdTT2oxrg56dKPQeTSaJtw7NYgev+m1sywegRpn3AMq7/PRZbb H89XvzeJxJ1X/V4XP4jGB1PvRlz5i5JEIlgKT3uRc4hsp1klP/xc0fk1794X NGU/8ua1rRDkX39Hjix8/89LlB+OXXwyqBxh/7Do912Ndc41FPYPv2X5VSb4 GynsHwI9t3zn2O6hsH+Q57m1/mT+Fgr7h+TGYOv1vW4U9g+ZdcKBb9NXUNg/ JF/6O6293Y7C/gF0F6lGJlpT2D9krkr8M/p+NoX9g/oGAx2vFG0K+wcwYvkZ aShR2D94HX1drHRVksL+gXAR39fXLkhh/8De8eOwY/oUif0DrJ1/oPLbTxL7 B+A1E7e+2E1i/0BEDx/dMdhCYv9AHHznUHvnA4n9A/H3m4+yYxWJ/QN7n2WK cPlTEvsH9tN66RDphyT2D8SCiaa2rjsk9g9Ep/lSftdsEvsH4u/LzxNB50ns H9jfF/F0JiST2D8QGjxyswJiSOwfCDffyme5EST2D0SbjcahK0Ek9g943rB/ wBn7BZyxX5ix0shgm/FrqunofLtNQ/Vo3HJf1PUP79GFHsOROQJd6N3xe3Wf a76hzSrzeN9EDSCD3qUdu6YNohCV8/7njw2j2WusIkZucdG2KvZBq+gJZPcz 8YzL70HUvbjzoaXHHxTNU2i2cHUfMuefsuww54eVb69xeBa1omcrMgTfnReE A+d0w949//jPT0wu+0HeXfQKYQ+R1aU4Zu7xhsIegrOu9Y/VjgYKe4gnBQcC vJvbKOwh9KwFD2VVbqWwh5AY6nPK3utBYQ9h8iRut0OqC4U9RD6fzDQhlSUU 9hAcS50Ri/nzKOwh8t/7Ks1+Z0phD0H8dQzZ/EWXwh6CmIzWy2SpUthDcK68 ykalLAp7CJjabTnbR4TCHoJjOqX4+CxBYQ8BD2ruyWiMkNhDcHoEIrScekns Idif+Xgrm9tI7CGI5yIRB8bqSOwh2OWxPNvRGxJ7CHadRKJ3cxmJPQQ7x3H7 isvFJPYQhMwB9crSfBJ7CCJa3FXqwFUSewjimwl12+oSiT0EISwqJx55msQe gnAlnL1fHyOxhyCEy33z/xwmsYcgJB52se/vJbGHIBawt9Xc3UViD4HnD3sG nJV7jKK/L6pG7Lv1ncvm5aJaP+2VSjJtyOXMg0iTtDZkbz3n3J9XPegQQr2R 53+gn9XpyrVyP5GF5yC3TIeLzNgzxkolxtALcy8nlMpFwn9H/gi3/0J52o9z nYhBhD3E+oXSL+4mvaewh1h7e39m2ZsvFPYQg7OsRUaSfCjsIUBKwG5pxmYK e4jB9omyi9lrKOwhWhXdN3YHOlLYQ5i8e3y8qxMo7CFgy/NPr9UsKewhvC48 +mAdYERhD6EemSbbEaNJYQ9BLB/ZP3ZAnsIegmNnLKp4QpzCHoKj1PTs6mV+ CnsI9glvC+vgSRJ7CM4th8tZPYMk9hDsSvllObO6SOwh2KH7N8443kRiDwGB /s9t02tJ7CEIDpJXzqggsYcgdM6+WfWKIrGHYC8VFJ6ouk9iD0GwGx23PbhJ Yg9BPH6rXOx9hcQegqgSHpz38xyJPQThdWyN4ekTJPYQxKfi4FqnoyT2EMRM eWnW3QMk9hBE+o4hxRMBJPYQeF6wX8AZ+4VphnJRvEbvqZ47Jb3Xtn9End4j 2a72b9Gs1O/VfB860Tp957LL/l1oweHwkLR1/chmvk/8HLcB9HzxwUSXr0Po 0sUZfIvTuCjicIdS2Y9xNLXkQshJIy5q9Z9mK/1gCvWtMxcXk+pHOssDvR53 80HZ6Zs3f/9uRdqrQjRXLRWEi1svyjay6v/5Cf0dvj8851ch7CG+1N4xzVlW TWEPcUPllfxdnXoKe4iNvQWnbVXbKOwhkrUlXUwGtlHYQ+Srx56fWbuewh7C K5ZPeOvJVRT2EOqrXtbVutpT2EMQWaahWwtsKewhIPK5SE6DGYU9hNcll6Y8 BT0KewjO2dha21tqFPYQnMxHDpYt0hT2EGzNJAul8mkU9hCZk9K2dYk81D8P MZL/fY/bKIk9BNztcHhA/iCxh+A8M1u+7Vs7iT0EUVi20diigfznIeRfXJnd 8JbEHoJI2GkezFtOYg/BVknQVfxdQmIPwQ78dv3GgwISewhC4JNN9JVrJPYQ RFP6jU9Fl0nsIYhGE7Frp86Q2EMQzht+jUjHk9hDEAFPN//eySaxhyDO+fqF fwwhsYcgLlwsCGvbTWIPgecPewacTY9NL+g78RKxj6is2SSVQhUKvFjCvtSC WF+GX9edbkGNnT/9qtO+o+Y/YyUPYnqR9yFyrVUUFx1fXESE9g2iqOsD0iH+ o2g0vnLznZtcpFbonp7i+AtlHJgo8XYYRNhDXLwcaWa5p5bCHkI3v+W29bYm CnuId6odZyabdlHYQxAPzYXWF3tR2EOoR+R111BrKewhvPQfbnH+7URhD8G5 W9H1qmkhhT0Eu95bSX6lFYU9RGZxeKybzCwKe4hW31tORrFaFPYQ6h+V1i9/ rkBhD8FW3Mw2uStBYQ/B8ZgSzXskQGEPAUGRXx7//kViD8HWbDyr1s4lsYeA 0u3zv238RmIPwd55KyzCtJnEHoKjffyJesZ7EnsI9jlBuZe9r0jsIYhU/hr1 NxwSewjCMMP1cvcDEnsIIqG2Od/uNok9BJvnRHXd6iwSewiiZEjwuX4aiT0E YbIoaofDSRJ7COK+Zka8WzSJPQSRpyCuqRFOYg9BBPZcOnInkMQeAs8L9gs4 CyzwV/Gx/IYOjQb3XdX4jqB56iXPukEUs9jFsGXzINIefeDSrj+CDBKemXo/ 4KIV8qpfbilNIrZqd9/L8kEkMPt661d+aXBZnrIv9rkvlT6WQaYO0O/fauwT nu9DFhzfT5r86kXW3T4ve9P60FHlIx2+d36ibzfupZ9aw0Xt7vqfBO6NoT3h C20G6fvxfocLOsLZ9Otf7D+yvt6PxD4Cny/2EZkanMBlBz9SP+3COFWqH5BL f9OK3l+V6IBfxaPd8zpRwpHQ0ncPvqI7sy7cmXrahzQt3rceHuhHvg1+SkYp Q+jxjHiZ8AQuEmxI6RW+Mo74d+3JsrTjoqajKn94t06hsylLkgL8+5HqoP6+ mWV84DylyTd/Qxuqq/XMP6UmCD5hZzMayfp/PqPWsuvo9QXVCHuLkG7l4w72 VRT2FvdMjtz9HldHYW9x//y8rm2cVgp7i8EXa8SeHttOYW/hEvZyZkDcBgp7 C5PnM0+/k3ClsLfwGklgrx62p7C3gJV3v30Knk9hb5Gflid52tucwt4ic6OP lhmpR2FvkWlrUJOA1CnsLbwMc11/hMpQ2FuwV3utOR0+ncLeQr1Unnooykth b8G+b3Ljytgoib0F5wifz5cjfST2FpyjIQ0bgjpI7C3YSwXEvzY0kDn/9Rbs L+62Tm7vSOwtCLJP5daFchJ7C/bzwxUHCx+T2Fuwt/WMs60KSewt2Adtg+fb XiextyDES57+PpROYm9BFBk8LVdLIbG3IFjZLGcqnsTegjBZrOfbxiaxtyAc TFztfPeR2FsQB5Q2nk/YQ2JvgecPe4l/1wcfw18OmJUjL8GyTyl+t6jiC9GK V9c2I/M1h1PsH3xBuo9rPMyJ72ipkvUXy+EedGHtyp+7rLjoTFRU1v3Xg8hg Xlu2s8ooGpe9e3own4tuTp/m//nPJBJcIPZHaNcgwt7ib7iRr0dTDYW9Rd6q VUZW9xop7C3euTp/OJewm8LeQviwStFc8y0U9hbqsJWTvtqNwt6C45G+IK1y OYW9BfGFEuH1tKOwt2jtvCtp22tFYW/B6VPfwebOorC38JLVjDk0XZvC3iLT PfBBeKAihb0FJ0ozOEBPksLegmNl6tboJEhhb0GcXd1/ovI3ib0F++33Cxpb f5LYW3Cs+t7zTH4jsbcgFt/4+Uq0hcTegnP+APuB9gcSewvCgz1xJ62SxN6C /aGq6pPDUxJ7C/acTayUg0Uk9hZETUtOo+QdEnsLtmLJqYU1WST2FkT8kFVp VRqJvQXB2bvqrkwyib0F8cDjnFxbNIm9BcF3wV2vPZzE3oK4v8njtU4Qib0F nhfsI3B2kV4h8vZyFxJ7sWKGxcFudKDoxDaLGYOogE9Ae7PlIKqOv97ypGEY SbXkkgMFXNQQ9PY29+0EUusaOvK2jd6f/+sn7Oe/XvUU2ql6FKNi2kW/fz/7 5zr9XeTvLW43U717Ud2DJPNypT5UMizGzvD+icbVpAvcF3BRwg9Fn7YtYyjB j9/CmO7D3ak7bYfT6Nd7H1yz9q4/if3Fv/ungoSpEMthNGuHrs7ubC7CHkOt pl896VAbteydc+PW9/Trm2Nmt9jtJg2uzirmf81F8ndWyb+dxkWfWX9i0qhR dGnmlXH5LC466P38qWDECLqvoZfoVsRF2G9IPFPzSx3aQ40fXL/Of5w+nusS jvFyH3L54gF7m/Gf6OvHHdl7fbjIptzK0YB/HO1Y+op1dhcXYd+Bzxf7Ds3n 5Hjx1Toq9ESDgWfEe6R9acuxvHcVKL3h4SzVgQ70cL5rafa6r6hT0MDRZH8f 2ntUafWykn4EWV3t5/cMoSluivZZ+rqpOtrvvWHEOLp/XUdk53IuWi82c/Pk 3Clk4GZoUnOxHyk+iz2yKZ8PrrPzwm4mtKE81pox0+mCoGbl2mgr0/DPl3Rz ztkEc6oR9iLzz7r1XS2vpLAXSQktz/KcV0dhLxK+wU+X/3Qrhb0IR/zXo9yP 2ynsRVyypIe2fN1AYS/i9fuBfa+rK4W9CPSH762wd6CwF4EHdSsjPs6nsBfh PNRM5blhTmEv4nXmeZ6clD6FvUjrFq+0uH3qFPYicF7Q2vu5DIW9CJRcHVOq n05hL0IQ0fEJzrwU9iJwdYVI77IxEnsRQuOHi3t7H4m9COH/1+Htww4SexGi x6+20+gTib0IePA+9Et8R2IvQsS4KXp2l5PYi7A1pxWEiZeS2IuwO01aasIK SexF2I9WdOoev05iL0I8mT4c2ZFOYi9CCHvO9vBJIbEXIVgXjhvLJpDYixBb ZLr3qUWS2IsQnr2F9sX7SOxFiJL9jyra95DYi+D5w94DZ55DhbWBAs/RoNNu k9dyhZTt145oq8IvKLE+Orj5WRNy0n36tuteN0qq6649c6MHFS08B3xSXHRI 4TvZWzqI/vCv3/NkeAS1PZiHTO5xUeCj9rVTDZNoT3zwng1hgwh7kStPIgsu n62hsBdx/3n1CGdDI4W9iNcpEZDv2E1hL9LQZCcTErSFwl5EYtoskal0Nwp7 Efac0Lgh8xUU9iJwKWnrrww7CnsRrxkfKfd51hT2Iq08VesHtsymsBfJXHnQ NsJZm8JepFX0ofLCCkUKexH1GQ7GbjskKexFODL3o7rOCVLYi7D/Htt923yK xF6Ec7PgwN+cnyT2ImwHlUk5x24SexG28IFYp8MtJPYiHJGcuzU+H0jsRdju xoG1g5Uk9iIENdxAxD4lsRchAj9oCFQUkdiLEFU3DDIj7pDYi7DTm/MsJbNJ 7EWI6sslLqrnSexF2E8Wu7c5J5PYixDJe8vuzowhsRchol5JchZHkNiLEFVd wlZbg0jsRfC8YN+B874jtkeiVnUhi09fi7JndiO9Jbe2X3w9gBr/3Fx0T30Q Za5Wv26YP4zk64f0Ft/lonTV3BTpmxPIaoyTvnBgEGH/IdU/Y5qXeDs13DFW faiNfv+uednc3btIjddL1J1ke1HW0qRe+8YfqK7V7Y31/J9oIKOZtd6MizyL zsx2njuG/LYP7fudzEV66I1Dzxn69fxHBsJVAkjsR/D5DobzlbeLDiPtqHl8 hun0vP7Xk8Qpmyc+WNFG7Qh5lpD/hn79IyH3quTdpP2pUKH061y0i0/DPeD3 IMr7ErpCMHUULUkPOn/7Ghe5GM2PD3EdQVkWoocM6f0C+5PkYqT+2sWXilpt LO40TB8vQefogTAf0sfE6uz72p/I84qR/mtPLhI7mS+Z1jiGDtt9yY4J5iLs U/D5pomNrCZLh5CMGsy4f4qL3IJ8mtqWjKJJ3nUfFfK4aJyaJe/CM4J0jkRs nKDX36937mqKv1hQnit0XGp7O1VyUcq/s4d+/55gC51eH7JIMytzb8IY6r4i Y/ee3j+WfpO0FNo8jO4Qi5N5c+n7D8cY0qB7FPkcPMM7fImLctOcJtOyR5DF Qo3STvp+C/sWfH7YtzzPDtR+ZlNPPTIT9rqu/x7lTN5Ym1L8Epkk3f0+VtGB Qq2knJT1viJiKCjt1ao+1PRk1R+rjH5kIJT9wmXdELJwc13sfZiLZjd6OMz3 GUf7eSVfrF3FRRfe3xIP1ZlCL34rH1te2I/kDR9Ej1/jA3G9K+IhWW1I8f4b RV4eQQjc6NJ5FRr++ZoFlidDs3heI+xlLm1efu9cTCWFvUyc812NN9J1FPYy CXaXtUfDWynsZUx8llECU9sp7GUGV0q8dZHeSGEv49W+0Hh1iCuFvYzJD+Xa oEAHCnsZr3yTcw5CCyjsZYjurr60anMKexnOo2ixfbb6FPYyUL1uSWWyOoW9 jFd+h09MrwyFvQyxM0aoTmAGhb2M18hhqTeBvBT2Mmx/C89De8dI7GXY0i0b JaX7SexliN9V530aO0jsZdj1HQud130isZfhJIP1s+vvSOxl2FoZszPEX5DY y7A53pd8F5SS2MsQGhMz1l4sJLGXYYfp7yHuXSexlyFU18eUyWaQ2MsQg/UX BE6kkNjLEMtfC0y3SyCxlyHgQeK7BZEk9jLEzbn3zVr3kdjLELcFPheL+5LY y+D5y1l0KHzQ43/zmOOy0r3Avwzl1wR8sXW8Tx1OYJWwvb6gc+6Wr54vbULN jY8SOCe6kXJjVOWroz3ouVXJN+e/gyh6lpf0ivuDqHuXrHNI6wjS9XjLK3ef i96LvX0lRl/jxMxJvb4tchBhP9Mn8axrT3ANhf3Mcq3EGQ4mjRT2My47lge8 FN9DYT8j4dO59WvyFgr7Gc6UYvL0cjcK+xlCok7adNcKCvsZr0rTBpendhT2 M5DPtazaak1hP8OJKCGpC7Mp7Ge8bGZdfhekTWE/A7+vdJ0aVqSwn2mdntl2 KUaSwn4GfrYHVJYKUtjPcDaZmlX5TJHYz7B/sFUcXvwksZ8hWgLOxQZ3k9jP EHGVYToPW0jsZ4jHTW5zjn8gsZ8hJBdFuapUkdjPEGrCfj5Xn5LYzxAmkVeV +4tI7GeIV/ajEgV3SOxn2B7di6JMs0nsZ4hlH6N4l54nsZ9h31satNQvmcR+ hlgQ+22VUwyJ/QzR0H/nTGgEif0McTbJaUFUEIn9DJ4Xn305l5bl/W9+hOdY 2Gw07EJpfvPtun5/Q4tNh+5Z5A6gZ+2r7bNkBlHCo6aE9ovDaO3ZNPuCO1zE sy9FWDd1Aq2oLD/3cWQQYR8j0vS97sNoG8VrWaCt3cI8T13zdjJxF3k/an6j 9mAPSjudZHOi5AfqrAvfF2PwEw03XPmlYUT3sZILS1CH3s8UjsXPTuEi4TOR K7afol+/LUJHaW0A6Sj2yDi04X/n+7mFyj0/MYTuGQ4lL7/IRdjf+E65z+6b 00aFvIhod6umX69X51z9aDe55tiFvB76uLc2JXwToM83zc7c9EnUKAqNPBNA 0f1vc2rC13DBCBrMMr7/me577HUkamXXNh3xpZKvdu3gcunj7bZxikrxIUN1 N9iqc36i7mpZyWce9H405Duy8uUYWvzg3suqUC4q/bwwNLHvf+cbtbfAal/u EHrlJrbFKImLoE6bk2Y6in5pfibS6OuDdu3eX4J9w+jwB74SYXo/w/6nOLj/ dqpHO1XRV1We0E2/f9RU9luRXWTmMc9og9AxRPre33cqlovMlr9RIB2HkeVY umrVVS4azFuY1fZ+FJWTc0+mZXDR6SmhZueTI2hra7q+Kb1fD3NiL8iN/+/8 pDMvHxMUGUU5vYSXViEXFfVvLQt5PoyCYuYtycvnIuyHnHO6dPn12ilBWYc2 Q81hFPrk76GWTPp+7yX76pMdI+hHbV7RGvr4ITwhD3NG6fOtu2axZbMP6Tvj 9rjB+lFUJbJjXuhtev/fEGxxXmYEifjnVT+l+8Yzaq2ry95hVNHTeEXiJheR 5idl2x+OINeDd4KC6M/jzy0e6zVT+v/OV8LihtGmqf+df4R0nkPbpD74r6aE GF/4f3/+/96//t/npf/3+uG/vxWYvvCQZH1kLYWPz7eGeb07KRWecFZtoALh 4yu2f3Q7Giz6v+tF/P9z+e8XPv7/dz7//cLng/P/AwbcOa0= "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[{ PolygonBox[{{1116, 1118, 524, 988, 879, 780, 692, 615, 574, 1029, 920, 821, 733}}], PolygonBox[{{981, 1119, 1117, 537, 538, 998, 889, 790, 702, 625, 584, 1035, 926, 827, 739, 662, 539, 999, 890, 791, 703, 626, 585, 1036, 927, 828, 740, 663, 540, 1000, 891, 792, 704, 1077, 968, 869, 627, 1069, 960, 1099, 861, 1090}}], PolygonBox[CompressedData[" 1:eJwV00VQlm0YhuHPXDhjtyKhCGJhstCxWxEQ7BZnXOiMbuzAxm6dsUXsxtal ndi9txETu453cfzfe15zL5zh+aPSx6WOLRwKhQqR7D9jioRCw4uGQiMo5ruF 31y/o+nusKTO8t2K53o9NXitp1OVc3o8PSjlfrutNS/0BsJ5o2dQjfN6AomU dp9ta8NLvZEI3uoMqnNBT6QnZdzvsLXlld5EJHl6JmFc1JNIoqz7nbZ2vNab ieKdnkUNLunJJFPO/S5be97oLdQkX88mnMt6CimUd7/b1oG3eiu1eK/nEMEV PZVeVHC/x9aRPL2NaD7ouURyVU8jlYru99o68U5nUZuPeh5RXNPTSaOS+322 zuTr7cTwSc+nJtf1DHpT2f1+Wxfe62xi+awzqcUNnUEfqrg/YOvKB72DOnzR C4jmpp5JX6q6P2jrxke9kzgK9EJqk6tn0Y9q7g8Fb49Pehd1+aoXEcMtPZv+ VHd/2NaDz3o39fimFxPLbT2HAYS5P2JL5IveQ32+6yXU4Y6ey8DgrbvPsfWk QO+lAT/0UuK4q+cxKHjr7o/akviq99GQn3oZdbmn5zM4eOvuj9mS+ab3E88v vZx63NeZDAneuvvjthS+6wM04rdeQX0e6AUMDd66+xO2XvzQB2nMH72SBjzU CxkWvHX3J22p/NSHaMJfvYqGPNKLGB68dfenbGn80odpyj+9mnge68WMCN66 +9O23vzWR2hGyL7G1ognegnpwVu3n7H14Y/OoTmF7GttjXmqlzIyeOv2s7a+ /NVHg3+/7ZJOpwQJtsK2db6b8Ewn6Gu+RwV/p+Bvps/5Hhr8v+37kd/itPR9 K/j7+v0PkvyqAA== "]]}]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJwV0MdKXAEYBeBrwQa2sW6z1AhGCHEmJNgVJWLZWYJGAvYa22NYF4m6yTvY YgMjBJKAooJRsMf38JvFx/nPuXeGYV70jLaOxAZBEMN3OuOD4CP5xjzqGGOP nLggmOWJXL2WUXbJts3wnxy9hugX75Blm+aR7GinmmF+ELJP8UBIX+aBt/oa KX5PlR7v7uSAItuQbZtMfZJ7MqPfK094751keUG1+5M8osS95L1Ld627T/4h 7L63N8kzvVxGZL1clcmy0vNWeaXXyX7ZKP/KiIyTzfJcVsgO2SD35Us56PMt 8p9eIz/LD/KXfC23PD91l7kz5BfuyLAPyWPeeZYku/nJK33R8173b0r1Oz3s XiFJr9Bj3e3sUWgbsG2Srk9wS7qeKLs4pNh7C7ZbSvVvJNrK9Rh3G7sURP8L 2wZp+jg3pOnz3PBG/0qCd8v0PtZJtY1xTao+xzMV5Ubv "]]]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwl1WW0FAUYgOFLNyjdId1dUtLdKd3dKQ0CKt2NhIR0i9LdHUp3d3foM8cf z/2+d+bMnrszu2dTNO1UrWOokJCQqKFDQoK50p+qfLAvph45cTokDGEJR3gi EJFIRCYKq1xbjY/2JdQnV/D6rHa8Op/sS2lAbqKxxvEafLYvoyF5+Nux3nzD CT2E6KzVNfliX04j8vKPY31IyUk9lBis07X4176CxrzXsynNa52Ps/a+pOKU HsZXrNe1gxvESqMJH+xzKMMbnZ9z9n6k5rT+Yi6gIj/pT+Y8yhHGTV1qvgv5 /wYvslcmnH25+bXDf5h1CB88HzOUudiMZK5y/rN9PhF1BTOsucyMYjZ1/qN9 LhF0WTO0ucSMbL51/l/7QirxrT5v9icNZ/TPxGSD/j64ntW6GQW4oAeQlr/1 L8TiT103eI+s0c0pyEU9kHT8o4cTm790veD/Z61uQSEu6UGk56weQRw26vrB vWKdbklhLuvBZOCcHklcNukGwX1kvW5FEa7oH8nIeT2KeGzWDYP7xh+6Nd9x VQ8hExf0aOKzRTcKngMbdBuKck0PJTMX9RgSsFU3Dp4jf+q2FOO6HkYWLumx JGSbbhI8N/7S7SjOjeBzRVYu63EkYrtuGnwO2KjbU4Kb+meycUWPJzE7dDOi skl3oCS39C9k56qeQBJ26uZEY7PuSClu6+Hk4JqeSFJ26RZEZ4vuRGnu6BHk 5LqeRDJ265bEYKvuTBnu6pHk4oaeTHL26FZ8xTbdhbLc06PIzU09hRTs1a2D 7xjbdVfKcV+PJg+39FS+YZ9uQ0x26G6U54EeQ15u62mkZL9uSyx26u5U4KEe Sz7u6Omk4oBuR2x26R5U5JEeR37u6hmk5qBuTxx2655U4rEeH3yXuadnkoZD ugNx2aN7UZknegIFuK9nkZbDOvhhiMde/QNVeKonUpAH+lfScUR3Ij77dG+q 8kxPohAP9WzSc1R3JgH7dR+q8VxPpjCP9BwycEx3ISEHdF+q80JPoQiP9Vwy clx3JREHdT9q+vGqYb50bCrf8UTPIxMndDcSc0j3D67hlZ5GUZ7q38jMSd2d JBzWA6jFaz2dYjzT88nCKd2DpBzRA6nNGz2D4jzXC8jKad2TZBzVg6jDWz2T ErzQC8nGGd2L5BzTg/med3oWJXmpF5E9eKY6BcftP1I3eJ66FK/svwfv1V6e 90GbVVhBDv0fABYChA== "]]}, Annotation[#, "Charting`Private`Tag$47772#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV0tdOVGEUBtCfooAOiHTUGy8tRE1EwIYiRVSicodCLJEACgwg9pewgV1f wi4taKJREo1KLKGD4mO4zsXKt7999iQnM7P2dLy+MyGEME4sMYSJpBDixHiq t7CbJckh3LUrZlJv1K/LdCbtukjnmd5KOUvd3LPbxpR+gwym9G4yeK63sc7t gN5AAnvsUuzum0uY1m+yyW5UP0EKK+ymZU8080I/y3p3g/oxEtlrl2r3wFzK jF6ifzS3cEvfrL81nySVnfpn2U6m5zPyfDRT7tlX+dJ+q/m9+ZA8I6vkT3lU nvN8gxzSD8jj0bvI7/KITJJlckzWyTZZI3/Lelnh82nyoV4ry6LvRn6Th+Ws 56Xyk95KtfmXvG2/xfzOfIpK8w+Zxi7zF9nBSnezsjeaeaW3s9HNsN5IMvvs ltk9Mm9nTu8jizn9Alm81juoJJsc5u0vks0bvZMqclmwu0QOA3qcavL4Y3eZ XAb1LmrIp4Am71MoV/HXzRXyGNK72c9yN4/tdjCv97OaRf0q+QzrPdQSc/8k +u1Z0O+whn/6NQoY0YvdfTA3R/8JvUgfMR+UTbJCjsv/Rchd2Q== "]], LineBox[CompressedData[" 1:eJwV00VM1nEcx/G/eXCzOxBRROzmoLM7QMBuxc2DbnqxBezu2uxGERW7jnZ3 e7dbwK7X//Dyed6ffQ9sz8+olPHJ4/IFQRDvn0IFgqBFwSC46XMM3fMHQVG9 3fdWPNfrieC1TqUiZ/UEelDM/Q5ba17oDVTljU6jEuf0RHpS3P1OWxte6o1E 8lanU5nzehLxlHC/y9aWV3oT1XinZ1CFC3oyCZR0v9vWjtd6M1G81zOJ4KKe Qi9Kuc+wteeN3kJ1PuhZVOWSnkoipd3vsXXgrd5KDT7q2URyWU8jiTLu99o6 8k5vI5pPeg7VuKKnk0xZ95m2TrzX26nJZz2XKK7qVHpTzv0+W2c+6B3E8EXP ozrXdBp9KO8+y9aFj3ontcjR86nBdZ1OXyq432/ryie9i1hy9QKiuaFn0I+K 7g/YuvFZ76Y2eXohNbmpZ9KfSu4Phm+PLzqDOnzVi4jhlp7FACq7z7b1IEfv oS7f9GJqcVvPZiBV3B+y9SRX76Ue3/USYrmj5zAofOvuD9viydOZ1OeHXkpt 7uq5DA7fuvsjtgS+6n004KdeRh3u6XkMCd+6+6O2XnzTWTTkl15OXe7r+QwN 37r7Y7ZEvuv9NOK3XkE9HugFDAvfuvvjtiR+6AM05o9eSX0e6oUMD9+6+xO2 ZH7qgzThr15FAx7pRYwI37r7k7be/NLZNOWfXk1DHuvFjAzfuvtTtj781odo RmBfY2vEE72ElPCt20/b+vJHH6Y5+exrbY15qpcyKnzr9jO2fvzVR8K/33ZR p1CEOFt+2zrfm/BMx+mrvo8Of6fwN9NnfR8W/t/2/ZHPwrT0/Vb4+/oc6/M/ rHSpMw== "]], LineBox[{1107, 612, 1063, 954, 855, 767, 690, 567, 1027, 918, 819, 731, 654, 613, 568, 569, 570, 571, 572, 1028, 919, 820, 732, 655, 614, 1064, 955, 856, 768, 691, 1075, 966, 867, 779, 1086, 977, 878, 1096, 987, 1108, 573}]}, Annotation[#, "Charting`Private`Tag$47772#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{1111, 1115, 1110}], LineBox[{1113, 1114, 1112}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->NCache[{None, {Pi}}, {None, {3.141592653589793}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotRange->{{0., 14.999999693877552`}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}], GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxl3Hk8ldv7P/5t1kCShEpIEippILSvu0SGQiVJAylRJDKkUu0kqeSYikq1 K0RKyEz32uathEJEyVRJksxD9LtvvZe+j89v/XPOdc4je9te67rWuj0fydsd 22bPy2AwxAQYDPqfA42lhYpXw5nUv3IKQvXWDddqXu+ufQvc0D3GiWW3oEDv UfSbB63Qts5TPkchHeZ9yvpip/YDriw8Peuhaj5IONs8FtLrherk2k8DX4sh dIVBjumOIWgTbCuObuXC+0h1zi+xMVBWOHfGcj0Xrkafq+CV5iG6j0+rEvpa BHPCWy+H3eEjbAddlWMb8uGShRHz7YAA0WTwrF3hDQL3tfdtSn2FCZZmdvHb iizY+HPklEvrVIKROrL9yPtUOK+7db+MlgjR9Cm56XJiEmgn3kw9i2YQnJ2L xHU+xYPz0C8WV2QmwZra5umjGQ3DqmKNS3eIE4ytLb8jku+CbsIT9o0bswhG 7P0dGzdEwC9xY1vLfAmCdbhqjX5jCLQF2loeF5IkGAsKTTZkXwGjnyeMPq+Z QzBuSrY3mfpB5wFh99RzUgTj5YKpC8TOgoHiHN5L+dIEY8DN8qOZF4i/VgpK +ilDMMrKo/IbXGFewDPzNWvmEYxKxUi1GkeIVF0rNsthPsGQM646+cAOXsqs X90bIkswgt0yxiT3gPa8/ODl7xYQjLi3N5KiLUCU74HHfl85gqG+8Wh3tynI nl+gu0tJnmC4mppURxnAlEV70reVUDVj5eEttwlYtk762Ym9ClT9iFzWqgXH G8ULjBkLCQYLrLTUNeBnb+AOo0i63vU6VF4VNi0vvmW0VJGqawW0rBSB7NUZ HSyn60cf5xbMBxc1jfo39ouoejpHW0sS1nUdrN41RYn6+mMzVZaJgb6i1BaR B3TdJNQrJgzKrCve+ZqLqdrdpvEPD6jYr0WL6ula0mJ4wwjTnnT0S3VTpuoH RWn/9TIRu/rgr9lLqLrapM25k9kX92dwecZELZFS0MY8sChhyq0tKlQdfEJv uJH5SyVsTUo3XbMEIwPfMTOjR5v7A1Spulu29lUl03rjQkJHVo2qk2pqtUuZ c49eylrGoesmx6s38pmzpzonb9m5lKrl2o+syGXePZrd/+cPXRPcmzPSmAaK HR9/1eZDZZ5paPvXM8BZrvezVPQjiLnoJ2zvSwDXkCT9Ww7toJZq5EmwX8Cb pY1BUZ3doOb7U/FscyFUlb/VUC3rhw97b8+6Z8KFNfY56+SejwDr/JQwszdc GOqOeHb6/h+wLTqy7pB2CWyNSlYz2c1LNNnfHot0LoSW2UouhSLTCVbE8y8X n6bAPs/+K2WnRQlG+oa3Us5PodDh3o8CLzGCtXpleWJbLGiIn19+OnkmwcmM +Rhx/z7cctoHLf1U3hfNDtd6cQskbU6zvNQkCEa4alyqfTh0mO3Y3XZwNsHI 1dGe1hkEkszOCtV7VN6FZ/oGm16CW0uIxs0NVN7j1/adPXUepAv/y54vT+Vb rNFZr/0kPBmS5c7dReVbKlRo0SF3iFBxOtYbOpdgmN/csO2XM9Tv8kiKLqfy 7rwjqOuCPaxY+ELhwm8q78IO++ctswXf2zwHZq6i8k34TvebbQU3As7fzV1D 5dtWLezEp60gmW9rtbeaqtkL+fU9jEGiat1wjReV7+4lXhb79WBecraGvTiV b/YDnhSOLlSKSK5tTqRqVqaMwKbVoP7NbLrxZjrfIV5dR5bD7ZAl3qUtdP1e JufsYvCdyfNK7iyVb0LR7PQheZAUy+g4KEPnmzezIkMaLK+Z1F7PoGvDWv4B cVh/mQx+voPO96LGfe3TYM22Ny1fO+n62hv7Sn6I72me2xdA55s7VIrGmdyZ b+R/LKLzPdT9+PEAM/TZ3b63BXQtvuD2k25mveKRxOBDdL7V6j+atDPVHGoY 9rx0nodWNXY1M1WUF8gp3aNr5a0RzvXMaodN06t16XxLzSn1qGJe9pgREllF 10kt/dKvmdlWNb9XHaPzzdq67mERMzLn5GpyGp3n7nlzVTjMep2wqtiEiXyb XDDJZH7KNT3WV5sCcgLfll33tIEPF9Zt2NtbC312Fq8DTaPhVodq/2qBL+Bx xTLV7VcW2MzX4S33/QnsG4rzNt4uAI/5N11uXuoD9uyDrQ6pJXDwFctH028Y 2uXPvp3eyYX2jW0Za3aNg6Hm5YzA0hJwYUuNK2XzEK7c/rTGpUUQ5hvscdN7 GsE+uT30/Yvn0G210Kv3vQhBLDg1WLrzGbguGHi4XlWMICRzHwzujAOzi2vr 7tvMJBhex64fb3kAL00yRANiqHyTfYTDoyhYIhAe7N88i2C1MDQLuNfBJbli 751ZVL6j05Ju3guGM/ZKs8y2U/l+46MnMRAAx6d/mCV9mcp37gzFyFpf4JUo kzxcSfXzK6rXeL6dhpOic+3fiFD5ZkzrMS73gOpR7vjW9VS+p5umRKw7BqPd IayjvlS+PfwC2fMd4ODi09Kvkql8W+l67du7H5R2y2/mbaX6uVaLeQmvNVib uK3sEKPyTNR3u67eDqF25w/ZJFC1eemPfVGbQfpx4q0IUyrfTVUzDH5uBHGn q30NnXT9oGD1Vyaci5njoeZP5bvJmLWQTxPeHEh2MFai8xxTp/9VHYo2NBy6 /IKqGXXF52EJHGS3aqTtoPs3v2VipQJ0nB8+nthH1Ywq/eLHc6HlA1n3PIjK N0Ne5JG/BKCckBT/5XSez9bOEREFZk5fxKkSui53SN0vCI5r1xjvtqXzPUU2 8wEDTupcdJ3CoPMcENlmP8T8nX4ht+AWXXdcOT6jh1lmd2/Keiad77aXrzZ1 MMUCjvi8/EDXTxyUNrcyi5U+S9h60flO0qi//YFpZ3RUvkCSzrP38rZf1Ux2 4MW1mxLpWq4hTa+CecXURzbTgM43x8xoTwnTOpx1YuDzRN4frbLIYw49OLfh 1Hk634ys6sXZzHkdan7f9MrAdrXajpNt/4GB1uob46UdEPT7fZBxEAd6yu7O ezunB+p0Wv2DRotAgzV9MFdsEPq23XJPesYF4T/948Ito6A+Zqa3MIILfuUx 25s8GET71rAsnchikLzH9bfgEyeIqPkRgh5scLoq4KprQJ0nwuN37PsVCfxZ dq6HTlDniVf+xh1zwsChq95KNZ3Ko7Ga4mVOICRJpgQKf6fyyA7eLZx/EQoM ouNYS6n8VfcHN6xmgbrH9n1v3ah+q1GYuGuaN3xqUVA9FE3l8dCXmeWzj4P1 LpGm8DYqj84JUucrjkBWvmVTgwyVP/WONUsED8K47B9VnU1U/tptloQo7YPG huaTchepfit1NdpmsyW8LQqZ8t8eKn9N0zp+s83hljxhvHuMqhnnTJw8DUH0 d9lOiXt0/hLDc7vXw6LBb65dmlT+bIXmanC0Qd5LYvx6Ld1vCQPtJysh2KUr yeg4lT/Ow8+6GkvBrenE5SnCdN6Sm/g+LgK2r+yBwFi6flZ0eo4cbLjrYTeX oPvrmMT7r3Pg5bq6mhNNdB7ti6f6zYQCy+8uTafp/MXX3OmYAsu/PaWOb3T+ eJS7rPmgI+Haj8BkuvaQ/H7kN1OyfV5VpQmdP7U7V0T7mcpxWWotnXRteGj6 yy7m1y+rtjcF0flrfzjf6wvT0IC4+Gcxnb++uSsfNzGDluxS7SyZyOMsN8c6 poG//GCbHZ0/5VcHZ71lHt9zs/3b0MT5Yqx+zitmh92yhuQIOn+2bz9ML2S+ aznee3HFRH+9+HApycytjj1YVTNxvvh4/WY6c2bXnNDh2gcgt7b63o35BHQ8 zf4ea18DSXLvba+9YMOyiG9lfNVtkKSgs7V4eiYwz57yiNzZBcIG9/MPtOdD 4UafQPPPvZD6692nTosSOH22dW5B5xC0zw+/6EX12yaXqboSaWPAXrLsd4ww F3wUyr6EH+YhxMKmL3x4tQg6M4sG+ZZNo86/Yd+1jVMh0zj7u+BlEeq8ynf7 pmoSGJyWP8cSEKPyqblvmnQ8NJLX1dLWUOfnADMvuysPoSXnwID1GXGCxc2a uy/uDmhYsSNFc6m8T92X98D3Bqi3TP803EGdL9SvuWnqhoD6yYJU26VUvi2N 8k9WX4bGsfhlf2yofnvs9sb6/y7AoE5HoWgclXetfp+bgz5gK31zpVo7lXff Bu2yq57g3nbC4LwUle89G8S3abtCYC67fese+jxhuP5yvwOcXVIvcSyQyvsH Bx2Zsf0wpJ3MOZVNn5+VLN8J7YYTu96O8vym8l7XeOnlt+1QmRJytOkGle9K pdOfOFsgaraDk7c2le+ks+V9efogynXfMaeePj/3K5XzE2DpFjnzrRudb5HW c12aoCBvd914FpVvdoMiClgB1nNX7fv2mM67qIy2mgq8+1p96Nx6Ot82orHB C6E6W0azqpnuvwunz0mZB3F+3u83nKLzvna7+u7ZMG5xWs91Hp3v9e9WLJ8B +cf8ewpS6drcy2G1EHD32DaLbqbzfcG4fQsPbDP/FDHnB10fT+MzH2YmaXvJ 6frT+Xb+U/Cqh1nMo60prULnW9FpzOI701dqtfZYKV3/9jnL38aUUDKcMbaf zrfU6kuFH5kq2own2Xx0nq3inHJqmE8iOdfu3qZr16IFqyqZx0vNnp3UoPNd mZNkwGVmM/wixavoOjgXevKY/u/6hw840/m21eEq5TBXXJqW/ONaCTSRz0Kd 8vyhoa3naFnkN3A9VhpB2iOwO0Pu0PT9BQEpmSXKHkXg++inhIfLAEiM3JjX fIELC1Ks7oYbj4Ly+947HRlcYLVmzq5QYBCRmvckXb8XQ3SdYoNDPZXHvfsl PYXvg+9o8s4ZstS8bxwPi6y6CSLTj3l3baXyd2Ka5NrcMFBeIFV/6RrVb9ld ST5vrsEBFbNlMkX0/O8YF7zoD8u0jhcc4qfyJ/1lRKuGBYpRbtO9jaj8Gf64 cbrfG4p/sIc5Z6l+y6q+IpVzHIbW5y4uzKHyGDjX1KTBCYyD7A05fVQeCwNR Qt5BkJLft/iTPJU/uThzL10bSMpx64rcQ+VPedH022o7YdWjKdUxRlT+4mpb D6zbCnVu5ls/tFO1HNrddMwIQhwuKvdfofKn/kD1fMwGkLN4+2bJIjp/r+Y3 5OhQr3/9tk4BVXOu2d31XAVNqvcajWzo/EWedjRaBoJZlazD/XQ9Y7PcYyWY +XJGhGUofb5NN8zIkQO12utKxFI6fxniIa+kIPhzyDvBMrrfvpc6uFYceLur /5Q60vlj361umwopdyDg7h+6nsGrI84PxhUZfsQdOn+x98//N8b8+dtrpFGL zp/kQFVdP/Oj6pNg6zq6Zov9J9DNbLpYwco8Recv8MChPV+Z2e+m6mnMpvO3 WeeaUTPzg3LuosvPJ86317fYv2eKnEg9/8GMzp+tDMl5yzzrWK27/stE/XCe RBnz7UceZ/cLE3ls/lpVyNQ085J4IPt33tvrIKaJ8Px5LzgT/RYOH81gpvuG zO7Uy4WmrVFyXhvcgGgcK+HZ2Q1N5ZoKSK8QFAfSzFuW9INtYNbZYEEubJGS /ZgwdwQY01vO17VwoVuGXLlrbBysDBUz7/iVgJ/So4Qen0pwjc5x0pl3HS7M O9fq/LQH/ILSDC6cKIYWqyXvBZ4PgsSr2fUeFdSfNwmzOXPyNzTtPJnsfowL S++rP/3WQb8/zgeyIo3pZf64lq8uFIhWk4P1pnLQs+Ek55VsNXhXHrSRlrgL 3ke5mUd02oDw3DqDkMqAp8tuPR3L+wHCX94oaV7NB+e6o3PVwnvBiuXWuFCu BATrwr8L3x8CKfv8Np1vXOo8P3+c98AYDNX3l1Uvos4vrYsaTNbzEIx3BcWx WUUgZWG7Nkt4GtGkZzDzZEgqRBVcjA22FSFsi+P74p2T4MA2l/fweQbBiNqG zp2Oh5iGgndMBer8fTqFYdT0ELp61x7ZeJg6f8saLOlTvQsZ52OjtsVT86C/ NCyz+QYEn0pYEPeOOv9wnXOuBYbAVL7Qi4dlqP1n+l3GxeAKhA+I6R43oeaB yvrN57suQI/Z8O3mMGo/2q6cc9P3DFTJ1t3aVUPtx87z+/50ekK+lVmHFD+1 /yy0M4yuuIKFQty8jUbU/qN6qM1BR7j6+LJ43klqHkj5JYub2UGzyvDImlhq PyqTy+SDdkOdtnGx1DdqP2byb3M0sICf9dK/2IH0+fvnKZedprDXpKDKUZ3a f+yDz3YtM4DAga8CaZX0fVPMZL8ZARtqrZqiHej75q0PsQ5a8PKc9pOXUybO 29szG1ZA9KWmXTfv0+fxDStex6hA0NXXrIOadP/fo3eidyEY7VS9aV9H10Kv d6ydD1etanZNdaX3X1ndDe5suCvfPe2zOL3fNn3YWzgD+I0r7jkm0PVrUHsg BN4u/U/a19P7z2mmQCwPkNaBCXdb6To/cy93mHnF59i2odP0/hPWL1DrZW7Y KmQqIDex/8TCPn1n5tjK3LzBoWt24uoDbczcmJOBr3bS+6/JYMfeRmZQipHb mhG6ZusKLXzHTJFt1DQOpfef+jmjc5XML/5ZJ6yVJ56nXL6IuMyOdIF4dild qxvd1MtnmnYn1dTtp/PNkrj7OIeZW3Oq5KdGEXj79BFPnvqCUs6bXSsZ30Dd 9vHH534k3Nph2nNY8xckdZbXrFUrAhWd5odm8wfA9VDVUYvDXHg8bapL/fgI yHWdmB5SxIXfDX4/Anv/QFxb7orTs0rAqX/bxV9FMwmOVMF+J4v7ELQy4NXQ FGoebGPYndh0C0JXe/poADUPpg3zmomFw+WMdJk1J6l5sGig/+reINBNnf9H IYXKY46M4mC7P7Spv698/5PKY9H3tLmLz4NsEqvVeDWVPyXz6qKjJ2Ft7yfb LidqHojHhrXOcAfD9LBXux9ReZwXbMBj7wzifc4+Kc1UHp/0Hvslbw+KD0QW rZhB5c/W20LylQ3cTMhS3mFI5U/dTLfv3k74HKG/dgVB5U/56Mq0a1th8GZd dVQjfT+0TC/vNoJtd5qDP7Oo/NnWnfXj1YO7vga+JXPpeRDWMnedLrQ92nFE NIt+vnffYPPHVRBw5UR/6Q4qf0RyTH3dMjBfdMZHupOuvf47OWsxvDwqnKwT QJ9P8vr1xOThvntswNuFdP721d8mpME9q8uyPI+uR4iSG+LwINeIy7Sh85eN HO2nQd+JgNV6A3QtGe7myg8jTZvNZcLo/PlGLlYaZ+4RUhQ9tHzivM3zmhhg Zh6NyZcsp2vWe7DqZu6tiYqIdqXz5+cz8PYrs1e2+/6raRPnkXfut5uZF+J+ PNgZT9fdave+vme6/hwzsDKYeL7x4Jt0FdOv69eXzg8T98HVb66XMQ1uO62y ODlx/6v20y5iOgoMKarPnuj/YYeKEVNcoW5wRfrE+eS9ckMG8+UC1w3d1zKA YXymwM7AEbzTrx1cNb0bxExTJau7C6Ds8qNPL+r6wPVTpbTipxJqPlc8+VUx DEkIUv3audC5/E3/poRxaH9T6lzyqARCb784+vVuOTXnazdv9QyF7D5R1j27 Hmgrk1cb1i6GK50yjs37B2FomH/r9DzqPB6zcXnB0t/Qfux7vpwfF/qyvwfs a5p4v97HVqYz259ba/3SewK2TMHql9+2wrzkK2Mea/pg1aD3lJ3+JdCtqLH5 jNYwdF98vcnuBxfqZ41fjEQDENBMyG29zYVwq0flpjdGIe7olttOcVyoPL6r r9eHA3IfiHtvVpwAH7vCPMHT/UAEOpmkq3Ahn3QWOeQwAlqNouJzGrigXaRp rMI/BOaZhPlQPRcOXfJ849E/sZ9zT7mkMYnZFXZSdb7ASL7tnevAAK9rdSr7 TlcBa7ReTt85Cu7WZSyT/dkKT9xIkcg76dAmqGKsfuIHnLXlm521Ox+IB19a bjr1AoNPX/wUfwmU+R2tUj09BKnsGG7uFy5Yiy62GVk7BupT7ruXraTu34Xb dixeykPUTbl23LmyCBLvL62fNTCVIG6a79idlgqirO8XdmwWIdjz0M9z15LA lMG/yebtDIJ1w//BqqfxINxRn8AnRZ0Xf8QPZE6Lhr4ZixTX2lD3F8I6zM/l Lpy6EX+37x7VL15mWFfMjABO8QicK6P6xVIVvnVpITC4afjHDzGqP7TwlMxl XYGu44X5quup/vAn5NpJWT/4+Z4l9OoyNa+mn7gxtfQMBN4/Ydr9iuoXcvev asl6QYe4Tm7bMNUvRtQialJcQasmYc0LmEfffz39oxxB3Gn/zCOu1LwKfC0U 6W0H7xTmS82OovqF1OkLum93w2VVf9XoT1S/aDd5ZulpAeNdHzXOX6L6A+eF YuVDU2Ae+iW0X5W+v6y4sd3eAF6KKDTylVG1+eoGVU8CtKZmbQqyo/qDXPXX +TFaIPssNmOqAD2fokVKBDTg5Yv0nb+i6P7QKHS4VQWOfCwV2alBz6d5028u UgS/mJUvE6voOqe07cx88Mnnk+k6Qp8frcPlGJLQdUnFdYEo1Q9YB4//ERID xQz3gexYuj8sjjV9LwTmgyi0RpfuD0z3rLc80PfJbnVLI133hNkJjDC95zs7 vfOi+0Og09jeXiZj+OiuURm6P2zc3bqok1nHf82wNYeuw8u1w9qYwfbir1K2 TTz/r/j6uJHJcena7tFP13Ga/+18x0xr7pzOvkb3h2DRAzGVTLZ9V4Pxwon7 +fLG31wmb6hB8tfCifp1o3M+U+NMkF7Ynonz4+voHzlMnjMpb10FCkEr/FSN fhELTJTyKr48b4eobz1xreIkpK+/QfCJ/wJn/3zT1UJFMM5v7fSirx/6PqiE f7Lmgmtmy46xuhFQ7laDxFdcOHUoyNTv5R8wb5uZNHtxCZTzHbFOz5lJ5VfT qf7UfQg3c7/44w91fvJVFJ3rewssjL3PVq+m8qf33/Va7XDI5hPUETlGzavj z/t9ooNgybCfw6M4Ko+iohuD5l4CeBq4M+wzlccVkY1R5udhnraw2SpVKn/Z KTdePD4JPZ7nJC7aUfnzN11Qo+0Orq7n7iy+Q82rutexNY+dYSDW9YZqHZVH qbu3M7fZw2O7zwvrBaj8RXfqJ0yxhaCHH/VXMqn8Ob667VG/E5jBrd+9dKj8 ia397JC+FQQToyTPvKfv09NktTSMYWXmjKKPp+nfR12xTFmhBx9vsqwl51D5 I25E3z6rC/X1aW8Gn9PPj+Ymfpm5Gj5ktTKmbqXPTzKP/5NfDl67t59y+0rn cU3eB8PFEIv4mcsuUPnjLC9coiMPH/ISs+YuoOeTAnSfloaDC+fPScml8yi+ QKVYHHoU/NROWtP5M3lxI3YazP6sFnj9F13ffr6KzQ9vD89ZIxRE509cN/L4 ODM0cCQiXoXOH3P8rOcAM0b0QUMfl66fhGj6djPnneF7eMuJzp/5ZdkZ7Uyx ArutUkJ03tTUhgqbmZaO/s3M6In8ZRUtqWc+SHiw5Mb6ifu0g8KmKqZ/MiN3 Qx1di30Ory1jMk6xIzd60PmT47vjUsRkNWktPSFG5y+p86QghzmQmGbfmUTX TWq8szKZFi6frHo00kD9CuvQ9NIDoKyfYH/79U9Qi4yaZ1tcAOztco9Uk/rA 8cbYMfWXJXBXNi5c4vEwcGuWLw/q4MKR7HpL8B0HrWeB8bWZJVC7od/b0e01 cH2e/Fi8PATeNVmWa63rgSfntTvvzS2Gfelhy83WDgIh973iRSYXNmybP+eL 0G8I+CZoXneNC3WbSgekGuj3x96z8lA687f5Wvv+a4+AGBrTzxQygu5TfEUt In0QfXPBCRGXEkh/M3UVW3wYWLc9PVZT8yrxo9cWwYgB2Hxrcd/of1S/F2Cl u7mOAlcvUts+iQuqqxT+fLtLgu2WWdoZch5grrbusse2fuCXabw7TZoLAU76 /QHrqf11yurU2k9cEP0vaWZkwyDopinuC63hgrHEdljePfH87W3F3TTmZskf Z0b1ooBx8HrguK4GEKq5fF+Kh4DlXd288DsXLN0cPzTrD0BlF8j88eJC274V /hmKo+At1f9xmOQC8Yah1tWeBRzD+FYP9aMgXjRQWN4/TPXxTat6PnMhXeEB 2/3KIHCdZs28y6U+72nkxQGfJGhKMLzXqWMFKt67Dlrvo77/xOBX453U+XVm +CK9ayOgLsC3yP0dNV9HSd9ctSEojF/oEkd9P74jEQeyRybuh24kM41ZfVfq 5Pq648CY9uycpWcTM1ND2PbRkirQWnQm1Pn2bVAPevZtkNsKPi3S55fbpgOj 1y2ydOsPaBrY3svRywcVoYfF5jt7wVHN/s72gWJY3rBr0zrHIcgVa2VspN7/ raqEGV6LxoDbeGjrPW3q81t1WHz2Qh4i4MnOy6ihCE4ahqvkdU4l2BlzmXtL UsFw390ezQ0iRJOvo+P4nSTYWFs+1sWl7ofB3dFLi+NB2+2Q5Bdxat6mryaC 5aNh4I7M+ZXWVH8rM/859t9daJBLuKd/m7ofKqkKji+JgDpnhcojJVS/Q4Z9 aaUh4NKhpqA+nepvTxc2LbhzBeatkPUX1qX6214nw3tr/KDr7sYXyI+atxoN u1mdZ+Cb3aY4nRKq34W+dhlb4wXjP9VjXvZR/e7sz69Q4gqPE58WDGvT87Yl ojTTEXaYvA4mnah5q7hr65lrdlAp+0yJP4Lqd0O7jQP6dkPLQsXGb/VUv2OI LhwItADBYbT9lx/9+3apnYYvTSHRXVjhozJ9Hyxj8J03gCPSYJxQStWsC+kr Agh4vvDwKK8t/XwmhTGrUAu4xXtePOal+lmT3PZeGQ34UHff8s4tev5+nuPM qwpWgoYWlcvp83j56zqmItwvy7Db/oaudcyd2fPBc1BmxMaR7ndXrs+dJwmS OZse5E6j522Y25S5YpD6o0j+YDTd3xrOifULQa5OjMBm7YnzeN66bzzwn4Lp yIUPdO11b67iCLPraMcJfQ+6v9XllHr1Mps2y9t4SdH9jftgi1En84ulAfty Fl1bLXBMaGOeKtp3RMmc7m/C+3+/aWTWlRH6s3on+p013/F3zDV6HoPGVyf6 2/2QzErmWLWwaIEc3d/MucVzS5lBfw6tvpo/8fv2JXHn85nRemdOde+aOO++ PTYjlxltbmqV7FIASabXjOyen4PGhswrnGvtYL5XaCzh/Qso1Mz+avanG6yc 7ARc+wqh/bCkmUdTP7TJb/hgtZ0LVaIVpaLUmS2zW+lCUDkXslRn/fmT9gfa v6ZsL1EvAcbV/sLIdCqPPey9y4PuQ8RHx5avI1QeD1x/dOveLUirPnlu0Qoq fxIJF3XMw+Ft/NJXQ4epebv7h7U6NwjYtzNvf3tI5THNrIdn9SVwdvoi49pE 5fFZJ3ne/jzVNF7xL1Gi8ud8LsGl9CSYaZq5VO6l8mdRqO1m7g5+Wzz9RSKp eavFqhl/7QyOrOMLHauoPG60earvZA9dG7Y+XMZD5W/errj3c20h4N4xC4W1 VP6GnHZ3DO6EI4EaRdJr6XkrLd72ciuIZp7V/PGOfl6oMUVluzFEFyl92nWS yp+YyysPIz3qfnGn+IUEfR9c9T3sni7s6LO/6JxM3xdXmtmrrQb/NzcFH5vS zwd35y8xWA4BXsyT8z/T8/fpidwDiyG83dfvEYt+XsjLU2QuD8PtGts48+j8 LQosvykNe61WDS7MputaJ+FGcZCxvL9P0mri+eAxh5JpEDv3XAbzJ12HPoVM fmAm/o47c5XO355aqZvjzKUVn/eYKNP562MLBA8w59nItR8opmvLl7sjupmj lelxsw/T+RPTcFrazpSdPS+e5KfzJtfV+L6ZSXDfslLuT5z/RKRN6pk5U/pl VgOdv8qer3urmMKzAmJ/1EzUMclDZcy937Jf5rrR+WPwfQgoYk433ZUsIzrx +/DFIMVhOnpGRxklTpz/ni5dnsm8NXvOQXeBVLA9UbG59fl+2Lii9/mquJ+Q 6fFuytekAriS+eFKy+0+CExcyj2ESoDHM1xYKWIYXKv7hvZR8yT+nI1QztFx YGs/TV+XVwKnJEPG4+rLIMls9MvF/4Kh7d0pz4sqPSDHF6OTOK0YDOeazxJc NAipnwIWmKVyISZuytXBPmoeqlr6XA2l+rFo5lKvuol5m155Lp3pfy/u9KBG DMjVncmt37ER6j+huJvD1H3KcMmcyP0lIKU8+Cj5zxAMtQjtbqfmTeSGlSte +A6Ah1LBDqErXMjd7axyYe8oRF7SDl1DvZ5rw66pTm4vQL0i85NywnHQDhl2 VmX2A3vBIfX2GVzoyFtx+NayEXCs1rss3cyFoV7nftOSQWiLuRp/6y319erX ewX+mJi3gqsy0pj7n796/OdaBDDcvl3sc1gCD8/HnRh8PgRPFAoeb6DOI8Q7 RU7kigE4aLL+1wZXLmxKmz/CnTkK3WHnbljkc+Git5bmsZxMYKwN5gw/PQKe c1u1mlqGIW5RzonNX7nAvrTPT8VrEKoLih93FnJhn/13+Z93E4HQuyvF7reA a+X6dU4m1Hx2dffaQJ03bBxZNy1OjUCd+c5lNXVcMLc9fchdagiUI76NHPpI 3b85/rfmDE08Hwi+bJnGlGyYOUVsYyAwUq2X3DkkDoeXnbeRCaLuw6PjljOo +78ON0eO78UwsA/6Prv1jQvHeV+a9rbHA1GdWsGvYQrbT8tyghYNw1CSicA+ 6vUVVfqWNv+kzgdT1y/bQ71+lO6luFEfNjB85xAqHC1orK74r/r9EKgnlOZ/ ovKT5DJ16wvhEZASWavo1caFEvmj3YZuwxBwzvt8BPXz9LnBe09g/RCIxS/p zqV+HmKr4tX2jk3cz3WkF6cxsecb9bnoPO3lV8Ceb6ZQ/GjL83eTno9xk//h NqGESc/HLQ17VFqbgbDna79wmPv8RB7Cni9phvfCzg0IYc9nuyHRQeBPBsKe L6n2nZZqXQrCnm9oO0umqCoJYc+XeYa3UONOIsKejz1/OezJikfY85k/n9F8 bGM0wp4v631ewfjGuwh7vs5nP0KnjIWjSc9XW8o8+yYQYc/HUlov0pTgiyY9 n0T5R5agN8KerytTsz8x/xjCnu9Dh/e6NfoHEfZ8A2OaNz/FWSPs+fhjj5pn /DBH2POZd7G/nHqqj7Dnq/xUW7r8li7Cnq9ylliFqZYGwp7PmQ9tKu9YjLDn Sxq89zs1fgHCnk9qXn6NrI4Ewp5Pi1AP6H84FWHPx9oUrNv1k4Gw5xN7JT9e kN5PYs9neyzZwoWaQdjzyRFtPJdMWkjs+YLzS1qmTqsjsecjgt5V5DdWkNjz NTm877F0KiSx52O9rDCZ3Z5NYs8nx3d4jYZsMok9n5yk6oHXp2NJ7PmIoG0q s1/fIbHn4/xO3LNDNIzEno+zP3H19tmXSez5iA/6Oa/qz5GTnu/Oz8Ij+zzI f57v7/rn+f6uf57v7/rn+f6uf57v7/rn+f6uf57v78KeT3f5Arb15uZJz6dw MeXVrvslk56PI9TzhV/tAcKej9iVWBHThBD2fFKHrzR8VMpD2POx4cnmOyE5 CHu+9kZWi3Z7KsKeLyDsqNBrdjIy85Bs03jJT7BOpIs4KyShMYP+8te6QkTS w9+n99k8QXskTH/MfT6FeHIr9UOv4COE/Z8Ysy6/6t59hP3fmpuPQzWsbiLs /9ofSxKu7iEI+z/20J47PBsuoUn/F/ToxpbRMwh7v+z0xBhfm8MIez/eZapj U1xtEfZ+my/MMDvF3IGw92va3rbUbo4Jwt7PukXc+Njt9Qh7v0K1Nr2Z1WsQ 9n7Ewi1fz1xcirD3S9rqFbfTcyHC3s972K/K3UwaYe+Xe4EnxeKIGMLej1Ox mm8ZUwBh70eE9hxKkx0lsfeTKiN0RmN+kdj7uZqJrHRt/0JOer9303zi4j+S 2Pup98T7QmgVib2fq8FimxDfUhJ7v6Ti18+/hHFI7P2IOYXW8R5pJPZ+xKwf PXpkAom9X9MSH+Otpg9I7P2aODU/vtREkNj7cT52xOh1BZHY+zXVKnds+32B xN6Ps6Nof/Lpk+Q/7/d3/fN+f9c/r/d3Ya9n8Sp/6Z7zbZNeL5G1pWHnYOWk 12NZFE1Zl3980ut1mxYzXENzEfZ6Ab4ZFpsu5CHs9dTfPZdVcH+BsNfrPqq7 xXl7OsJeL2CdT9ht5RS0kn9sTetKfkLOpC7G8EwSyt9yT7DypiDRrnP/q/q1 p6g99kRsj8wUQnhkucyVg3EI+z7ypspDn64HCPu+jSdHNVe9uI2w79tz1Oq6 nHIYwr6PFf8kJqP9MsK+z3bPVSWDXBaa9H2Bd7cWxnsi7PsClH21iQPOCPu+ YLNe/V7CDmHf986oWsi2bCfCvm8ez63OlUamCPu+lpfnvO0v6yHs+1zTNr30 vrYWYd8nkZn1esshdYR9X9+9ubsDQxch7PvUf6+LEDebh7Dvk8twDpFfK46w 7wve168EL4UQ9n1yr1pqDc3GSez7Mndn6TiH9ZLY96nzhp8//uAbiX2fbWbG tq/eTST2fcSLHSlyyTUk9n2cPRuK+3zLSOz7ukUTthw8lE9i38euO5g7JphJ Yt/HEX6uIlGZSE76vqkXagWMo0ns+zh8/728/OgWiX0fR1+2rkwlhJz0fUYL N6w56E9i38dJkriqcc6HxL6PtWSO52af4+Q/3/d3/T8+b2Jhnze1cd0KFa8P 8Paoounc2c1AXDQZ3SX/YtLrEcK72NttkxH2ekNTReVFhjgIez2t3cT5N2c4 CHs99k5BnpVZWQh7PfNHRbGnOM/Rqkjj3cd+8xJSa1QNjq5MRk5ty0N8bQUI 5V03VnX6PENlISX3YubPILSZ64wb50QgqSRDTYN8MSLpaqPQpRf/Iez9mnaO 3+x974ew9yMMVkvE155C2PuZTb9QnRXlhrD3498gvCjv6SGEvZ957/2Eqlt7 EfZ+flO3ry8a2Iaw96v08/zwQccQYe/XVxEzIzQXEPZ+cZYr3/UeXIWw99Oq PT7dMlQFYe8Xvm7DJpNr8gh7P2+S78Ds+5IIez852a3TXoaKIOz9rN7rPHo3 yIuw92N11X403jhEYu9na9foVvPmJ4m9X1LaXrtG7zYSez+O6Z34h6n1JPZ+ rnNW6+XEvSEnvd8p5RlOVcUk9n62q4R5ehtfkNj7Jd3bumCuynMSez9O9dlf l0biSOz9bF1VMiQusEns/Wz1bjx+bX6dnPR+4zaLVtdfJbH3a9LeqGRWe56c 9H471grFlXiR/7zf3/XP5/1d2Ofp7WlrsVf8Munzbok2CyUUVE36PLllJ22E zaImfZ7tDv21x+2zEfZ5DG3F+3qBeQj7PIbiEZ0lNiTCPo87fGbvM/kMhH2e ld+5rIhTKWjRZlfbnHY+gi0RqJQSl4QUt3oobDUUJOReCO0SkE5Ey1yn8zWW CxMb2z81mIjFI+z5Qp/oTYmPfIiw57Nc7+xe/zsKYc/n4f8qz0I0HGHPVzlY yhtucRVhz8c2Oetz/Ol5NOn5xm8U2lR6Iez5Phi5bK0VdEHY8/WF/XxjrnsA Yc8nx33zZZ36LoQ9n4fx8aFSXnOEPZ+zg1Tv9vCNCHu+6erh+94I6yDs+VyB b90yoxUIe75MOxXZH+lKCHs+ZeXnq+y65yPs+epCTt22XTkLYc9XqbVDslxt CsKeL9ND87uXAANhzze0V7h69E4fiT2f+izn8dH530ns+Wynl++dtaeZxJ7P /MCC5+bv3pHY83E2dMS8ViwnsecjKhXlltkVkNjzcR55VhgdzSKx5+MsNH+w dF0SiT0fO6Ri9aXdMST2fE1OidtylkeR2PMRaIPqAslQctLzZfs2rnp+icSe jxAo5lWRP0tiz8cxLPoZu8+d/Of5/q5/Hu/vwh4vcqSnp9TnE6QIFOuzoj6B zKYtR6u68yd9HmtpWNDgz8cI+zypdwzveH8Owj6PVV9bbljPQdjncTpEawof ZCPs85QdxPimbU5FG2TG9T4m8BJi1iytGIdktFftYbb1bAGCNTpVIbL1Gbp+ Yd/srDJRQuFlzrfDKyNR1zQP8YtRVH+tV6uyjwlG2PcRyXv9nQT9EfZ9DM6x sbB9Pgj7PikXrUhm4HGEfZ9jxbEp/b8dEPZ94Q2nfE9q2CDs+7gfx1dZiVsg 7PviUlYFu94zQtj36cpskJuVQSDs+6ZvnnIrK2w1wr7Pe/Stzi8eNYR9X1mr +Cah0woI+z7Hq6RWRtcchH2fqw3h9lZ5BsK+Lym4NypPnB9h32dlVV+8/dEw iX1fwEFvv5S8bhL7PnPn2DeNjz6T2Pc1la2z0F/0gcS+T0563uclEW/JSd/3 X2f1SXkuiX0fm3d+tJI3IrHvI3ytzRdtSiWx75MLW85rv/0xiX0f68bWJA+7 +yT2fbYVo5ouV26Q2PexxIZ/ju+6RmLf11QcXjbe7Eti38cxW/dhpZQ3+c/3 /V3/PN7fVb6LEznrfD3Eee5bq36/DASYLvMd13yl8lddk1EbjLDPE9sXtXfT QRJhnydG3Mszt81D2ON1w5w+5+tpyFbWfnbWVF6C0bQ5N7ApGd0dvEdG/KTe j+fpo8rIjUy+eoJUH/0OtosDd3+sSkXY63GZB7VdNuUh7PUcC9ZNvSHBQQFZ oSG/ihkEmx2Y+Xnjc9S16dYi4YfU/EipK5a/7En+83t/F/Z7LP/RFJHBL5N+ 78gddaEjmjWTfo91hiQEPKMn/R5hbfJdWDULYb8nttTgddvFPIT9HkNlMHjn WxJhvye8f7FKcFAGwn6PI6z06c2jFCTbvcRzcQEfIfV01EeLTELv3u5LClkg SCQRZc0SexJRZbVlclWcMBHg12u21j4eYe9nvrft3sGuhwh7P6klBGq7dwdh 7+cdoL7xqV84wt6P85Hd3ykWiLD3k9Mwd1FV9UWT3s8kd/Do4RMIe79gA5Xr Mc0uCHs//3LnaULoAMLeLzgiy6bl2y6Evd/QGHP7HS9zhL2fx8cZChIL9BH2 ft3HQ9OelOsg7P2Ua1KeqqIVCHu/6P61AS2mixH2furipwQHSmUR9n5yInoP /NJmIez9OIeuZmZ9noKw96v7VGw16yQDYe8np/PmS6ByP4m9n5gGj09L63cS ez9HAaXxtW+byej/eT9X5fHuRJdaEnu/phKH1KTxchJ7v24Jj/KBtgISez+C 7faqenE2ib2fuVF078onSeSk99vV35X7LYbE3o/lN+USezSKxN6vSaSG8V9w KIm9H+vbllcl+wNI7P04dvdnfxs5S2LvR8jZqrAa3Ml/3u/v+uf1/nce+p/X k5hrZavo1wRZt/xkYnY0Qmb0mZfSUDTp97obXEV6n8Qi7Pfav7U6GxMchP1e 0o+rG/N58xD2e03BYzJJ0jkI+z1bnwr9aZGpyLhhp1b4BV6i2925z/dCMrKs 3FNR/JOfKPTf0+E0NQmd+r2kckO0KLFPMaTjQWEkep81hRV9WYyQGrnUfHRa CML+j1XgnCv+wB9h/8e5+f6miMoZhP3fs2wVhVxhd4T9n6T5+k6U4Iiw/9uX +Dpcm88WYf9X1rPD0zDWAmH/J+ag5PDSyhhh/2fZz/AvWrweYf9XXadX/nDF GoT9n1XH4QfKeWoI+7++EdnfIQMKCPs/Rx778btRUgj7v+D3bn69ozMQ9n+V Q4LPrGL50aT/c25wPGQ7QmL/x2mN/7NX4xeJ/R872zi5Tf8Lif1fUgCvQ3fb BxL7P0JtS6XErCoS+7/gH1ukgyu4JPZ/lQabC4OVOCT2f3IleiteNaSS2P+x ot/L+AgmkJP+z8t9d/m7+yT2f6ym5/B+aQSJ/R9nR/uvR/JB5KT/O28zbeHR C+Sk//vAjr1Y4k3+839/1z+v93fVdJ09qqX9Hm55ML7sZ1aAucSWKRV3vgBD R0b5446TCPs99T3Wq+z9XyDs94RPma6u9MhD2OtV1jxptelJQw6fyCmuLTyE mE5mpwtfCqqFi/NXfKHuq/7c66VSx8nf+y0fR9h9B0fX8aq9ys8R9nxJgdp6 5QvzEPZ8TU2oim3MQYIbo3ra7zCIps9tKSTrOToS4aDbF0nttxaZTg0lL/Kf 7/vf/HttrbPyRxd1n53xKelSDsK+T9jbahVczUOe+4/3fAzhIaQqtw/rmacg o0qzhgNV1H4edZ8x/9txMlhUwtd+RQfY3iR/qAwkIpWYZVn8r3+BukBq8qsC DsIekNg9UFPzlIN4dz1LrTVhEMJVG9tW8aciYUEX1Yr71OcVN2vdKzWEsAcU 2+33dYVBHhrysd7pMkR9HsLXGc4ebuTmjT8NtId6wFCYOjIeyEP/PODfhT1g rabW3Eu2Xyc9oJ+sYmtYX82kB2QN7V59Ke3RpAeM3Bn7McgvE2EP6Lj3efPr c3kIe0BG6teq31MRwh7Q1uzeN+viDDTpAQ9JT41EKUgm3//c3iQ+on2atcJv bhJKnGUxuGKaIKGufs21xScRKQj5BJRfFyZseTR0D/0Xj7Af5K++Km4nHY2w H3S+/1FxRc8dhP2g38arn+5wwhH2g3LMTbrPXAMR9oOcI/Yjqk6+aNIP7tqt 7ZFxAmE/OJB4d6/t1mMI+8Fw71iJRJ6DCPtBjS1zdj43tEbYDxpkzRHiJJsj 7AfD55pOe2Ovj7AfdN4a1pq+UhdhPygRNbB45+gKhP1gVGmYhFXUYoT9oOGs WC+RtQsQ9oO2g7bBzYOzEPaDcs12rSobpyLsB13lmXZzUhkI+0Hujh8rNY71 k9gPcjrdGL8MO0nsB7nmFU6nRFtI7AfZSUWs3bm1JPaDcjUZyd1HK0jsB9kB 6S1PFxeS2A+yrF04upeySewHxYji3LdtSST2g6zV3ms3acSS2A9yipMcow/c IbEfZIX0+wlUhJKTftD1ocP37AAS+0Fi1QskfuQcOekHt/Df1ZnnQf7zg3/X /+P/Jhb2f6ezE4t7vzaB7udWP82Uj5AyxHv6xdHiSQ8oV+SZYOIRjbAHDMi+ 6n5JmoOwB9TaqytmNzsPYQ9YufjThWs7chD2gK6b9GZEoVRUnuOXcuwYNf/i UpYOhiSjbQ+y3v/+wE8Q7zrmn5NMou73/z0VChYl0s/8F7RA9CYqD65es4ol RsRpV6qpQQjCnpC9+ut8n1/+CHtC1rlKq66QMwh7wpFG30ENQ3eEPaFK0fvW P/yHEfaE0QeMvxqstUXYE5o7XTGr/WWBsCecZ5Mj55xhjLAn9ELyoL1/PcKe 0GruC01D3zUIe8ImkfluTxWWIuwJpytGywSuXogmPeGHoF2H+6UQ9oQSe84N la0UQ9gTGsaqp2X94kfYEzb5+Q+3kiMk9oRajclLXzv9IrEnJMquPoq48YXE njDJaOH8eIOPJPaE5mulK4ltVST2hMGecypclUtJ7Am7g/h1mvZwSOwJ5VZ7 yiYvTiOxJ5Rbx+0o3p9AYk9IxOQErRB/QGJPaHu/acjwfASJPSFxmxO581IQ OekJY/VtNFMvkNgTEvr6R8blTpL/POHf9c///V1WaxtrX96oA6TQLjzbuBI8 z+me891KzT/+TVNC929G2AOqN32w1JrxAmEPyJKo/1jlk4ew/zNcfk36gEI6 6kDfL5iU8xBy7Gr7zNkpqK91sOxMMzVfQuymWhkdJ+Vf68uZSH4HsarvF/s2 pSDsA5VHXc8OiuYh7APjuoS9bx7kIP0p8g8PXmYQkXOOPJRlP0fKUL6pI4za b6+eKdt4eZH/vODfJRjbUWv/oAvU/7PfFjicjbAXdN176XNsIDV/1t9zzjrD Q7As2ysl7FPQIY/8K0nl1NfbytKtVnAn00/yDUl9/gbmmcH3b408QQYhXkJ3 H/0CbqKE+55YDsK+0HWoVzqgkIPWy66y367JIAIer7pxa3EqUuxJO+no0w2V pnvrlrwiEfaFQ993Pu/anod8ty+dYdJHzb9z04u1b7iRjuqa16ve9gD7s8vn LZZ56J8v/LsiRfu3k7m9YBid5it0JQ+dPSwYXbmHej9O+ZseUZ/PEFomZc7T D7anWe3GTnko+7a4S1sH9f2UyVx53uFG3hUuWSEY0AOMqxeKotbkIcOvM9cI 2fSB1pYbt2UC8pBo1pcjTj2/QOu/s0m8nzgoLtJkJPJhP9T5JHEWa+YhdatH Q+z5vSDF5Gfau1Dvf9IP/l3YD1o9NbhueP0rYD9YeKFg9+D2d5N+UO7Flucb 9sRP+kG22wzBwWWZCPtBb/ZvPV4qT9gPdv+sVp6+GCHsB5OGd4WHt2Qg7Aeb yPNFJa9SkJRqmt9QLB9htackzaY8Ccmklsvw8ggSrndfbpa5loiM2aJ9JoHC RNJY9gbH6HiEvWGn8hblr8uiEfaGBVJBI5fm3kXYG/5WHrMvbAxH2Bs2beBZ 188ORNgbss0+Grle9UWT3vAMHH3feAJhb/hSenF59eVjCHtDLzOB2h0LDyLs Dc0bF724422NsDfc+GpjB7vCHGFv+EEhSingsj7C3jBulezKokO6CHtDMZ5G oyxpDYS9YeVl40/HCxajSW/4cH7LMrcFCHvDpJWOowekJRD2huzIZclt7lMR 9oaGCT7r298wEPaGxJPoXR9D+0nsDVl8/Cd5fDpJ7A3l+F4Lf1VrIbE3VP+y 5H5oay2JvSHbK0ticWwFib1hkzwZ62BUSGJv2GT0med0RjaJvSFr5mKtIzzJ JPaGrMCisx2WsST2hrb6Z6KWRd4hsTe0dROdFtoVSmJvSOS8dBj4GkBib0is /9au++AcOekNj+0pWrTOg/znDf+uf17wf/X/vGD61l9JEjLNcPbKrGyW7Ufo i/r8plOwZNIPssofhMpue4iwHwxmr5+jK8BB2A926z7bpi+bh7AfNB/W/P2f ew7CftBcVD+ktCoViandPrbXnpdosrRx2HEzGZlPa2+MqOInpFjjm0/NS0KL IjbM67goSgwJKOhIrryJjH6vFfc5LUawRTqnrtsVgrA/bDKNt4iSvoSwP2Rd CTvoWnwGCSx/1PSZX4JYsDbxzuH7Hgj7w9BirztSGocR9oexmt/dQyxsEfaH zsoLRASldiDsD39rHzDT/WqMsD+UPT3lmu7Z9Qj7w7a8iJ9CCWsQ9oeuyzb1 fd++FGF/mLt03sWdOxYi7A/lNHj0DRSkEfaHqUXzV4yYiiHsD9s5eZpv5ggg 7A8rlQza73eNkNgfsnP71csCfpHYH6q/fz+4D30hJ/1hC1nx58RHEvvDSm57 7KLjVST2h2J3lr+02lFKYn8YnMp/ebM3h8T+kCOy7+lU0zQS+0PbN33Fjf8l kNgfcqqnr1dVf0Bif2ibIVTllhBBYn9IzFxwJyY7iMT+kEAVgwvrLpDYH7Kc ig+pm54k//nDv+v/8YIT61ajiIiEfh0suk58PsKuBOHVq7T3qFLzWe7BJtcl +yb9IMNeWujym1yE/aBUoVs8wcpD2AuK6Rs0F2unIzV13vVrC6n735rAfZIL UhDvmmRFxU/UfD7w/pG/3XEy1Xddg2J3B3TbnLOaXpOMsCfMHEn3K+Kj5sf/ PKF3aLSiqRsHtTkdOK1wjpp/67o71ZKeI+Gw81vsQ6j9JphV/OmuF/nPF/5d CqEaSn98uiBA8qc+JGUj7AuF3e6cf0bNZ+2UtCWP3HkI1/3JgehYCvIoPt1i WUZ9XgdjvE4T7qTh8tGUHvIbsO798V86mIAsLt1K7Aj/BUNdlYplNzgIe8Rg h2eelyo4qInltW7mUgZRx7E2T16bijTa38ulHe6G7lkii+wiSYQ9Ijdj1RcT 6zwUHPPl0K9fVP+IEine89iN9FLarSvH6QFWvlP4XLM89M8j/l2+7smannG9 0KQTUrOSmqeBNiom841/gXDf9y+F2zioRfH7qOCPPlD+7TCo65qHuD9eFV1p p76fTEVrF57j5JPxjrptnj2grnD6vefSPKSxuVyaNO4DK8OnD1ov56F5z6aK Z376BYwey/NP33BQ6JhQo9l/1Hx+N/NRDTMPMU1f3fsxlfr8VAtqxQ7noX/e 8O+yXKfyp+VcL9jKB2dJXchD6V0HCjwK+0D4CJ8I38k8JCi5qVlVoQ8iTeYE qlKfvwePR0b0APX+xj4VFvq6kdbas7r8P/cA4TvtpuDePJQYr+Uq9IZ6veYN V/Zfpc5rvju2mbv3QVzxh/bPF/PQeAKPlsXYkn8/b7sLWy3Ue2FI5yWp756H /nnCv+u0ROKm5pElhK3O28LHq1qY//fP/9/nBX//qwTxwY3nuo3WdRittFog M0rdjw8c4Fn3zeP/1+/+7//Hf96qPMBse5EHwq/fPYX++vvJZb8VS7boU/sL n5f//f2FEwt/vf/7/nCNXx/X/x/qYW6o "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJwV0sdSFGEYBdBGtAzAkB/AdxDJGB7BtZGggApallqmhURhCOrKnN0aAMHs xpy2hjLnAIIymNP5F6e++93unq75Z6aW18+pGxdFURIJJk6IohipzB0fRYPJ UdRGj5uO2adx2b6IN/IyfsspPJLL+SJ3s9kzDfZJ7LDn8UKu5rv81PV78jyG 7O18kFcQ0ev6cTOPK66NmGvCO+S35nL+yGPmBlLlx2YFo/KouY6t8pC5KtxP Mt/YRJLv2eA9jfJkfrDT/cPmav4y3f7SrOFXuMeeMNfzj2eev2/O5yefXP9s riUufzRXhnfxlY30eeZE+GyuuqeCd3JdeKecxhO5koS8jUbPNNmnsMuez3Pd KU7q8rmmqyRGk75Zl8Jue0E4f90D+wKG7R3063rsBVy3V/Ferg/fT04Pv5Vc xZi8nWbPtIQzZ4+9kFdybTiDcF6uP5QXMmLvZEDXay/khn0xGbToW3Vp7LUX hc/SnaZPV8RN3RIyadVv0cXYZy/mte5M6GnTp7NfXxL+p7qzoaddn8EBfWn4 H+nOhZ64PpOD+rLwe+jOh/PVFXNLV00WcX2HLotD9hnhzHQX6NeVcFtXQ3Y4 Z32nLpvD9pnhv667yICulDu6WnLCeem7dDkcsc8K/yPdpXAuujLu6paSS5e+ W5fLUftsBnX/AYarjTA= "]], PolygonBox[CompressedData[" 1:eJwV00VXlWEYhtEPjKmORAwUAwzQn2AHWIAdEx04MbC7Y2oXYgdgdyt2F4Ld rQO7FWu/g33Oe1/rjJ61TmK/7KzBsVEUxZDuI7ZsFFUoF0UVOeDdhKtlomgg lZjtx3O0SuTZLXirHeOg1pQibRBxzNHnanHk2y15px3nkNaMa9pgKjNXn6dV psBuxXvtBIe15hRr2cQzT5+vxbPBbs0H7SRHtBaUaEOownx9gVaFjXYbPmqn KNRacl0bSlUW6Au1qmyy2/JJO81RrRU3tGFUY6G+SKvGZjuNz9qZcCOtNTe1 4VRnkb5Yq84WO50v2tlwI60Nt7QRJLBYX6IlsNVux1ftXLiR1pbb2khqsETP 0WqwzW7PN+18uJGWxh1tFDXJ0ZdqNdlud+C7diHcSEvnrjaaRJbquVoiO+yO /NAuhhtp7binjaEWufoyrRY77U781C6FG2ntua+NpTbL9OVabXbZGfzSLocb aR14oI2jDsv1FVoddtuZlGpXwo20jjzUxlOXFfpKrS577Cx+a1fDjbROPNIm kMRKfZWWxF67M3+0onAjLYPH2kSSWaWv1pLZZ3fhr3Yt3EjL5Ik2iXqs1tdo 9dhvd+WfVhxupGXxVJtMfdboa7X6HLC7EVESbqR15pk9hQas1ddpDThodyeG 6+FGWhee21NpyDp9vdaQQ3YPYrkRbqR15YU9jRTW63laCoftnpThZriR1o2X 9nRSydPztVSO2L0oy61wI607r+wZNCJfL9AaUWj3phy3w420Hry2Z9KYx3Z/ voX/PgV+t8FuzFG7Dy+8B1DqXZ573n35GP7rvscwy/uN72H85j/29bc2 "]]}]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{638, 1293, 1292, 1238, 734, 820, 919, 1031, 1153, 640, 778, 864, 963, 1075, 1197, 689, 904, 1003, 1115, 1237, 733, 819, 918, 1030, 1152, 639, 777, 863, 962, 1074, 1196, 688, 732, 818, 917, 1029, 1151}}]]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV1nfAjXUYh/FXVkbKjIaRvWcUmckW2Xtlb9kiKi2VsjWUIspWRka2qOxN ZBQhW8tKn/uPy/f3vZ7n8J7nvs955ejQp0HvRAkJCSPvSUiIvOWP0XhBzyI7 y8tyiPzW9VbytD5QDpO95N+yvWsNnH927ovuztfl/XHN+bwciZLuy69/7Vwd Z/T30JQ7EX8vMkBNuC1fw0NYoXdAKSTGHe51PIyV+vN4HAW88BuuBn7X30cS /Ke/gUewSu+Ihu49qvfDAyjNFeSWONfEWX0cmnEn9UHIiKTcXfkmHsVqvbV7 zji/iE56I/1YPEekRQf9DzkKZVwvpC91roWuzlflOb6t81nnERivN9dPOQ9G T+e/ZCZ0dL4YXr4Sz1zekMNlMq+LB/iW3l9mlV3kFTlUfudyG/l7vCc5XPaW /8TPLzu73lj+og+Q/WUP+accJtPJ5+UF+TL6OP8rn/C6ws7LnGujm/M1eZ5v 53zO+SVM0Fvov8Ze4UEk5xJxY5yzYY3eBU244/FzID2e5Ipwy53r4A99Iu6N t8y/zWXHWr0ryiIFUiIVUsf+uO8d9+TAOr0byuG+2BXX3uUfw3q9O55CGiR1 bSyfExv0HiiP+5HMtff4XNio90QFFI3PDVcXF/RJeADJ+fe53Nik90JFFONX cM/ioj4ZaeP98eO4PNis945/0yJWksVdW8nXwyV9CtLF++bHc3nxvd4HlVGC X8XVx2V9KtLHM+IncPmwRe+LKijJr+aewxX9A2SI58lP5PJjq94PT8dnNHaM a4Cr+ofIGM+en8QVwA/6C6gan1t+DdcQ1/SPkCnmwU/mCuJHvT+eQWl+LdcI 1/WP8WDMiJ/CFcJP+gBUQxl+HdcYf+rTkDnmxk/lCmObPhDV8QS/nmuCv/RP kCXmxn/AFcF2fRBq4El+A9cUf+uf4qGYG/8hVxQ79MGoGTvJb+Sa4R99Oh6O mfEfccWwUx+CWrGb/CauOf7VP8MjMTP+Y644dulDUTv2ld/MtcAN/XM8GjPj p3ElsFsfhjqxw/z3XEvc1Gcga8yM/4QriT36i6gbe81v4Vrhlj4T2WJm/Kdc KezVh+PZ2Gt+K9cat/UvkD1mxk/nHsc+fQTqoRL/A9cGd/RZyBEz4z/jSmO/ /hLqx07zP3Jt8Z8+G4/FzPjPuTI4oI/Ec7HT/E9cO9zVv0TOmBk/I77HcFAf hQax0/w2rj3il+RXIlfMjJ8Z30k4pL+MhrHT/HauAxJhDpc7ZsZ/oZfFYf0V NIqd5nfEdyruwVwuT8yMn6WXwxH9VTSOneZ3ch2RGPO4vDEzfrb+FH7WR6NJ 7DS/i+uEJJjP5YuZ8V/q5XFUfw1NY6f53VxnJMUCLn/MjP9Kr4Bj+utoFjvN 7+G6IBkWcgViZvwcvSJ+0d9A89hpfi/XFcmxiCsYM+Pn6pVwXH8TiX3HtYi9 dm0f3w33YjFXKObGz9Mr44T+FlrGXvP7ue5Iga+5wjE3fr5eBSf1MWgVe80f 4HogJb7hisTc+AX60zilv43Wsdf8Qa4nUmEJVzTmxi/Uq+JX/R20ib3mD3G9 kBpLuWIxN36R/gx+099F29hr/jAX/zm7D8u44jE3frFeDaf1sWgXe80f4fog DZbHc+B+cx6KzDF//ZJ8Ff2cb8oRsoR7/weK/SIW "]]}, Annotation[#, "Charting`Private`Tag$47822#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV0lVTVlEYhuGtiCiIgILn/gUBaYyf4KmNoICKOo46JmkioM7YXWc2CLYz dp+ZY3ejYve1Du7vfZ5717fXXn2LJg2p6BRFUR8/8zpHUWWXKIrFypgo6oe7 3D7s4vrhFDcS3VHJV3FdsUpPxz3uuj4Ub/RF2M/t1tNxWh+FeFTx1VwcVusZ uM/d0HvERtEw8y23GAf4PXoGzuij8VyegN9yQvivchE+yU2odk2N3g1r9Ew8 lkvxXX7g+E15ON7pS/BanowIzY7vNTNx1rEP5vTwDPmFORF/5C/m7PCfw/ub Y9Ahd5gzsUx+Z04N5yMG3zAXnbxnjefUyt3xA2ud325Ow1/015+YZfgVztE/ m7PwDw9df8scgZ947/hHcwbq5TfmlPAsfMUctITvGu6Nc84Zg5dyRXimnBi+ hVyMz/Jy1LqmTo/HOj0Lj7iD2M9l4TxXjJ6o4+dzCVivZ4f1527rI9GuL0Ur d0DPxgW9BK/kSeH95KTwreQSfJFXYL5rFoQ1xwY9B0/l8rAGYb0cvyOPwge9 AW1cs56Di/pYJGMBv5BLxEY9N9yLO4QWLheXuHFIwUJ+EdcTm/Q8POMOB4/F fBI28/lhn3JHgscSPhlb+IKwj7ijwaOeT8FWvjB8D+5YWF8uD5e5UvRCPb+U 64Vt+oCwZtxxtHL5uMKVoXdYZ76B643t+sCw17kTaOMKcJUrR2pYL76RS8UO fVDYR9zJsC5cIa5x45GGRr6JS8NOfTDecnH293+If52c "]], LineBox[CompressedData[" 1:eJwV00VXVWEYhuEtqD9BVFABC0TxJ5goBgZiO9GBExu7e2q3qFiA3d3dAXZj O7AwsOP6BtfZ+7nXGb1r7aR+Q7IHV4iiKNPPgYpR1IRrsVE0kCrMjomiOVoV CuwWvNOOc1BrynVtEHHM0edqcRTaLXmvneCQ1oxibTBVmavP06pSZGfwQTvJ Ya05JdoQqjFPn69VY4Pdio/aKY5oLbihDaU68/UFWnU22q0p005zVGvJTW0Y 8SzQF2rxbLIz+aSd4ZiWwS0tlwQW6ou0BDbbbfisnQ030lpxWxtODRbpi7Ua bLHb8kU7F26kteaONoKaLNaXaDXZarfjq3Y+3EjL5K42klos0Zdqtdhmt6dc uxBupLXhnjaKRJbqy7REtttZfNMuhhtpbbmvjSaJZfpyLYkddge+a5fCjbR2 PNDGkMxyPU9LZqfdkR/a5XAjrT0PtbHUJk9fodVml92Jn9qVcCMti0faOOqw Ql+p1WG33Zlf2tVwI60Dj7Xx1GWlvkqryx47m9/atXAjrSNPtAnUY5Wer9Vj r92FP9r1cCOtE6XaROqTr6/W6rPPzuGvVhxupHXmqTaJFFbra7QU9ttd+aeV hBtp2TzTJpPKGn2tlsoBuxsRN8KNtC48t6fQgLX6Oq0BB+3uVOBmuJGWwwt7 Kmms09draRyyexDDrXAjrSsv7Wk0ZL1eoDXksN2TWG6HG2ndeGVPpxEFeqHW iCN2LypyJ9xI685rewbpFOpFWjpH7d5U4m64kdaDN/ZMGlNq96c8fPsU+d8G uzHH7D689D6AX94r88B7X8rCt+45hlne33rm8psY/gOuebcJ "]], LineBox[{1280, 729, 1235, 1113, 1001, 902, 816, 681, 1194, 1072, 960, 861, 775, 730, 682, 683, 684, 685, 686, 1195, 1073, 961, 862, 776, 731, 1236, 1114, 1002, 903, 817, 1249, 1127, 1015, 916, 1262, 1140, 1028, 1272, 1150, 1282, 687}]}, Annotation[#, "Charting`Private`Tag$47822#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{1285, 1291, 1284}], LineBox[{1289, 1290, 1288}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]} }, AutoDelete->False, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{4}}}], "Grid"]], "Output", CellChangeTimes->{ 3.717212365878057*^9, {3.7172124145505247`*^9, 3.717212420006885*^9}, { 3.7172125056856213`*^9, 3.7172125388184032`*^9}, {3.7172125739297333`*^9, 3.717212618737115*^9}, {3.7172126548342333`*^9, 3.7172127307910624`*^9}, 3.717224325485999*^9, 3.7172243592503967`*^9, 3.717225058020063*^9, 3.717225115057851*^9, 3.7172253841493196`*^9, {3.717225719120618*^9, 3.7172257837833033`*^9}, {3.7172258275797567`*^9, 3.717225854304784*^9}, 3.7172259237556973`*^9, {3.71722595628121*^9, 3.717226049040565*^9}, 3.717226446065174*^9, 3.717226500402849*^9, 3.717226714717638*^9, 3.7172268776822166`*^9, 3.717231291183717*^9, 3.7172313510291843`*^9, 3.717231421856057*^9, 3.7172350357118473`*^9, 3.7386097542718287`*^9, 3.793502842902734*^9, 3.793504047958351*^9, 3.79390484471509*^9, 3.8232294471714897`*^9, 3.843072156345909*^9, 3.8430722315127907`*^9, { 3.843072283433182*^9, 3.843072306963917*^9}, {3.843072469165642*^9, 3.843072492063759*^9}, 3.843072619315189*^9, 3.843072684943392*^9, 3.843072959076544*^9, {3.843073063595477*^9, 3.843073073736559*^9}, 3.843073234028359*^9, 3.84307332785283*^9, 3.8430734468979883`*^9, 3.8430748247509203`*^9, {3.843074956261235*^9, 3.8430749799518957`*^9}, 3.8430750220199747`*^9, 3.843075242512846*^9, 3.84307529854045*^9, 3.843091678778639*^9, {3.8442560028626842`*^9, 3.844256024671569*^9}, 3.844258976255714*^9, 3.844259032265729*^9, 3.845740961178631*^9, 3.8457410438665247`*^9, 3.8457411266548233`*^9, 3.848356459317762*^9}, CellLabel->"Out[95]=",ExpressionUUID->"2124a4d7-0850-41ad-964b-779e2d455e8d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData["\[Kappa]1a"], "Input", CellChangeTimes->{{3.717225800614024*^9, 3.717225802031041*^9}}, CellLabel->"In[96]:=",ExpressionUUID->"b5a96ea6-7ade-4a93-95ca-7b787f166ecb"], Cell[BoxData[ RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "+", SqrtBox[ RowBox[{"1", "+", SuperscriptBox[ RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]]}]], "Output", CellChangeTimes->{ 3.717225802515153*^9, 3.717226049295611*^9, 3.717226714866542*^9, 3.717226878205574*^9, 3.717231291518252*^9, 3.7172313512829523`*^9, 3.717231422199883*^9, 3.7172350358487787`*^9, 3.7386097545273*^9, 3.79350284291595*^9, 3.793504047971176*^9, 3.793904844727149*^9, 3.823229447181148*^9, 3.843072156371272*^9, 3.84307223153412*^9, { 3.843072283456065*^9, 3.8430723069855824`*^9}, {3.843072469188342*^9, 3.84307249210461*^9}, 3.843072619337639*^9, 3.843072684982067*^9, 3.843072959102969*^9, {3.843073063619649*^9, 3.84307307375883*^9}, 3.843073234050003*^9, 3.8430733278905897`*^9, 3.843073446936769*^9, 3.8430748247737427`*^9, {3.843074956297353*^9, 3.843074979973466*^9}, 3.843075022041259*^9, 3.843075242534424*^9, 3.843075298562903*^9, 3.8430916788032703`*^9, {3.844256002889619*^9, 3.8442560246924667`*^9}, 3.844258976277177*^9, 3.844259032288344*^9, 3.845740961204225*^9, 3.845741043888146*^9, 3.845741126676095*^9, 3.848356459343136*^9}, CellLabel->"Out[96]=",ExpressionUUID->"4012468f-21fb-4a88-b10c-f0095a8cb7f4"] }, Open ]], Cell["\<\ Linear feedback: solve the Riccati equations exactly (for Q=R=1). Start by \ solving Riccati eq.\ \>", "Text", CellChangeTimes->{{3.716613652345023*^9, 3.716613661762876*^9}, { 3.7166171500953703`*^9, 3.716617173133562*^9}, {3.716626783084096*^9, 3.7166267858131742`*^9}, {3.716631401415011*^9, 3.716631413565827*^9}, { 3.71663828988164*^9, 3.7166382916885777`*^9}, {3.717221375465053*^9, 3.7172213853594923`*^9}, {3.71722207701024*^9, 3.717222084248974*^9}, { 3.717222390125558*^9, 3.717222397148446*^9}}, FontSize->16, Background->GrayLevel[ 0.85],ExpressionUUID->"dd3856e6-c205-4ab4-a6d5-859106db8b08"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"{", RowBox[{"\[Kappa]1b", ",", "\[Kappa]2b"}], "}"}], "=", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"\[Kappa]1a", ",", "\[Kappa]2a"}], "}"}], "/.", RowBox[{"\[Theta]", "\[Rule]", "\[Pi]"}]}], "//", "FullSimplify"}]}]], "Input", CellChangeTimes->{{3.717222214865674*^9, 3.717222277656933*^9}}, CellLabel->"In[97]:=",ExpressionUUID->"c1f775ab-4d59-4797-9419-aef8385f3a6d"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"1", "+", SqrtBox["2"]}], ",", RowBox[{"1", "+", SqrtBox["2"]}]}], "}"}]], "Output", CellChangeTimes->{{3.717222253970789*^9, 3.7172222783245697`*^9}, 3.71722432569965*^9, 3.71722435945076*^9, 3.71722505827194*^9, 3.717225115338531*^9, 3.717225384416546*^9, 3.717225719234673*^9, 3.717226049416936*^9, 3.7172267150113773`*^9, 3.717226878304782*^9, 3.7172312918358727`*^9, 3.717231351421501*^9, 3.717231422300404*^9, 3.7172350359369297`*^9, 3.7386097546584663`*^9, 3.793502842940126*^9, 3.793504048002635*^9, 3.7939048447474937`*^9, 3.823229447200513*^9, 3.8430721564078407`*^9, 3.843072231548745*^9, {3.843072283476191*^9, 3.843072307001958*^9}, {3.8430724692104273`*^9, 3.843072492109748*^9}, 3.8430726193590937`*^9, 3.84307268498735*^9, 3.843072959121983*^9, { 3.843073063640038*^9, 3.8430730737765293`*^9}, 3.843073234072192*^9, 3.843073327895734*^9, 3.843073446942135*^9, 3.84307482479841*^9, { 3.843074956303384*^9, 3.843074979992025*^9}, 3.843075022057166*^9, 3.84307524255716*^9, 3.843075298584339*^9, 3.843091678831596*^9, { 3.844256002931652*^9, 3.8442560247135687`*^9}, 3.8442589762907963`*^9, 3.844259032311665*^9, 3.8457409612518806`*^9, 3.845741043907312*^9, 3.845741126690135*^9, 3.848356459359838*^9}, CellLabel->"Out[97]=",ExpressionUUID->"8791e62f-43ea-4c3e-82bb-edd59079f64f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"{", RowBox[{"s11end", ",", "s12end", ",", "s22end"}], "}"}], "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"s11", ",", "s12", ",", "s22"}], "}"}], "/.", "sol"}], "/.", RowBox[{"\[Theta]", "\[Rule]", "\[Pi]"}]}], "//", "FullSimplify"}]}]], "Input", CellChangeTimes->{{3.7172227226592627`*^9, 3.717222819103325*^9}, 3.717224352488349*^9}, CellLabel->"In[98]:=",ExpressionUUID->"907e0de8-41fc-428a-984d-486dd436451b"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"2", "+", SqrtBox["2"]}], ",", RowBox[{"1", "+", SqrtBox["2"]}], ",", RowBox[{"1", "+", SqrtBox["2"]}]}], "}"}]], "Output", CellChangeTimes->{{3.717222724013961*^9, 3.717222730005362*^9}, { 3.7172227699449263`*^9, 3.717222779830505*^9}, {3.717222811943076*^9, 3.717222819723222*^9}, {3.717224325833379*^9, 3.7172243595724163`*^9}, 3.717225058388612*^9, 3.717225115476988*^9, 3.717225384543373*^9, 3.717225719345985*^9, 3.717226049550585*^9, 3.7172267151441*^9, 3.717226878420336*^9, 3.717231291966323*^9, 3.7172313515544567`*^9, 3.7172314223986597`*^9, 3.7172350360375347`*^9, 3.73860975479146*^9, 3.793502842970483*^9, 3.793504048009746*^9, 3.793904844754764*^9, 3.823229447214284*^9, 3.843072156480054*^9, 3.843072231568316*^9, { 3.843072283482535*^9, 3.843072307008247*^9}, {3.843072469216346*^9, 3.84307249213186*^9}, 3.843072619365481*^9, 3.843072684991988*^9, 3.843072959185875*^9, {3.8430730636458893`*^9, 3.8430730737817173`*^9}, 3.843073234078041*^9, 3.84307332791743*^9, 3.843073446963909*^9, 3.843074824804861*^9, {3.8430749563225393`*^9, 3.8430749799974318`*^9}, 3.8430750220625896`*^9, 3.8430752425625057`*^9, 3.843075298590617*^9, 3.84309167885261*^9, {3.844256002947959*^9, 3.844256024719089*^9}, 3.844258976296179*^9, 3.844259032316193*^9, 3.845740961264485*^9, 3.845741043912175*^9, 3.8457411266951237`*^9, 3.8483564593766403`*^9}, CellLabel->"Out[98]=",ExpressionUUID->"4d4c6bae-39b1-451c-acaa-2c0d21e09ba6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"eqr", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"s11", "'"}], "[", "t", "]"}], "+", "1", "-", SuperscriptBox[ RowBox[{"s12", "[", "t", "]"}], "2"], "-", RowBox[{"2", " ", RowBox[{"s12", "[", "t", "]"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Theta]0", "[", "t", "]"}], "]"}]}]}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{"s12", "'"}], "[", "t", "]"}], "+", "1", "+", RowBox[{"s11", "[", "t", "]"}], "-", RowBox[{ RowBox[{"s12", "[", "t", "]"}], " ", RowBox[{"s22", "[", "t", "]"}]}], "-", RowBox[{ RowBox[{"s22", "[", "t", "]"}], " ", RowBox[{"Cos", "[", RowBox[{"\[Theta]0", "[", "t", "]"}], "]"}]}]}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{"s22", "'"}], "[", "t", "]"}], "+", "1", "+", RowBox[{"2", " ", RowBox[{"s12", "[", "t", "]"}]}], "-", SuperscriptBox[ RowBox[{"s22", "[", "t", "]"}], "2"]}], "\[Equal]", "0"}]}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"initr", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"s11", "[", "\[Tau]", "]"}], "\[Equal]", "s11end"}], ",", RowBox[{ RowBox[{"s12", "[", "\[Tau]", "]"}], "\[Equal]", "s12end"}], ",", RowBox[{ RowBox[{"s22", "[", "\[Tau]", "]"}], "\[Equal]", "s22end"}]}], "}"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"s11s", ",", "s12s", ",", "s22s"}], "}"}], "=", RowBox[{"NDSolveValue", "[", RowBox[{ RowBox[{"{", RowBox[{"eqr", ",", "initr"}], "}"}], ",", RowBox[{"{", RowBox[{"s11", ",", "s12", ",", "s22"}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "\[Tau]", ",", "0"}], "}"}], ",", RowBox[{"Method", "->", RowBox[{"{", RowBox[{"\"\\"", "->", "None"}], "}"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Kappa]opt1", "[", "t_", "]"}], ":=", RowBox[{"s12s", "[", "t", "]"}]}], ";", RowBox[{ RowBox[{"\[Kappa]opt2", "[", "t_", "]"}], ":=", RowBox[{"s22s", "[", "t", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Kappa]opt1a", "[", RowBox[{ RowBox[{"t_", "?", "NumericQ"}], " ", "/;", " ", RowBox[{"0", "<=", "t", "<=", "\[Tau]"}]}], "]"}], ":=", RowBox[{"\[Kappa]opt1", "[", "t", "]"}]}], ";", RowBox[{ RowBox[{"\[Kappa]opt1a", "[", RowBox[{"_", "?", "NumericQ"}], "]"}], ":=", "\[Kappa]1b"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Kappa]opt2a", "[", RowBox[{ RowBox[{"t_", "?", "NumericQ"}], " ", "/;", " ", RowBox[{"0", "<=", "t", "<=", "\[Tau]"}]}], "]"}], ":=", RowBox[{"\[Kappa]opt2", "[", "t", "]"}]}], ";", RowBox[{ RowBox[{"\[Kappa]opt2a", "[", RowBox[{"_", "?", "NumericQ"}], "]"}], ":=", "\[Kappa]2b"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Grid", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Kappa]opt1a", "[", "t", "]"}], ",", RowBox[{"\[Kappa]opt2a", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "2.8"}], "}"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Kappa]1a", "/.", RowBox[{"\[Theta]", "\[Rule]", RowBox[{"\[Theta]0", "[", "t", "]"}]}]}], ",", RowBox[{"\[Kappa]2a", "/.", RowBox[{"\[Theta]", "\[Rule]", RowBox[{"\[Theta]0", "[", "t", "]"}]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "2.8"}], "}"}]}]}], "]"}]}], "}"}], "}"}], ",", RowBox[{"Spacings", "\[Rule]", "4"}]}], "]"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.717222343263974*^9, 3.717222359406526*^9}, { 3.717222837494134*^9, 3.717222877315568*^9}, {3.717224038714993*^9, 3.717224078726529*^9}, {3.717224305606297*^9, 3.717224310870537*^9}, { 3.717224552356038*^9, 3.717224553714946*^9}, {3.717224613404366*^9, 3.717224614681821*^9}, {3.71722464523015*^9, 3.717224707245659*^9}, { 3.7172248838324213`*^9, 3.717224930253559*^9}, {3.717224981834964*^9, 3.717225049112413*^9}, 3.717225089308015*^9, {3.717225376662912*^9, 3.71722540921082*^9}, {3.843074705766467*^9, 3.84307481355684*^9}, { 3.8430752385276337`*^9, 3.843075238686866*^9}, {3.843075280850758*^9, 3.843075294767828*^9}, 3.844259027807632*^9}, CellLabel->"In[99]:=",ExpressionUUID->"bd7e6200-f42c-4462-ac3e-73529be95840"], Cell[BoxData[ TagBox[GridBox[{ { GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJxF1nc8ld8fAHDusMq490YoUaEyIyOJzyfRoKzSsCtpkvW1KiEkIkqF9l6U USIqIqHnXnvLJqPMyIh+z+8f/npe79fzes5zzvmMc5YfPGV5mMLFxXWMm4vr /8/x5uIC2cg4/SNjOu4WX8qh6o6436Y6D7DRfd4TnlEOKFp6ULwuGLIuSMyU PC0Hb/MXtdS6K1CSL9njFlEOjIHFVyZrH0BXlquGhXk5tOSYnvpdmwbyBjYn S5vLIFF0sZMn/Q00a7Di+8rKYLdry74R9bewRUZXRzy/DEqk3QyGot5BvTO1 P+lpGWQEx4r+3JwDldax3iXuZbBFtu/7cO1nsOmTv2YiUAaPzE33pbrmA7z0 /JgwXQrcZ9Mq3OgFsO5UrWFFeynkVPt/HVT/ApqF/yJ7U0tB7cKC1F9RX+Hj zPEPpZalsLRPKaR3MwGq/jEm3vc44C8WO/usgYA1ym957CM5UGsw5nvUnQ1t YTxlUd4cuHLzg8uPOxxwvvdZqWQnB0Lkn74cOVMGgrk6LjX/2JC2sf6oZVEZ KO0Zpkr/Ir+zXCCfxiqHWLeomcwGNuifO3XP/UU5FGTmtnRlsGGyVvvaUG0F pBiqE4aebMhU53N8uqYSpnhk4joPsME7qk7B/nQl/Cv/bD1ozoYRA7/cb8uq 4MPX2EmTtWxIub09MtitCrRFPZvuybDBdUJij87nKhhI8ax0ZrChL/l9/5PD 1VDha7Bix28CnvFFZti9qwZhXY8rrt0EOB+yCVrEXwNfHJuQr56ADvG/YsFJ NXD0jGrQ008EPPAk2tbP1sB6o8BVKekEOHJuJQ2a1cL2xY0aWs8IaDqvZ2A3 WguTZwKSc68QkNgsKLjIqA5Od6goF4UTsE+nubbkeh3wTmZu3HWOALG4Vw+C eurAwfeA8yFvAqoHAlzWb6iH17V7tKdcCIjbbrZ+MLIe2pOmdSScCbB8JE19 8r0enouHj+fZEyDyb5Btq9oAGboaY2N7CeDsz41nBTVAttb6jxkWBFx6E3Oo pKIBjisQ9fQdBBgLH1AJkm0ED+3VZZ1bCOA7rjap7d0I4QEha6wMCPhawF0w 8LURbGQkXPfpExAmXRH9WKIJ7uotkx/aQICh/4P9tieagPrnW73UegIo1R6y rA9NoOtizejQJCBXdfNgsdB3iO0ttNqkQUBABOt9oON3SH/zSGXDOgI2dnWE aKd9h21mtKWl6gRMwRuzAWoz5Osdu81Nvs9KDJF8bNUMcbS96pWkfcd2d9k8 bQal1RbWRuT4WuZyKczJZvir1Bi3X5uA3y/G/IuNW+C/G74HGOT80uiFRoG3 WoD/ZxK46hHg7nhdRHugBVa/nn7lvomAeLv0X+PSrWB4uEdFilz/n4gluyq2 tQLnyri+hwkBezLPZya7t8KMZpK9B7l/b7v6pS4mtsKuiilB6X0ELGLtPu+U 3woXrt3J83MgwBNzeuBnK9DsNvWeP0JAhYus6RLRNtDiifqt70aA2s1L6eN6 bRDmqrgryY+AmKLf4hXObeDoWejFPk/A4JhtQPLlNlAZ4S1+GE2A6covHeGZ bWBblPBpbSIByebK253a2mBXpVzRf08IWBhw7RUItMO5IStLLzL/SuoO+43b tIN07fYXD0vJOuXhNJeHtIOmX+7e2mYCwtdpGSYnt4PPmAaUDBCwJZpH2Olf O7jZSC4fFWFD/uanj8ofdMCeldfqvO3ZsDb6de+fog448jCUbu3Bhjt171SW DXbAmZ15Or/C2ODrUpR5XLcTfqcrSaxOY4PKjV6CWtUJVdpq8kIMDtxqG2Yo THWCkdEO9mUFDvArTe0xl+kCj/yrPcWGHOjMFWi7dbILKlNGvU+c5kBin+KY Jr0bbJ7yVZwb5gCfpsYGW8VucLwSP9kqUgr/ndt4LtiiG/IUf0ZS1ErBfNFO /tLbpMewJ8KzFOj6rlJHtX7AeOzKqU6uMnCLTTFKPNIDZ9af022/XwbNjZkR uVE9oGYZoUG8KwMT+bzS7vQemLy49ZQUpwzks8v3r+PqhbfV6ZJ/psugsXPE hYjvBW9FIZtY23LYsl7z+mxxH5zuDOhPVauAN8F6jbJDffChjadxg2kFLGcb yZiI9UOi1LOwtScq4O+BPS9uHOwHE3XZ1YeeVEBqpM/HtdP9cP/PeeVfyyth aUtW90GlX3D4o9XOUuUq4Bp1jy+2+AU+Cu2LYsyroJNHwXitzy/Y6jg6k+NZ Bckqickzeb8g4uRAvU12FegH+HvF7x2AEy2m+mlm1eAgpUvhBA/C8YoNV1su 1YCh2mi6xrNBCCTEvnpk1MBqo5eHb7IHoT74dJ1naw34ZkQ5aSwcguYwa84n zVrA5pmv3HuHoFfWJDawqxbKlZujb/0cAnyzoubB/noo0H7/w+zfEByi+CiK RtRDxqbrSGUOg9PNiCVj7+sh0cp05Jj2MNT5mF6dkWqAg2c/WmkHD0NPuc9W ld4GGCHuLK1YPALhdImk3qtNsOikwwvezaOAjWW5SUtbQYH3YaH53lGANU8z NfRbAR90tyecGIXphuLhCYdWOFnnskQpbhQu5IVLaD5qhQLDM5fMu0ZBmDJd 76XaBl5SCa4JF36Di1+caY15O1RyKtQViTHYNR56uTenE66obck2tZqAaO11 CSzZPlBt3L9V7+gEBG8vflJh2gdEiEul4ukJaJ7Ni3nt1wc8dXH9fPcn4H4f j3JeKRn3gI4l+T8nQKFb+JfW2X5w+hZ4RjtkEs6KNpzh/f4TtA5n68mkT8Fw VuPR6SRyn+PX5g6LzIDM066Z3KwRiHx0rpQiwY029J8GVQ0TYKxxjCm6khsv OxMfLg9PAF+BpdUqZW7UiKqI38g3CSEdco0mm7hRKUqLOKY5CWdWEN1xx7hx m1LJO8HLk+B6T3xW/j03rpN6H21Ldk+LW6lKJjYU/JLr0LXh6jSIKN08ZXeY grziI+zWp9PAyQ5JO3WKgjIZpzd75UyDcePe9XHnKfjRbcTnUNc0GEjObv7+ koKu4LnogNZf0Ig3tjn1l4JB0v/9Kan6C4vjOi5evU1F/ZWJayYpsyCu+DZk 4gkVrZ+9PjjFmgXJz2Hn7FKoOK5bo9EnOwvLhtb8tyqfimkd8bevbZkFuR1u jtk9VIwLL7BYcnEW1tFmtDrW0VBjo1R5q8A/MPMS61QvoSFDPVM6mYsLzRf0 NN+opGHz2A3jxXxcaPkgq/5vEw3f7r7b6CvMhXvKbEsLB2nIoR6CFcu40E7p 4XtrUToW8Lv7Culy4YlO1dhgRzpmfNHnMffkwgu7t+tXjNMx313u/o3vXCj5 hiNJ4eZBE4GRrYGdXPiKtfuP2gIeDNi2MMKhnwtrKuxTYqV50MX3wiz3JBfK WnitsNjGgweVYx7Vsrjx8867PGUJPBi3Ro7F2cqNM1vGOOyNvNgWEHlQ4Tk3 xjzxfzmzhRdvFgxcm3jFjbI8XOHKFrz44kHe7Y9vuHHHF4FNUYd5MT34kJV6 LjcmbpZJ3xHNi2yekNisGm5cjyY3vrXw4ifbUystKBT01LnvUBzMh5f+lUiO 7aKg8T2h3yaX+PCdjsayoH0UXMF7JpxzjQ9zTxRt4rWjYFnVntTKZ3xIicoV pjhTUMVtIbWZw4f3dpVWpvlQsOeJz5MRSX5s/Xj9EH8iBW0Xmf5aks6Pwkuf h7MbKLjudHbQnRx+tL9sK5HSTEGB9tViywv50e5WzVRUOwWzXlNBvp4fN78w rtbto6CYSVbM2n/8+MfwWrfjJPn/IFkNIxMBXJg0c6JOjIqGg1P+rh0CWFqb qZ9tSkW/bXEKeT8F0CzMci+fJRVf3VduYI0L4LGAP38trKgovttRJ4tvAfom mQk22lDxZ+aXP1SVBWj29DXry1EqXg2O8UrwXYAuW+X1/wVRsV1U3rVAcCEe y+hp25hGxaCNFgck1wvik7WvYtcuoOE2+zsj2gaC6LR8hbOgEA2FAvvPW+0Q RN63xd9/iNDwVn7okxhHQXwV51B0TYyGmcbv+3kuCqJ04c3u6uU0HNq30nu0 XhDXeDzn6dOmof1/YxHEaSHMVFue43aQhnI3DJb2hQph0aTnD57DNHK+l5N5 Y4SwmOXQl3iEhv5/15QZPBJCp6Y1njknaXjtvL1oFiGEteprvbq8aUjEfr37 WEoYw5yGp4gIGm54lfAm4JMwFoKGT3UKDQ1rOTMDRcLowd4nOZlGQ1Mu2laH CmHs7LphJ/mWhocsXeuhSxgnHtk/tsqi4ZbTy88F0kVwoqnJ8VUeDd2kxx9u UhTBx0110W3lNBxLjymaVBXB0PsPjzeSdea/TfFXqoYImm+b3F9RTcNQd0et FfoiyPz037Z39TRMzC8poliIoFIvj45tGw0Ljtz9le8tgi+S84T5hmi4/a8O 88xpEfRsVEpnD5N1GVOlpREoggm8+x9eHqVhfRZ/4KOLIth98Y063x8aDizw YobeEsFCP8vjJTM0FE/Zpr3lswg+84rzCxGg423DDpvZQhGMvLX2P96FdFxR fzYw45sIXg/LSQsVpKMyJb1YvloEBV7G3fcUoaPBbilb3h4RjPX/LswSo+PJ ieHAIkEGNkQK8JrK0HGDu7NYN5OB8TQ/u7jldOTra3hJFWfgeU9GWOUKOj5u zK/RX8HAO9oJFbpydPTavf6k7SoGvhIay3SSJ8dnJ3H7KzHwRQt5oqyiY/PH a0pvtRgouNB1MmUNHZO0BT5X6DLw+cpHp98r0NE/JWDvEDJQf2aUk61IR7EH R4IVTRjIcyfY+rEyHTslmxZvN2cgQ+eKSZQKHdOumic7WzGwSM/u3ElVOpqF 6tTdd2Bgn+JXGRE1Oi6bTXb55MRAlV6trVWkf3qvoH4/xkDnfWPLL6vT8f3g 9fgpVwZGpOyKxHV0DD+6QEXci4GPDBbZ9JDe03YuX9OPgT2fS4+GadBR1vr3 vl0BDIzsWnZJUpOOuSbfz0eHM7CgvcFdVouO0QUWEklRDMyX8+tIIG2rV/iq +AoDxxsFi2nadFTI2GD44wYDY7LUppxIT6q8rqfdJufvcdb0PemipytPrXjA wI37HW/T1tPxukw8DZ8ycLUCJ3szaaeEhYl2SQycTC0540NanRmkejqVgeey d6TfJc0VOVYQn8HAKIaJeg5pDvW4dUY2A0cCcgiC9K0zzYOVuQwM4tywKid9 YswydPgLAxd8q7xbTHqD61dJ4W8MPABHAt6S5vuhm6JUxkCr8W0FcaRrHFKM jKsZ+O79KcMjpB/VyTYeaWDg5eOMciXSHhYJbqEtDJSyM9HpIteDJYI8DzvJ 9VZa74ghLbQ5+GZuLwPTNkXXK5P+nj2+tnmAgaZLNFI+kPuVpHGicHqUjFdV 4l0g7Z/cYiMxyUDpVhGfdHK/t8nvHtaaJeOb1kmXIC12tyhsN5WJ1Zp/Jd3I +HQu1lvqwcfE4/mnzmeS8UuLSU29LMjEMN3mBSNkvAP55bcmM5n483F34FLS ZsGJTSWLmXhAYPVr7f/ny7SQR89SJj5123Ro81oyXzzP8/KsYGJQa/kxIPMr /PBJ9U1KTBRbpHmPl8zHPc2tX+3VmPjK97ZzJZmvsnut7M5oMXElRyI5mszn 3G364e+QiakmQx0VZP5H56VJVRsxke255JgNWR+2G1aljxgzsezS3xsVsmQ+ KIo0K1sxcbdQ+pJLZL2N35YMWmfNxBDVnt010nT8LSwnq+PAxF39erzCy+g4 MKpz3PAYE49FnuUxkaRj/2FDQWNXJs7e5OrfKU7HnlrTFDNPJnLu1vjok/Xd nn1o3PosE39p0bN+MOjYouya4BjMROPsSOo9YTo23fXd6HyBiXlcDiuNyH5R cz4q2D2WfG9PEbbio2OJyTuh8MdMvBDvUxJK9p+vH/JSo14wUb/VfPTOFNnf VIndV18zcaHC0e0PyX71kdWWeCeLif5ynOcnyf6W1iiw6i2bid9Cyj3+dtDw 9U7RkvcVTEzZPql3rJWGSZ+kXXJrmTjWdTb2E3lvefJQI/1bGxNFr2ZTVpP9 NfGEPbSPMTFqcsa5vYCGN74fbf8xxcTL1xvKruXSMM7MM/TXPyaqKIsoqOXQ MHpd+LcJfha+nWV1LEunYfB06l7hZSyc8O0VLL9Lw3MuOVOLVrIwbMfqKx8T aXimpfC25GoWnrQ6HnTlGg298xs75NRZqJ890P2TPF9ORNLdNm5hoXqCYI+z Fw2PzgizDExYGNBUXhbsSkPnU5IZW81Z+CW7Lu/8URo67lL9a2nNwimds+Ia tjTcvWR/+DFXFt6PVlQ0NqDhxpdJ965fZ+GGuv7nivw0bJR5edfoJgul1hgs XUAhz5frz+/8vstCns+gXD5FxXdBT25ZPmehnndZpchPKqrvuxcvlMPCkR37 BmzYVCxn37nxIZeFoSO3Ga5fqOi2+fb1k19YyKvKu975A3lfUEmMK+Gw8DkW W/AlU3ENPS4mrI2FkTv+6DMjqVjkf+WyZjcLcze+nLEMpqLzUEx0Zx8Lq5PT 7P38qEh3vhx1dZCF7Okc61A3Kj5qjLpk8JuF74yv9nkfoeJmi0uRwxMs9DTJ 4DO1J+8XhRER92ZYqNbemSJg9f/7xcWLZpRF2H0b1pmZU1Em7UL4LM+8b4YH hbyXmLeYw+lAb6V507IOujn7zHuYaey45/O8+8ysbDqdROfceclxjwev2Jy3 D/ps79JaPOefh/g835wTn/MW2cWUC58l5sxky0enDErOeWn4a3MtraVzjlfU EWEdkZpzieQmzdHYZXPesPRzjGqN9JyFqA+8DgTLzHlZkPTG/fLL58wvZ5th +XXeKnoSr33sVszZo5mZb8y1cs6Do5estsfPe6tqYeJ2Zdk5fxzVnf7Dmber knpD+WG5OesNOFXt55efs5Gs+E7BB/NeHRjh+1l71ZwVDut8kmuY9+GPR0Pe uK+e86d7VU7Domvm/PvZvz+q7+Z9SO4lf+JOhfn4KVzVShuad+aj6baxcMU5 WxuuRN1lSnNe4nIhSyV33qICJ1N37lWec4Pu1conL+d9x+X92L9/8/4f9egK PQ== "]]}, Annotation[#, "Charting`Private`Tag$47912#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJxF1nk4VN8bAPCZuXZhFiJFCJW9xVbpvIiyL0W2UCIlS6USyhKlLKGUECqp yF4iKoUSZSmyRd+ikuwzlrLM7/z+4a95Ps/ce8+973mXI33A19qdQiKRnMkk 0v9/p3rf1chGX9tOXa0iuvU3E7Wmi53R7TiOGiXsxiWxQaTpgFhHODLKM9Dk x17eTeOl7ohBsi84ZtkDTHTKMqed6EhEJN275vPY+0sactixN1CovOoOAl9v unz47Kx+GtrpUjpMw07bdvHBbHAmmuo23LcemzYimvi3/Q5Six3JMsK+kPEg aHrjPZTsVvH5OPacpbb7ZOx91GxRwXEP+zil3pw58BAF6s3Bf9gDJQ5a4/qP kJZSzC3ZQSZydv8jPZqejwJ8Tysdxz7C/yJyKrgQfdipza7Dlj14IfBkThG6 qN4iv/4PE32tNPdltRcj7vhtjxOxU0RED57gfIwK8gPKOIeYaI/PV7uJjU/Q t4HwHeHYQm/vmx1zLUULSXaHeYaZqH61n95Y7FPkKTCtmYwdGaCl6VtRhkKz HV9tGMHxayEpjQyUowdl55e3YZeGJ4gM6VeignsMT+0xJvLrtufzOvYcxdrf vPAPW3GzDPt3+gvEG8z1pHaciZqP27OYwVVI9t+jkEAmE6lkPPcpYbxCe/vL txxkMVF0g/Tv4zmvkKNxoL7dJBMZyg72jLe/RpT7lUEu00yUZWluV+RTjeND rz8+w0Tks8Uf/ThrkKfx67vxf5mosi3w7ejGWvSfT6fG0CwTraB81S14V4sq CWEhhXm8vyr6lT6ub1CluWXh8QUm2nCRv2g49i0yizkZLUtmobgSX8U82ToU u3y2L5bCQkNfP907WlGH0n20dSkcLJStlZbyZ+Adkptq276Mm4VWDSpF/NZ/ j44d3FGeLcBCgcsTFh50vUe9zoY5h4VYqF1vMsDz2AdEIYZ4tWgslJj63PtX eiNyKxU1nhZmoQj5+7kTwc2IIKUDWYKFird1elrXNaO9LAkx6dUs9M2aX76Y 0YJSNjjVmEqz0PYQ38xjOS0oxKeh9q0cC/1t10waa/+I/hgG3zBTZaGyjTyu 99d/Qu9c36QSG1noVGyHgnPQJ1TbtmX47WYWmtA7U9Ug2Yq6J6n5QVtYaDDv 2Z9s9zbE7kuTSjBkoQc80aX7nrahAScNcoURC3m4OYYJ835G/kc7EpimLNQn Nrc8/NFn9PHv9z/xu1noy3kdvX3MdmR6qj7j7H4WSukVEBA26EC/TfdLSLqz kJ12b3v9dWxBh7QPnizUNnLOW2tLJ2Jd2/vG3o+FGu2rkhlhXYhcGZOxNpSF qlT1R98J9qBb+2V3ZNxhoXOXGc9CXXtQyMTNvZvus9C2H30RmsU9KP65Ucfn XBYqT4kQv2fTi355+SmbPsHx43xjEJr2Fc0siwwaq2Ohj96y5itFvqH7cVky MkwW2pAaUzKl8w1V2583y59hofg6lthHj2/obus4xXiBhczX1PZFlX1DtOFT fIW8k6i+w/3MlON3ZKU2fkpDehJV69/ParnTh7KRn6Di7kmkFlfwe7quD3G7 /+QF+0mU3vFURXK0D0VQPLwOuEyiAO+6siNb+9EVrwSrJq9JpHLj93uitR9Z +LVoGUVOopRBxUl1zp9IIjmco+zZJPJLKDRIOTSAZH2U1MxUp1Bvd9nlqtgB xFj3R4KiOYVM5F81/SwZQJ/pwqert08h+YoW+02k32hdygktL/Mp1N0/4f0+ +Te6ozQZb+YzhQy11K8vvBtEIj+CXKwLp9Cqr+U/DygNI34i6/n0tmlEYh5L fmc1jPwcHyqMG0yjfi4FY7XTw6hMPLWSZT6N8lRS8uZfDaPRreL84vun0fZz gf7Je0fQJN/Bk92R08hFYiulMXwUfcndwKvQMo1alHvj0obGkMP0fYqfzwwS PuqSw63PROonagy5X/5FiRsMK8xtZtDDEIdU5vs51JmsVjVOnUe8n/orIuPZ KOVTrtApuXkkZCw02ZzKRg6Ca13+ac8jqFd+IHyfjfNNYoHiNo9WK5dujnzO xnXOt034yTyqN5BQ5h1ko4Ed/U817BeQgsHuqLdSJJgZu1EQdJuNxveEeYid JEG5IoPNfsJGcpxyPpqBJAj0iDOPqGcjLa7+HqsQEsx1RwzHMNmoxIujP+AS CUL7ykSaZEgg2EkWunKLBBGN93b/508CtdBwlY4aEkRnhTRRVpDBJy/dpE6I DMabD9NF1pBh1/djvlrCZOCpsbZZq0yGpsIVH+6KkSGiT67bRJcMn6b/qR2V JkOwzPuf1w6TQb0k/Ez1RvycTLEF+Wdk+NLP8SR6Dxms0oqUTBwp0OZ/xjbi GhmoSqm++9wpEHqXcHVMJkNjRUSxry8FeEp6Himn4fW792pdO0+BYcU3IjV3 yaAnvqDfk0uBrhqhfWXFZNicbOzoO0eBtYVS+VVNZBC91nfp6i0CzGn6ufu5 KCCm+CRiJpuAs29HY715KSD++kLIvkIC6HeoKSeXUUBybP3JtdUEOJcWbAmk U0DO1M+1YoAAjb+Hx20kKbCJY16jbxMHXJa83WavTgEL/+X9G+s5IPJ5g3CO KwUs+Qd6b3ziAP96e9B1o4D1nfLOuS8c4G4evdCKv8u22anpzSgHNOp/0Z04 QoF9SnefOYhwgl2muRnHSQp49asmhLtywtr5LVWXoihwcY/R9o9TnFBVILew OQ+/7+NGcQqZCyoS8mhJBRTIZ+yZ3sDPBbnuDwvGiyjw+aNzYcJqLvgaYJuR WUoBWSt/GatdXDAgW9bb9pICr80yuJpvcsG6qXuud1ooMG842fhhGzccGZ8I /jVBgfjswNx5Q24YDKpt/87C93ORopStuOFfxtb93VMUMK3l041154YdOoeE a/5RIEVfqsQ0jhtmeHgv+1MI0AKTGw1fueEJW4DHlkbACe3bLu/CeeDjbJe+ jjIBxpmCLJMYHtA+FZXfoEKADHdwVGMSD8z+DlewUyOgudW26NMDHrhYgNy9 NhGg4reM6G3kgdUbl5sFaRMwkH06e0KcF86Lsib1DQhwEjYfXlnCC+xSW/d4 RwI2BVWEpVfywiNd5fxfTgTwfV+3XPoNL9gccjuh40xAeQGB5Dt5ofVS+rl+ VwKWm5THq7F5YViJ/4eUB14/THazgQkfuB49bWvjR8CO0X+BPn18MKstXPHi PAFndl1TeDXEB1tXHXndH0FA/m3lLsYUH0Tpt2fyXiBAbI+rdjkPP0TN5f+2 iCJgqKx2mlDhhxlb+67GGAKuhsf73wzgB78zGx/dSCLgu4i8T43AMjgS2mDk jPNS1PelhKjoMqDYypIO3CfAtM7uw2GpZVD0Mv/xwQcElAZGKwltWgaNu66K H8oh4PLXsUF7u2Wgw6H12yWfgI0PKw6N3lkGrbfleqVLCQjbZrVfXEsAsrwz An7WELDLOX1CU08A5KeSzvTUEiAY+ue8jakA6Ch+2fHpDQFp1ZHZ8a4CsEG+ VL2ijoAy42d/uC4JwCvrU+bB7wkYs1tzitkpAPPq58tffSLgaaAfN61fAJ6u uhCb1UrAubTnySojAqD50mbZhTYClv23t+IwRRB8B1sXdrQTsPZQDOk/BUHg fJHtUdyF6+zk5OX3QdgspdRd3wiQu6G3ajBSELIehucJf/9//K7kcccLwr+d ZupfsQPn1jfrZQkCR4xbkm8/AUnnnUXK3wvC6pfP1p79RcD7hLcZ9ySEQNU8 +MzOYRzvEuEN1WuF4JFc2/sZbIe2/a//2yAEa0boxg9GcD6JzfWvNBSCBKZo HnmMACJTTSHRRwjSj4gfuTVBwJb8m4/PvRQCdhe33olpnA/tjfMjdUKgEXbt yT9scxLHTpePQhC7oVUzdIYAN2ufTvRDCNI6jSwj/xJgGCQdEspJBQMP8XWn ZwloEKq8q8VHhYhgE88RbMss27oxQSr8HPl9wW2OAMcP0bT9YlQ4Yol27pwn wG/11F1dRSoQGuGrWAsETJbE1/1VpYKhgV6qPRvHY5ficNFmKvz1XFddiR15 zFVDZjsVTnhVTQSROICPa9ahS48KkrwZQ+3Y8SlJIYk7qUDSnj+xgcwBKdX1 dRQrKih/SBDqwV5t5z78zIYK58M6RVQpHJA1xKadcKBCPj/EnsMuEFF37HOj wmzzz0IRggM25zSFpHpSYYvIL7N92M+2H8na7U2FnSaROnewaw5lDFefogJ3 xsqpNRwcYDSnTQ8OosLn2k8FrtiN8a0am0OpkDf28FYK9h45X8ehCCqslF14 2oLdWc4bmnUJr39QbZqTkwOczbOynOKoMHHu7G5N7P7v298JX6VC0cKHGnfs EX5/emQaFYZ0SG/KsU9kCmrq3KaCSOQ9g6/YM5sfOk7eo4KAbls5mYsDzr3T D83LoUKu+jFxaWzCuTfLvYAK1fKOLjrYURMB7yQe4/h0+IfaYgteZIy0lVHh hUDmyaPYV1fm0+OeU8Ek+oVGCLZY4S5Nw9dUqE8rrIjDvrWjz3HhDRUUkfxc CrZM59nQ0gYq5HytGr2L/cBb7J5PMxVqJZTiHmIrU0reybdRYS6Z0ZSLXXzd bKS3kwpNYzI5OdhaigP0G71UeFnDKZqN/fxluKZFHxWMHx8SSMfW2yPhxD1A hXFnVkQi9tuBp6Evh6iw+eDek+exTc9a3zs9ToVEt22f/bA/0obfqU5RIXrO PMMBe2/2xZFf/6hgfnJTHWB/2SLDyGRT4UbVyV1rsA80VWracdAg4OdPUQr2 L7e9TlReGsg4uqn04PgenRkPrROgQW3i2/OPsbcc81j+k06DX1X0dRHYPINd uYQYDRpllSwssD8fsNCVlqCBLq10RAT7Xnf15+0yNODptJ5rx/vvv0frqNNa Ggw0ZnknYet9eEQOVKJBjoG5ljl274skpScaNHi8X6qwCOfbI02+1x+30qBH y8zICTuw8NzeMaCB5m1+YQr28juHwhVNaLCyOEUM4XzuF/8iamRJg3GpFPQZ 53/xVcs8DxsaJOZFHffEtojU7rjtQoOmR/Gfz+L6kVzI8355kAZPf3SwSNhD p2SInsM0mPA7+Pccrr8oT34VMX8aOI25J3rherX9FlKtfoYGZneKRLtwPcs6 sOx2n6OBpN4FN33sKpOe83FRNLii1qTGhes/rsZqxaNYGlSPG9x1wf3BSedN /rtEGnBcMH5R8o+AvyoFnRy3aNC6jNJsgvvLRnqYalARDXyFr97ZMkUAKXqy JrmUBpeNdqV7ThLQSBxxKK2gwTr1NcIJLAK8Jq0jx2tpoPeR5dSC+1tWh2z3 oS4ahNgYDAqOEnDc6qZf5Fca6N8N06Pi/gj1Alx3+2lgcs7uHz/unz0VU2q9 IzRw0/a+ODGI52dG3YU9BB2CTmQLBP8koF9UZ9VxHjosS0xzsvxBQHF8UdEV ATps/4Woq3G/tghP+VIvSgfK5oknubjfR7kf3airRAe2QrxP+Bf8fYrUXmUb OmT2rq9XbCFg6pZ42CYHOnxpjTte2EQAS0hOVtsF328nr6nWSMAIU/vIjsN0 eLbLco90A56nFW5TDmfpsOd9WVoDnnf1Jk8Fo+7RweaSg5P1UwJSvJzR90k6 /DG//mzqJgE3ejy///pHh61vZWKoyQRcszgROcymw8kR2s311/F+bIpqmOFl QMwPLxOHRALCZ4v2CkkyIIPv8svKyzie0Zx+2wwZwOUlsKs6iADPeSGGngkD TMdvq46dIcDDV7x0pyUD5OSEfksFEOC6W3XO2oEB9CIjiyv+BOxZaR912IcB 7Q1SSTneBFjFuin6nmDAvxtybaSjeL6wvRv9AxiwMmSTlPMRPL/7woVDw/H/ URqpqocI2Jb7KPP6dQas+narYet+ArqlcjMMUhkQUnfQadQFz4frD9NZGQwo pl0IeITPP0/DstOsHzKArGC6zgCfj2yns1LJ+QwQLM29L43PT6yjd1MKixnA EHJI4HXA+WWXmSxYyYD3m69lze8loOVD+o3nVQxwMq1v5sP20791/WgtA0pY af5ytgQIlacmraxnQBv/+lXmNvh8pJJyrb6RAVMLcbsj9xBglpV89cwnBkQO TuQ07MbzfcWNxHUdDIgLFXgmjX35SlJC+xcGBAQrr4iyJmA957X4C98YcNK8 xJVtRUBdYOIV9Z8MGArbrxKF7TEWH9c/yIAHC/Xr1mBzelyJvTrKAPF44+lm S5zf3bExeiwGjA7f1E3E1reKiR6fYcAP7/Inh7C/v7l8OXOeAZaSs5zWlv8/ L126ZEERhp+30CYLbKnii1ELXEtOjQqLeLZiyctdgkJPKS2Zo/yAn8fpJY/T jV1tXy950MLGsf+gyKL7Y1xtj3MvX7TR6GmjHxqiix5y4znxOERs0YayopSL r1csmv5BPq5wVHzRq6IKLDU0Vi06WVGbyjgkseh6cV11ZoLkoreseh2v+nn1 ogWJO/77w6UWLRm2epu9vPSieeWcSq3fLllFZ0XB6X0yiz7eS682Jq1Z9Cgz xsYoeck7Vd+kGCnLLvoFc+vsdOOSfZQ2drW4yy1aZ+Rgqz2v/KINZMXMBO4s eV3o5YDXmmsXreCu/VKua8nuLzwjHh9bt+iXma0Hx0XWL5r1gD2t+nTJbnK5 vClmCkv7p3BVo3hsyWVZs98moxQX7bBjDWyVVFr0Su+L5SpVSxbhO1pktld5 0V1br37Kzl1yuvezSTZ7yf8DzMJ3BA== "]]}, Annotation[#, "Charting`Private`Tag$47912#2"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0., 14.999999693877552`}, {0, 2.8}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}], GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJxF1Xc4Vv//B3Du297u2wophQrZGRmvV6hPZlK0paEpIS0kRMkKUQgpkqQy SkZZSciIBt23vbL3zPoev9916a9zPa7zzznP83w/j+Txi5Z2JAYGhneMDAzL 16nm8hKpgHA9teH5qOveNEDBmuMiDd6QtV4wetlXLFLqyQ1hwMN269Gyj2V+ TVkKeghliTmxyzYVGrwxZxADKetLnyw7RudO8px7PBSecEteNv+QcNhs/VPw if+Zsezbj5PdplWeQfPRuaJlz1to2U0GPYexc3r1y3YmVZiP97yAxJfiE8vu yTyoOWqQCiLa20RdCdvY9UsOx70GmbW+Jss+x5nvO+WeBgKeI3eXLXXytuvl lHSQ1cyrX3bLB/OLE/UZkC1truFGOFpQ+OQl5rfQmG3wctl7HVr2j6m8g5LN Z9XdCfN+eW7mZJsFlZoF9GVXrHHUHwl6DxRBt7gbhH2vaWpczMuGtFOs3h7L edUyyA/15IDlIpP/TcJzm8rXXhDKgymqaa4n4SzvUMEBgw+QFj0g5E3YkX6A 47zTRxiZVUy8RVhObd1Sb1w+8NRFnvIl3B3YN36msgBEVbuO3yH8zfnAxLh7 Iaiw8cTdJazw+KNDJrUIYo4ZrQ4kHPBVstc5pQhMeTm6g5fzmvY9obKtGALd GRdDCe+Q6msarS+G4IY15yMIJ1qY7093+AQhuhGqUYQZb2TUOTKXgGty3ZHY 5XxfCJkpxZSA/0b/kSeEP/x0/TKs8hmse9PGkgivIrVse1P+Gbw3eJxPXe6H gsEHB9tSKAx2OJ5BWPkOZ/pg0BfwZ1rqLSAcnHlR7pVUGeynjfp/ITzQ8v2Z fV4Z2CS8rqghbMSluVbeshx0zvJlNBBO0oyJ7u8pB5YkbeN2wkx2DIIvb1aA bVNszMBy/0JP3jsn9BVyo4YypgmL98n79BpUgvH2jD18t2jgKhS6mEyrhGZ9 nvHVhOv1J6+dcaqCEUY5T3nCahcPjG9gqwbxB8CiQzjs0ccLf+KqobW6KsSU 8MgXyZ6kLTWwQyJFzoaw2YTv8VOVNaCQPNnuSNhH5vnLMfdvMNE+2xBFOEPn 9xnLsm8gMRugnEa4zZJTJoNaC2kD+rQvhPVuXox3SqmFknibPXOEL0Q8OVI7 WQtDJmoo7EOcl5ffRZW31UH4PDVLjfBsvUbESH0dVG6+ct2FcLYKm+3zTd9B YbStJYrwlaAGWRu375C4dcGmiPCY/vXCrxI/4PCFwDkhXxqkxRoFeDv+gOCr Bwy3E3aYWWWtVfwDGrf4z18m3Pcqtz/J7ic0qlKEWwgnswVkHXn/E3jYE5KF b9Pg1IlDXgLsv4AtgIttD+EOkXkh79RfwCVhGF5H+OmlyjbNxV8Q7qI/IXSH BrbVManDu+rBON3Nz4Zw4y1d/SPj9cA15ZUzTTi6mZtbYHsDnFy6G2TkR4P9 Ws31FQ8a4JqnIdNjwj+HPC5obv0NniltZlZ3aRButEtzOOA3uE6IHc4ibJm4 hpzU9Bvens65JeZPg+oDhZFULxqkcN94NEY48G3IiYo6GuQbb/h6MoAGxrzH FLyk6KAjpHefTvhLCWPJ0Bc6iLa5OdUH0qBQ0WC4nKcJXJ0bpbnu0cDDn5rr adsEA3offyQR1unq8NHIaILUglDV/0JokBPtI/rMqhkyvi48iAqlwbXJvV2H njeDe3TvH5MwGqhbSKdRZpvhV4yzF9N9og/Mpds9Y1qgVHVY/m44DZxsH/Bp DLVA9eV796wiaBB5JHNwak0rNKzf0LjxAQ2ss29lv3JqhWtOd2mdD2lQd0HK XEywDdIGrSXePyLO06PAzCndNnBQG/UoiKFBSNmESN2pNhCYuCHzLZYG5us/ d/hlt8GZyxZkznhirxrsrk8daoexURfJgUQabGKpbq71aQfneeUO7SQa+Kmq G7561Q5DHNL2Ec+JfQhm4T251A6uU/pxp1Jo8MngeWLt0w4IcxXbfCeNBkrB b3qnyzrgSpzrM54MGsQ1vFeQGO6AuMeCvPGZRB4XyrLPaXeCiojK2bYsYp8e 9laSf3RC6aNgjY6PRL/bRvll/3aC9U29LQUFNGCX/2ttsbYLDu5LjEgqokFn IUdbjH0XhKQEQeRnoi99cpNbmLth4sOeCK5qGrBtUdt6WK4b9je8IBt9o8Hl mzo3vXd3w8yI67Ew4rtbCJix18R2A62XN9e0ngbMeg6rz6j/gZF+mxi7NmJv Q9O2R5/uAZng8ev7ZmjQTM/2LwzqgV+9h6fc5mhgIlNU053ZA8fvSFWnLdJA Jq/2gCpDL5A8Fq+bMtOB3jl2oTKyF1JTn+pbUumwU3EuYyy/FxpUqoQYhOmQ dZ08I9LVCzM/BWQKRekQwiPgbafcB2ykgKGr6+iwQ3PLg8XyPjicuYejSoUO b7116VIjfRDyWDGSqkEHyarta02E+kH+6uMjDtp0mD9mnfLweD8wxf2NOGZI h/SAq/lKc/1w7eYplh376CDektN9XH4QshgfftD3ogPDuFNk+e5BuJLIRK+5 TYdOFlljpauDYFq2L8glkA6vFKJfLRQNwoN4mWLmSDroebi6RO4bgmpVZoFd aXRYF6Yis+Q+BFeehFyJz6ITu9tXb/d0CCwTEp9wfqRDddVBbdXBIdjonuyi VEGHo6u1SdXew0DRvrfmQxcdDJXHM9WSh4Gj8f6PjgE6bNz+0u5R1TCcG9B5 tmGCDteygk6qcY1AWbNgJRO5EbB54QvjvhGwUPJPW72uEWo3NwfHDIzAXsqc H++pRijRyP2za2kEwj84LKy+2AhZ2x4gmTIKOibcEWbXGiHaynzsrMYoCNk5 e/MHNMLxG/lWGt6j0JwuUboloxHGKuPE64THoKfr0V5d1ibo/OV62Vd2DDYG xwvdoTTBr1brak3dMXjtZBA6vboJcid4PB8fH4NSySVZ8y1NcEv8Zof9qzGY 4Tt2rtGuCQTsj6awGoyDLZsjw/fqJpBlTSi12DcO7o8iTbuamgCfdrdHnR8H 5zEnD/nBJrBvuCAmHz4OfM/GUg5xNUOJoXugRdc4xIdyk03NmsFldZRD1J0J OPM5OGHodzP4Zzf6tz+aAIqVFXvIQDPE71n7XC5tAq69L5S8uNQMlXeft3xs mAA/C5aCHukWkJp6Z9G+aRIabjUq0S63wPfqOhW5ykkQe70QI8HfCj1nhXa5 tE6Cq/nCD0/xVlhkOnj+48QksBSrlrJsbAVZ7baEXaunYKP1AfGb0Arez4cF XBymQMHPJFnWsRVUPLmmP/BNQ4i6leT7hlbYKWZBZZGeBoH4Tzru3a1gk3Vf cZfWNLA2Cxw7N9EK/gOiZ9qOTUOP7irpT3xt0L5/02/mzGlwO8Fm4WjSBmHK O/LMrWbg9XDqK9byNlCkH/hP98wMBOgJ/Dnf0AaVPhe+y7nNgEaP18eZP23A 0hDez/ZkBvYcqTkbxNoObh4dYp8GZmBqJomesrMdTn71dNfwmQUbCcP6qbp2 YLwczibzcBYO8jX4s3a1Q5xEcrhAyizkC/dd3j7dDg1ONamjNbOwwHOIaize AWYiEk0vxf6CUtWirseZDlC3y9Ndm/kXNjr536th74TvPDXlPKV/wbI/quiH RCc4ZrdbLTT8hR5+LXdOtU5I4eRwoC3+BU0SzZ/naCesydgfF248B3FDSS1O 7zuBbWlyka19DmqKw2dbnbrgd6RS4SjfAog3O2UV8fyB6O8vea9IL8A1h7nm DPk/cJBnw9G/WguQOO/A22X8h/h/rl4knViAX26vR7j8/kCrA4eOwLsF6PNP G7Nn7oEew8736gcWYdV4rtwVLmJ3Rh6+cXuyBOarfFMNTPohR466tPRuCRQf ct4zc+oH11PB5j4VS5DLwxMe8bAf5uk+g4HjS0CbtM9q7uwHz45swZp1DLgj bnC/ifcA+FQ/29PqwoDyvwJtlMsGISDxZg1pFSPSj7PkGuiNgLHaWYrgekZ0 loheZbZ3BNhKLK02bGZEHTHTxfPnRsCnQ5puso0R43rCunsejID7usru8LOM qJ+aQv8xMgIO8SKLMrmM2P40l7ImeRR2x6TLmxwioaWTXmes5DgIh3fcvR9L xpKS9iWhjVMgIvfOZyaJjCxNjxkT9KZAtPj2zSNpZPx77EWMrNUUSIxsurzh ExkXfxodl/OeAmlTR9u8HjKmKb5J7aNPgSrTgnqHKhOa+m++LxE8DbtchDpV KpiwalN17+X+GbDg7Gl++J0J38JMRi/DLFg+zfk938iE6wbd4y2EZsH62+Ga 0mEm7DF8zTuNs3BEPiH3oCAzNkoaecZHzML5TsVQb1tmNN1uc3Grzl+4s9dI r26KGf0nu2MP3ZgD0bfVoiRGFvz2wTfdI2wOXlP3TitzsmBtdahn4PM5+FVn kxa6hgWf1jsUnK6dA6ndLut272TBrdrb50Sk5qHY7DHLtygW1Dskcdnk8zws 7JisrtJhRfHMmcydUwsQkuT6cmEHKzqf3nkomG0RpFgY/DbvZsUDDJODeaKL YPqZY1uQHStKRjBnVOstQrTB2kzTYFbM6Mtvr/VdBE00efi1hRUpa7q8jXmX 4JLWk6Pl3mx4io/yhoGNAY3jeSZMAtnQr6xnrwQvA65jdferjmBD/QRnL2Uh Bvz2wzr9ezIb8jpI3NCUYkAFRy5yczUbek7/tC8HBuxJupo0JsqO/PJWq+aI Xh0WMB8Uy2THtK4rrZ/qGVDVLc8r7gM7xgp3LDxqYkCO9o1CkqXsWJcsbn2u gwFz3pBB5jc77lMK/9E7xIBCJjkhSkvs6NW/p8mFmRG/eUmpbTfhwP7uW7NF SoxoOPzX1aGDA7VdbV2dPRnx+s5w2aIBDtz2S4KXw5cRXz/ZTKNOcaB10Opt UXcZUWSvrVYOGyee0MLHcWGMOJD9eZqswImkkwbqOxIZ8b53iEvUNU7kuXHr El8pI5bRN0kNeHHioRzTEekKRpxX+/RdL4ATt3o4PFCtZsRTfyZVOmM58dfP Pd4avxhxq+mhUYVPnHi29HxdexfRe0EZhxJuLkw4L7+xhkxC4YsFq4WFuVD5 c+G586wkNC3bX3V2LReem223Y+AkYZZrgDyvKheuKXj7QoBCQv+Wkb4D+7lQ Urfo+J81JFR5kXd6+CkXbqlOddTdSkIvnd3HRDW5cT7U36jvLAl32sSNaehz Y+3hHb/77EnI49l/y8qUG1t7FWQ6L5Iw5pNvUogtN3pYlq4vukzCbOPcfpa7 3MjB7Nou7UXCkf3rr4z/5kbZnkvzCQ9I+N7VkZW/kxv1HZy9tkSR0CPmY6TC EDfeKMxwKnxEQq7WfXlnSTwY+eNefnE8CTecDmRoleVB+1oxFdcUEtpcnvSv dONBGQWXlI8fSCj9UF+8z5cHBfJFa/vySUT+916xhvDgm7o6dkoRCV3nN33T T+RB59viNPPPJIy4ZSOYU8mD6rJhfLeqSFgZ+uXxs9W8mFXdHdTcSML7mQLK nzbwYjaz6J30ZhIe/HmsuFWZFxO2UZRvtpKwR2S+U2wHL9bltnzk6CQhOV5J NsyBF0W2F5V29JFw6+uotx4FvOi5Nafh2TQJDeurF4bKeFFp7dZonlkSmjMw /Xe0jheNKhL1Lv0l4QlLh9/QxYudx36YKS2QcIeb5E1PZj78qXJ5jyuJjI5r phK2yfFhRwzFei8XGSczQ8pmFfnQptwu3YObjK475QbT1fhwWnLriWc8ZPR1 slVfp8eH70Wudv/hI2P0p4oy0m4+vFu5V0FfkNjF048HP13hw5nnb8p2ryaj 0bwWxd2ND4vmnMoNJchYHfJDXc2TD9MqIFhtDRl/57B7Jt7lQ/eMIA8OSTIO cbpQfGOI59H8kREiRUaRtJ0aO4r58EqXtwSXHBljDTsOLZbyoWTCd6dqwut+ 3/DM+krcZ54fCZIn42ZSZrnMTz4MdeMOZFIgo/7e1YdZe/jwcJVT5zclMtrP jHqWcfPjiLL0nf4tZNzqdEqom8KPhrtPbwhRJyNbH+0lWYQf55G3V1mDjM/o n37prePHpCsLQ/aaZGzOj5B/p86PQgktDUVbyZiqwVFcp82Pz/2Y91toE3ml eewbQX48LvdRrZGw0NPT3nIm/Bi/95LUgA4Zd/lqNTw5yo+uEiEpg3pklFh8 daHgJD+WSDB2ngYyDlxZR246y4+MFe7vWgj7neFUEHHhR/KCuW4ZkrHQpOlW sB8/Vu8STr6hT8bgkt2rUoP48cv2/LNdhA/rlr4uD+PH0O8688YGZJxVePOb KZYfP1YlveE1JKMKxUvRLZ0fg9qoFM/tZGQImCyJzOJHkWJf8XrC1eRzB7Py +NFtZlRBfgcZz09a+o5+5sdv9eW3vxFObJCin6bxo9o2j3zSTjI6745y9G3h xwyD8RJjwljBzZLQyY9nnv1iCyXclDel1DzEjypdEidEjIg8Hpfd3kumYGXU e2GqMRk7hXXFndkouFG/qsCMcEZIevo9bgq+ceP4fZvwLu/oxgphCuaZ7ro2 QdjPzl5lmzwF73rlrco3IaN1c+sXG2UKfpib+DtAWGqf1RF3dQpq6sFNUVMi r516fu+RgsYeZ+86EZ6V42vebEVBNmtxMz4zMk7FinqpHqSgYbvpf2qEJ3il pbSOUrBQ22rNPsJD41rnDM9SsLmP82YU4X47Q25jBwpayWfx5xDuqTdP23WJ eJ5oxch6wu15J6YO3qAg19jmB/zmZGzZ7BBl603BW/IXRDYTbnx8TefUHQqO FQwn/Ef4160gb6dQCvK4/uy/TrjC5D2P3zMKHtCr/vad8JePRelBKRRkdOJV 7CFcoli59/4bCjbW/CyYI5xPbYuOy6FgZF5b4NpdZMzz7ddNzKdg2DDzd2XC 2dOTrS8+UbBP3v6oPuEMOseGd1UUfEo2szlG+I2ZYEVuHQVTa/bQLhJOLVhz obCegp1Rb9/cIJyUoJb5tY2CZH2Z6w8JJwiCdW03BRMOnb+SQDj+jtHsr34K Dl53bnlNOPq8DbRPUjC5No2lhPDDpjPtf/5SkEk9v6qKcPiuS76DSxT84aNF qSccrOr3dYadiuV5cVI9hAOehTks8lDRfGr27zBhP+FYfiYBKhpdfXZ0mrD3 XPo+XgkqaqrqdTJZkPHmhQ9/BdZTkXZPiYuTsHtLaazoRioKrL1Rx0f4+u5a XLuZigyCZG0hwlc+0TukVajoQw4zEiN8aUv3bTkNKn7b0M+4lrDj85FNyjpU dMwuOC1F+HwAs6PODipeMtljLE/4zAIvVd+Eimp90tWKhE9dFM36z4KKnmnR 3KqET7RJHTCzomKEAIVLnbDtHsV5y4NUtOKhV2oSPvJZ6/H+o1Q026+6R5vw QQ1DfZuTVDwes+OpLuF9L8y7TpylopSvwkcgvFfsgN9ZByqG844lbSO8O+iE 3MVLVNS75HvcgLD50oVql2tUdAkrHzMkbOJ0zcn1BhWvFQQc3EF4Z4e3gKc3 FesMfWP+I7zdKui97x0qOnMfyttJWP/Lw4MBgVRUhNgcI8Kg9XQhJJSKJ7+W RhkT1nmZGv/gAZGfkK6NCWH62pePtz+iYuZbv8Vluz54ETfxmIolu4L8TQmL cCXHJiRSMfUFK5MZ4fdeSTGWL6hYzJ9gv2zr6cRHjK+pOFY083nZE/YJ0WkZ VGTqucdvTvh++5Ooo++pyDLaaLFslf3xkTwfqDh3d5vvsmur4h5+LCTyZeJK W7ajQewD+89UfCZ/tW7ZvDmPIsQqqFhV82Jw2a8VosMrqqnYdjGLtIuwWWLk /evfqfilNZqy7IFVD8M2NlCR3AkSy/a/FxFa30hFsdprMsvexBwecruNioVS ZPlll7mG3dvSTUUD2duKyz41EhLc2UdF19thystmPnUv6P4w8f60JyrLTqQH BepPEN4tpLrs9lJ///gFKh4OhP/z2ow7fossAtgd+/9+5Oflk7vqn4WOunle kf9nppzjjqeu/vMoxdjWuvif+3ZZHeo8KbjizkBba2dWoRUbDV816lIXXvHA CbZLb2+KrHiHlDDpTvGqFVOqZILThkVXLO73xkJdXXzFkXJafNTTq1dcIbpt y3ioxIq3iheHKP5as2Ie8lOXY95rVyzhtUbngIzkitmlD2dZfvlnBd1Vb64e Wbdi52bKJ2OG9SseHg+0Mor85/8US6ONNkutOH9ce266+p8d5FVotXbSK9Yd OvnjALvMirdLiZhxP/3njZ7+14o1NqxY1k6rQJr2z3b5Z3zeOm1ccUH8j5Oj gptWPJG8NK34/p9PSL9kjzaT/ff9ZO+rZ4z8c3biXNukn9yKDxquR20J+RWL XbiTo1D4z4Ic9ulm+zavmKZ9/3vSy3+Ou5A7ubT0z/8DoZhh0Q== "]]}, Annotation[#, "Charting`Private`Tag$47961#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJxF1nc81d8fB3Dutfe919aQjGQVsnXeWZGEvilpUNG2SiUUKSUiShkhySgr KyMl2VuorCIzm3CvUfid+/tDf30ez895PD6Pc17nnPf7s+mk834HAgMDw3NG Bgb6k9ZdUy4ZGLbzxX7VyCfxVHTVIqWN2P4Ibbzk9X+TJoUeLbbFI0fL+hi6 7z5/5TmvnIgUdkXG0f3XQtOBGpSMZMPvJdB9iVC7b3b4NXow9eM13cM5Nhq/ 9dOQ6K6xTLqPO4xtmorNQOcZWN/RfZ6z2I/mlYk0rUMr6Ja0v+txJSULNRvO ttLd836f81xbNkr/GjtId5SAkP1l5lwUvZP3D90HnHqsZ5TfotdiNfxPsXmr ks1c7fLQRKCNCt21G130poPyUZj9kUN0+7lrqDsXFaBsG8dbdEMzg/zkcCE6 KaOTTfcf2RpxR8EixFB6Y5TuPN9QgXH99yjSeWZrOLZL12GOC64fkC+/gxvd cqoSqyOxxchaNrWK7qEHo7Nn6z+iss2JUhHYny8dnpv1KkFUm50P6VZ8/sEp h/IJsbo5MkdiB9ZtGrmU8glJmavep3t43u+U8q5SdNs2TiwK20hy9MfvtlLU kF37ge4Ei33WWU5l6I1Mu8szbMYb2S0uzOUo6tnijmh6vq8FzbZFlyPv2Qs8 Mdjvv3pUTSlXIDMv9z90ixB6dr2pqUAuhW4rsfT9VtR/72RXibYwlQnHYW+/ x5k1EVSFbg6vj4zHDs5xlkuXrEbsvEqEBOzxntbEi0XVaHv4M/9EbBMuDXH5 /TXIPYZFMRk7SSM6amy4Bmk1i8+9wmZyYBBI9a5FISdefU/BPhFq//C8YB1i kD83koa9blT+zoh+Papw57yWhe0hGLryqrMeCYbU/snBbtOjup91bUBE0s20 PGxV58OzMmyNaEehRmAh9qNnHxx/xTYiLQGxqPfY01WbhpN2NCEd2oGuj9hm c34nT9c3oThrScsy7DvSyakzXp/RRq+q/lrsbJ2Os/urP6PK8yeZm7B793NK Z1Oa0VzRJodW7J3eznGuKc3I45X+yHdsxycvjjVTm5HG31/kPuzo1FbR7bta UN1HVb9f2Itt6k+m21rQrl+0fbPYBcpsdsmyrSiAnaC5RM87qH3rcc9WdDVe 7y7jSyqa0bteUrfhC5J9P3+YhJ0ZYxLo6/IFBbc5DYtgOy2IHNQs/YJG5sVH JbBH09+NJTl8RQ/4dlirYb9iC8w7lv8VKadZNAD26VNHbvGzf0P3hkSrTLH7 hf8K+qZ9QzuvKhw5hR1/ub5XY+Ub4ncaXXHGtmuMTpsyb0ObnyKtG9jfb+vq HZttQ8e8ngdGYkd1c3PzG7ajqhM/Ul9hW2t2t9U+bUd8XKLuBdhfJ286amh1 INPRZdlO7DATc42pwA5k3hMpOo69P2EjMelHB+q32dCwgt14uCSCcqsT3R38 GiydQEUPckNO1bZ0ooy5T6+1sffwnlC8JdmF/MvYYi2xq8oZyyerutCSoIyc D3aJkv5UDc8P9IaY4T+MfTOA8s7H7gdKWCrbwJxIRTqD/XfUs3+gPseyTxLY hVF3RBOtulHOmPieE9ju1AODR5K7kdvBEF1fbDULqUzyYjcS3cxlk4CdzVxp 6BPdg57F2cqNY7vaPeVTn+xBMkcoU6QkKoo4ljNB2/gTfX8duKiBfbDgdkG6 6090qu8pYyB2i6PkPjGBXuQ7cagIJeP79OxBDk23FwVfzAt1wQ6pnhNuOY1t xDMVj71vc0W/f0EvclpNsON6hetVu8N12pE+pPhmljyLLcvS2N18pw/JdA9R tr+mIn8VNYP09D7Edsa+zwXbKJiF1361D1lzS3PTsMv0kxOa4/sR6ZHnS6FU KtoW/GZkvrofud2m/LLFjm3PV9ww1Y82RPqvvsZ2d6wuOK89gOyPNDfpp+H6 FD5ST/wygFLzg9uC0/H57v1N2ro0gGRFdqQOYbPLLx20EB9EuX4a4ZBBRQMl HL3RFwfRgM69riXsqFE56g7mITQv6s0bkElFbDtUtY7KDaHrZzqez2Jf8dbx 9rUcQr+qGkNss6jIgt+MvSlmCMWG8bzbmU1FzDud1p9V+4W6be6piuXiehua aRh1ZhhVUC4esSqgou6ugoCSoGG0rkz31gi2qfSnpqGcYXRpXDTJp5CKpIua D6swjKBFN2GhgndU1DUw41gfMYJOpi6V7P1ARcZKf7JnikeQzdBd9iXsvOvE BeHBESSzrJqcUoz3h4ff12H7KNJ6dZpHsATnq7Hj6UrNKDIMaagULKOiXF/d LsnpUTRW+3amB3tTg6G4qeAYmjt+qjGtHPfDEwdTwk+OIaumzDLLSirKCrxW vO3PGLrB/3i6pgbXu57CoZPyE4ixSqHvRjMVMcy6RtRYTqAz2245+LbgPFm2 7tl2bQIdde5UDGylonTFqPTlTxPo9I/WstdfcT266eEWcWgSRR3ON13XSUUS j5SlV70m0YB51n8GXVTEkjTa5hA/iRxnioiu3/F9a7DRVpmYREkchsHt3VRk u16b0Og7hbRK/DN7+6nIYPtsjuqrKaTgt3hk2yAVbTFMdXjWMIVU3d8I3BnC 5yMvyF6Vaxqx31IZ1hrB/bJ7uYrx0DRK25bo+WuSipoVuoOjx6cRryzzZuM/ VFSu/u6X+eo0OiWkNT/xF+e76ykQyb+Re3p0duQKPh9W+2bOqf9GnwOchYgE Gjp5o9hK3fc3Ws1N2LKRnYZm6mPXtQjNIO8abrH7wjQ08M3jit/WGdT7PUAy TJSGvv082KihO4N0DHpXEtfR0Ls5Hp/nJ2fQUZ8fJ7vFaej2Ou/+i+kz6Ej/ 9bCXsjTEf9E2hVV/FsXwH1EP0qGhrawvKy0OzaJt3Mwi+oiGIH6oL/LCLGKq qJMh6NHQxXZHMfmwWTSiBhujd9NQuYHXA4vBWUT2v/d+13805LY+0iny3hyq cD0gc/oiDQUUfA/oezaH2JxJ2QXONBT3n3iyXOYcyi9S+iBwmYbq7yf3fGif QyeXG1KnrtOQJO2tRZ8szin+hYWUPw21NrYoy9XjPidizZ+aREPD5wTN3X5S kcCerqU3KTS0wmRz4cMc7vsufuUlGXj+2r0vzdfj903oCEs+DfkmT/G7OeHc rOO5JKtpSNmHa/493zy6kf5S+cM4DT3ablS0z2oBCZ86mkCAeaTUdXi37lns 7bKfzQznUf0dx1Y5zwV0Y5qnKHHPPGJpDxtje7GAUFEin5fVPPK82S9WNr6A Qu/U3Sm/MI/s63y81O8soqAnLodaouYR45UwNunwRXS6Tn9iOm4exW54Fcaf soi6bac01ifPo3bXprTfTYuItdRmy/OceWQmvOFHqtgSCiy+8s2kYR6pORTp iucsoa6ebzQD4gJq5Wmq4alcQsVaHQUGHAvIpaDParl9CZ0NrxneT1pAKZwc Tp0rS8hYyzc3auMC2phtHRu25w962vtfa7vOAmJbpa6w9f1Bb87t9uH3WEAd EdtKfvMtI0lfIamo1QUU1ZrKe1VqGb3k8bRQYF9ENjwytkuay8jT+9HjZvIi 7n/rVwinltFnynEVM+lF9NOJQ4f/7TKqSzZx4N23iIYNBvLVDq8gw1vCHzPj FtHCdPgbzxer6OY59KHIEq8rwbuJIMIIZJGy2wc7/yChsP77j2OIYKD98kkg 3yoSlnt7ZyGJCNyuHy2l160i0dK73scyiaBNKHB/J7OKNkzLXpEpI8L98lu+ jTtXkdReF7uiYSJY/WAhxF9cRSpMy2r9KkygZNJj+L1yFZm7CQ4o1zKBWP5i wSUtBrDgHO4Ob2WCymfKN/FfLOyPL+z4+50J/A0rTq4aMMDBz0ebKqeYQONj 0hl3cwY4Jv/ynY0AM/ycRDcU7RngwoBSqK8dM6yy2l9PeMAA9w6Y7GyhMYPG VbuPDzsYQDS3UZTAyAJ+Rk8DHnczQAblwPx2ThYI7xBtCulngG8txzNDN7LA 9stFBdcmGEDS0k3C0pgFvj3Oq6UxMEKp2XOWz5EskPnVyLNAmhGWjaiNDTqs UNrX62zsyAghSR6py0asYOyeHXHdlREkWRj8FSxZQSrlrnbCFUbYW8GxK8iB Fdz/+7Q4eIMRovTFc/YGs0K75tNXYsGMoAGm4XU9rLCO+XfG/nRGuKz5wrbG lw0mclkvc/5ihD1xPHOmD9jA5sVpZc1RRpBg9fJvfMIGiYzzuScmGOHzl4NZ ra/YoO6znMDLWUZQdOEidjeywbWEe8W/VhlhOOla0owoO7x97VjgJUSAo/z7 JsRy2CHskvQ0TY8AKp5Ft2Lfs8MLpSD5u4YE4OjbIripkh1+6GVV8hkToPAN EUl3sMPHXe1bhM0IIGhaGLJtlR1spSt2TB8kwOdbkqqGphzgE9/NWHuOAAZT Sx5O/RxwQzJbxOQBAa4bh239NM4Bu5+MsBsEEyDjhUInhcYBI7eHpLVDCCB8 wE6zkI0TKmLbl9aHEWC8oGKeqMgJdwS/P857RoDHviFuke6cMMAc1aieQoDq LlnJ8Vuc0J9v9HU+lQB/VctadwZyQufDuwdz0wlw+hdVeSCGEy56DXVJZBFA a++R34plnHDBN+Xat3wC9AlIO5Vzc8G1FH3B6HICCDl/XC8kxAV/50VXpSoJ sLfauuGcOBdMaPekp1URIM8jUJ5XhQuaLkU6Z9YSIKBnevSwNRdoPuNlevSZ AMqvi85MxXOB39WIM5+6CHBLx/KEqAY3WNX6kaanCGB8PHZGXY8bkptpOaq/ CcDjM3bbai83+PV/Ubo6Q4DoMr+kEDtumDnAVDM1R4CCPe/GWO5zw4qSCn/x IgGmrTdfne3ghvKAxcd1BCLke7iwkga44TQS1P1JJMLN6A8RipPckJL2lTTD RASun4eKzhF44Mw2rv3crESQOfOA4edWHvgaVJEnwUmE41eoAfWePOC5zG3a QCaCVLjeulE/Hig7qknNoxBx/g/TWUN4QINaLRTLTwSPv7Kf9RJ4oN/uQbu9 IBGe3D4uUFjPA2Lzr6q/iBChPrTqeeJ6XrDbY7VfT5wIj3P4t5fJ8MLWh3Ev mDcRwebridKf23khrbwisxJ7WPjvgJgRL8jeqduot5kIxLhtWx858YKE9bf8 DdJE0MqIzL35kReC+O+6X5LDdaitcXmymhfaNsUT2eWJsI+BabdtCy+E2ZW0 xGCf2u/UgQZ5wStrxaRUgQhGnpu8fZj5gK8xnEZTIoLLRtrLXXJ80JlVzE1W JQI1J6R6UYkPTnzedSgY28NYbiJLlQ/mQ6SF2HcQwc/VTk1iJx/kX9ZiWcKO KqutJljygVpLB7VGnQjlZ55PlF3lg3N7dXMktYlg8leT7OXJB2m62dX3sRtD vqip+vBBuMXb2xPYHYXsPgn3+UDkUQU1U4cIk5xuZL9oPii8IC6yZScRLsfx qOu+4IMRd6kUX+wF1ddHqIl8sBypPN+FTTzeneDwhg96Dzl+DkBEEM40Vjcq 5QOtAeb6DiBCjEH/kZVKPhC9zxCwdRcRJDpu+OTV8QFjf72IB7YCIadG+isf JD9/WCigRwS9A+uPsg7zQdsdLgOkT4SLC799qrlJkPtnXdMxQ5y/62nBITIJ hvMEpOOx2UY7U4nCJOD1VjIdxE7sKvu2U4IErOkRXGeNiNBd/ET+rRoJRG9a VdjuJkKaOkdpizYJ3jveHIrC9si8eWga8PgNsakv2ILxZ3zlTElwYXp9maEx Ecz9NNtf2JKAnT+0XtSECBtW0h0/2pOgj7XI2wx7/KoE8cc5Enip9Sl7Y/uf 5VQUdiNBk+f2xB7sEtMft4P98Xy6XLmf7CFCcLmlSFoQCbq91PhLsI/qVmbU PCKBCKlYeRR7UfFNB1MM/r7Qx1JtUyIok28peWaRQDD6nvcXbIZAanlEHgmE 4cqTBexG4nmbvCIS3JOS7xTbS4QL1P1+vytIsC4F/bHFTmiX7DrTSYIFj5Oj 3diXLCNd/HpIYBFNqviLDbXcLC8HSMDytXlAxIwIP4po27onSSA96LxiiS34 vPruASIZKHuGBguxB4R0111iI0PnypxqC3Z2SFbWQ24yZAc/6x7BNveN+l4r hMdva+wV2ofzcLiovEueDH/8P3acxz7Y/bPq+HYy3PySYXQTW/KQ1TEvNTK0 rs5JhGKXGO/0zwcyJF5LVnmLvSjH161gRYbQt21/aNi0GNFbKjZksB9q62c2 J8Icr5Skpi0ZjElP/uPHnpzVPG9wjgwoxK1VCXvMwYB7jxOe/zepYR3s4bZ9 meaXyfCjOivIBLuv6BTN5gYZRkotw05g9yg4Rdr5kqF4U8fiRezvz911Tt8j Q1PapsVr2N9uB/m6hpJB7vrbhgfYtab5PP6JZBg8ZsmZjV314VNWUAoZ2lrs Pd9hlyvVH3j8hgwctlZPS7GLKb1RsYVkyI0mfW3GLvIb000oJoPyh7m/7dgF 89Sfr8vIMJTQ39aDnd3FIfO2gQyBRwczxrHfmAnUvmshgwiayJjBTvu40bGk jQwSP0fPLWAnvVTNqeslQ4+hjzDRgggvBdDB5iEylPkO87Jhx90zWfw2RgY9 +FXDhR114Tjqo5JBMI4/SAA7/MfZvl9LZOCNH48UwQ4zv+w3sUoG2tt0l/XY wSr+dQvsFPAOZr4tiR2Y+MhphYcCVS1ipTLY/kIxJCZ+CgRxiLZsxfb9k3WI dwMFktpDLmzD9nZ8v8S/mQJyHEcXlLG9eipjRLdQQFUv9+gO7OuWzSCuQIHT EqpR6thXy7r6pZQpcKHVOVsT+/KOobty6hTgCaQmaWO7JE/LbtehQFbn3uu6 2BcCmV10jCigXez0AbDPLvNS9EwpsLNGRlkP+7SzaN5uCwpkSD8M0Mc+1St5 2MyKAjFTHNUG2Hb/Kf3db0MB4+XFMUPsYxWaz61tKbCOKXfeCNtG3UDvuD0F 9HTuj+/GPvR63+CpcxToOVtaZ4x9QOyw/zknCiw9jHtqgm0ZdErO+TIF4qaP 7tuDvW/VsdHNnQKOVVvm6DZ1dXf1uEEBFTWF+6bYxv2+/D6+FPAgB/LsxTa0 Csr3u0cBiU82fnTrVYXbBD6gwEmutEm6kWb8ckgoXg/Vz9QMWyc1Le7pUwqM hAxF090lnvrc8BkFHgrv7aHb4+nr2LnnFIh0MhXZhy3M9SrmZQIFyA3RpnTn 30qK3v+aAs9Vfl+l++B8wjPGDAroS848o3vu4suozGycb/KuIrof972ItM2n wA4Gj690K1vHRfC8p0BEhsIY3c0NseEfSiigofDrL90u+jFPL1bg/fq5hdMc m7fw2ROxWgo8GbwoSHeGYlRYbSMF9k5LbqTbLCHi8fVWCpyRfCdF97hI+KMt 7RRgH3uwle6Ah09C275TILpxToFuWeawkLu9FBDZC9voFs++57/Cwg9DMUiF bkFbT5+r8v/MVHjS5fS1f/5N3mN3sPSfR82tjgzYC6x54IHdwUusgms2mbpm MqgmtObxU2yXc72F12wkKUS4VyqyZnKDdHDmlOia1/m/sVBTW7fmCDlNPsqZ 9WuuFd21YzZ0w5q11pWGKH3buGYeYrzbCV/xNW+4tVHnsPSmNbNLHc3bX/XP iroib64dk1jzpW5y2R6GzWuemn1gZRLxz7uVKqNMFCTXXDyr/We+8Z+d5JU7 mx2k1qw7af/lMLv0mg0lhc244/95i0+Ae6m6zJq3Omh+lOr8Z4fis3dyXbes +WPcF/vfArJrnnu1Oq+U/8+npFLZo8y2/tu/rY/Vsqf/uSDhTy/VX27NNgab QXuD/JrFHO8VKpb8swDHxSyzQwpr7tR+3JqU+s+xju+oq6v//D9xydtF "]]}, Annotation[#, "Charting`Private`Tag$47961#2"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0., 14.999999693877552`}, {0, 2.8}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}]} }, AutoDelete->False, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{4}}}], "Grid"]], "Output", CellChangeTimes->{ 3.717222879843102*^9, 3.717223755619073*^9, 3.717224080737587*^9, 3.717224133454921*^9, {3.717224313743458*^9, 3.7172243596866903`*^9}, 3.717224556374271*^9, 3.717224615617154*^9, {3.7172246582405663`*^9, 3.717224707757881*^9}, {3.717225009338669*^9, 3.717225058571363*^9}, 3.717225115774963*^9, {3.7172253848459167`*^9, 3.717225410199019*^9}, 3.717225719551483*^9, 3.71722604973919*^9, 3.717226715726511*^9, 3.7172268785923347`*^9, 3.7172312921697903`*^9, 3.717231351754858*^9, 3.717231422568667*^9, 3.717235036199759*^9, 3.738609755020125*^9, 3.7935028430817633`*^9, 3.793504048105657*^9, 3.793904844851856*^9, 3.823229447482765*^9, 3.843072156782251*^9, 3.843072231775215*^9, { 3.843072283708228*^9, 3.843072307072098*^9}, {3.843072469287365*^9, 3.843072492206038*^9}, 3.8430726194397783`*^9, 3.843072685063224*^9, 3.843072959261856*^9, {3.8430730637189703`*^9, 3.843073073848181*^9}, 3.843073234144977*^9, 3.84307332798687*^9, 3.843073447038569*^9, 3.843074824906403*^9, {3.843074956406102*^9, 3.843074980078082*^9}, 3.843075022140396*^9, 3.8430752426451273`*^9, 3.843075298660577*^9, 3.843091678956018*^9, {3.844256003207307*^9, 3.844256024967204*^9}, 3.844258976544119*^9, 3.8442590324013433`*^9, 3.845740961439687*^9, 3.845741043974612*^9, 3.845741126758751*^9, 3.8483564594407253`*^9}, CellLabel-> "Out[105]=",ExpressionUUID->"a6e539ba-4d58-477a-8ac6-9f877b6c4daa"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"TestSwingUpFBopt", "[", RowBox[{ "\[Tau]_", ",", "\[Tau]1_", ",", "d_", ",", "\[Theta]ff_", ",", "\[Theta]dotff_", ",", "uff_", ",", "\[Kappa]1_", ",", "\[Kappa]2_"}], "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{ "eq", ",", "init", ",", "\[Theta]", ",", "\[Theta]dot", ",", "t", ",", "ufb", ",", "u", ",", "\[Theta]s", ",", "\[Theta]dots", ",", "us", ",", "ufbs"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ RowBox[{ RowBox[{"lqr", " ", "for", " ", "q"}], "=", "r"}], ",", " ", RowBox[{"quasistationary", " ", "approximation"}]}], " ", "*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"ufb", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Kappa]1", "[", "t", "]"}], RowBox[{"(", RowBox[{ RowBox[{"\[Theta]ff", "[", "t", "]"}], "-", RowBox[{"\[Theta]", "[", "t", "]"}]}], ")"}]}], "+", RowBox[{ RowBox[{"\[Kappa]2", "[", "t", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"\[Theta]dotff", "[", "t", "]"}], "-", RowBox[{"\[Theta]dot", "[", "t", "]"}]}], ")"}]}]}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "12.99"}]}], "}"}], "}"}], ",", "0"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"u", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"uff", "[", "t", "]"}], "+", RowBox[{"ufb", "[", "t", "]"}]}]}], ";", "\[IndentingNewLine]", RowBox[{"eq", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Theta]", "'"}], "[", "t", "]"}], "\[Equal]", RowBox[{"\[Theta]dot", "[", "t", "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Theta]dot", "'"}], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"-", RowBox[{"Sin", "[", RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], "+", RowBox[{"u", "[", "t", "]"}]}]}]}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{"init", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Theta]", "[", "0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{"\[Theta]dot", "[", "0", "]"}], "\[Equal]", "d"}]}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"\[Theta]s", ",", "\[Theta]dots"}], "}"}], "=", RowBox[{"NDSolveValue", "[", RowBox[{ RowBox[{"{", RowBox[{"eq", ",", "init"}], "}"}], ",", RowBox[{"{", RowBox[{"\[Theta]", ",", "\[Theta]dot"}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"Method", "->", RowBox[{"{", RowBox[{"\"\\"", "->", "None"}], "}"}]}]}], "]"}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"ufbs", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Kappa]1", "[", "t", "]"}], RowBox[{"(", RowBox[{ RowBox[{"\[Theta]ff", "[", "t", "]"}], "-", RowBox[{"\[Theta]s", "[", "t", "]"}]}], ")"}]}], "+", RowBox[{ RowBox[{"\[Kappa]2", "[", "t", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"\[Theta]dotff", "[", "t", "]"}], "-", RowBox[{"\[Theta]dots", "[", "t", "]"}]}], ")"}]}]}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "12.99"}]}], "}"}], "}"}], ",", "0"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"us", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"uff", "[", "t", "]"}], "+", RowBox[{"ufbs", "[", "t", "]"}]}]}], ";", RowBox[{"{", RowBox[{"\[Theta]s", ",", "us"}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"d", "=", "0.7"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"\[Theta]4", ",", "u4"}], "}"}], "=", RowBox[{"TestSwingUpFBopt", "[", RowBox[{ "\[Tau]", ",", "\[Tau]1", ",", "d", ",", "\[Theta]0", ",", "\[Theta]dot0", ",", "u0", ",", "\[Kappa]opt1a", ",", "\[Kappa]opt2a"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p5", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]4", "[", "t", "]"}], ",", RowBox[{"u4", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{"None", ",", RowBox[{"{", "\[Pi]", "}"}]}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}]}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"2", "\[Rule]", "Axis"}], "}"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p6", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Theta]4", "[", "t", "]"}], "-", RowBox[{"\[Theta]3", "[", "t", "]"}]}], ",", RowBox[{ RowBox[{"u4", "[", "t", "]"}], "-", RowBox[{"u3", "[", "t", "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"2", "\[Rule]", "Axis"}], "}"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Grid", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{"p2", ",", "p5", ",", "p6"}], "}"}], "}"}], ",", RowBox[{"Spacings", "\[Rule]", "4"}]}], "]"}]}], "Input", CellChangeTimes->{{3.717222010196205*^9, 3.717222060813529*^9}, { 3.717224737231241*^9, 3.7172248427157173`*^9}, {3.717225080602165*^9, 3.717225081866411*^9}, {3.717225463911592*^9, 3.717225491301178*^9}, { 3.7172265166389427`*^9, 3.717226543221943*^9}, 3.717226695906413*^9, 3.7172268727952843`*^9, 3.717231345162293*^9, {3.717231415976781*^9, 3.717231416559705*^9}, {3.717231477239808*^9, 3.717231479144586*^9}, { 3.8430723583850517`*^9, 3.843072396134807*^9}, {3.843072427074926*^9, 3.84307248699341*^9}, {3.843072541650943*^9, 3.843072614350314*^9}, { 3.843072647667783*^9, 3.84307268025562*^9}, {3.843073048618729*^9, 3.843073069904932*^9}, {3.843073226214981*^9, 3.843073226760252*^9}, { 3.843073322673397*^9, 3.843073322962865*^9}, {3.84307341501408*^9, 3.843073441700654*^9}, 3.844256021497982*^9, {3.8457409427357693`*^9, 3.845740946186043*^9}}, CellLabel-> "In[106]:=",ExpressionUUID->"c272b759-6f4a-4dcf-a725-e87e6311c27b"], Cell[BoxData[ TagBox[GridBox[{ { GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxlunlcTO///z+0W9K+7/sqKWnhXE9Fu0pKq0q2kCQJ2aYUyRbSIiWEbEko Fc0oEYW0KO27Svu0U33Ped3eF7ff59c/bo+bmnPNnMd5nuvM/S7vu89x+3wa jWbJTqNR/443fXyndC6WoGVGry4tPE9M1ay8NlRTgQwcf3lz3StGRWb3077d bkdWZka5+X5VSKo5t8tXqx/1c3p8eFHThIT8vR9ymbFQbtza2nuCXeiKrnm+ nfMkGrYsPpK2ZBD9SFjGHOabQdtEr3yYWzeKzqWd/DpffB5wST5YJ315ConG tp+9mswG9NeKk3cjZtEZJyuiYpwD4v/81hN2nQcHjG55fwznhvYDZQub7Nhg 7eB0aED7Aujblqe/soEdwlZt2CJhuBiENnE9alLgBOOMxBcnGEtgV/fKwYm1 XOA/OUwvWcwPcmK5ze4S3DClydek7SwAanOcDluZ3LDq0ePUuDhBcOQL+fpA iAeGBax9NhUKwePsnwX6UjzQcd5nUxCXCPD5Xi64JM0DVoOHrDoNRKH9pb9B jAwP9G3lPvDipBjsbXtltEuWB8yVROefKRQHW9vbkYvkeEDgs8rFzEEJCJ+a TQkjs1TUUwcDAylo7V5xqo3MCZpGfII7pUFLVZFdVZ4HPkmsWcG6LAM2u5Nt 3MlsLFUYo/NdFq65hFhGkJmX7XbwlnA5+NO7IvMWmWXCZFe5qcjDk2Oxp3PJ zKPsme34QR5iXaQrPpF56Wrxp4c2K0ClwP2m72QOahIosqYpQuqrTUktZB5k nXe2SlAEk4fu7j/JbKHz/rqVthKIm+Rv6CNzAcvk98QXJXASidw4ROYAreV1 37YrQ9vOegkWmVcPbKty41GBrLj7zmNkXqcktn7xbRXw4XnSME5mNXr04cKV quDat/D3BJk1thsxlOtUIX7N19ZJMm8v8It4sV8N/nj206fIzEit2jYsrA5x 8Wtp02QeTZ+b0MlRhwbxIQ8qb1V+xHN9vQZoe5gnUXlY46pB1pAGOJm8+kzl V2m/W8eiNMGbmB2ksvta8r3JaIH58Fvu32SW3HsmdylTC5wWgBSVhRf4P1vv og0ZnpbqVE7Zmzc2N6cNPTk79ahsrtTbOFxTiKIXKSXw3c9BTB2zwY+8jSj0 Se38NuOvKPBy5rrrO7vRm11xtoI2P9A37aaLN/qGkGDZr2yx6DZU+aViuWbZ GGLMf6XSsLkXeQrZ9Us+54HcBTtyZqXZoU1YJeDd4kXw/J2v2+RpDvA6OBZd dpQXJhxX/ZnI54R3O2/2F4Xwwf6yX10x2VywXCBM5+gzfuAvreb3CeGG63u8 UNuYAPT3XtgYO8YNIt5H6SFaQtAldMXksCQP9No7e3RsE4Zsqa2efWSfRYi+ r5o3RWBscMFuUbK/19WhybZeFI7b3KhnI/sr/u5SnrS8OJw5YuHCJPPjSZkS STcJiGm0qbIm+xqvsWcf64okDCaZh78kc51bcGbaFymQ5CsV5CI/L13FNwqn /khDN3OdjymZw5PmbeXXl4UgxsfqQDLHRYWlvDaQA/PiK/NiySxS6OO6uUoO KtPLwzPILFS5eqo6RB46P2yvKCSz1LO85dsFFGDjp8G138hcvljEqDVDAXR3 JUo1kHlZj/0ia1tFSBP5YNhB5qTL6oc/tinCKntptl7q+PzzSuVOKMEHH8PQ Aep4fDm92ySUofWUQfkwmTddsKm5lqMMZZ5S9qNkXnO2IOa5swosXH1aleqv geO3tp99KiC84s9Bqr8PRlolR6NUgVfY/xDV3xL+b/L9ymqwwFB+JdXfK09T RiuK1MC//F4xleuUdmfE7FCHpMpEXaqPWjuradvna8BkUt1xKmuoycqp3NQA Ge7wbCpX7bRYVLVKE9JN1FqofDZ4yeWESk04d9Fuhsp5rtV/9PdpQareBkGq nwn5R1YULNSG/SaOilSuM7laee+RNmTGNy2lcvNru32jNVlI9w3TtqkvHTWc Wm26mVWD9GJfXfYJ+4Su92qOreDoQhuOi8kvLfmOvKVN5n8JH0Qe9W0yT/tb ULB0YkDimVFUqfYj/JhGN+q+d+jeiAQPmB5Ji7v2ig2uhscEJx5eCKkyOl4n 9DhgyFUxhPVjMdyJ52M7tJ8TAmXH76zR5IO1lcqcR09ygX2kUe0tb37wFnfJ j7Tmhk82ObxRdwVAaP2yS+cbuUGdIzbmdKsgPAty77xIHifg2dfNyYLCsCmA f+lVsr/Ht6sI2m8UgW0muZHV5DwOWtQgKH5WFIYEtv0qJfs8X6hMZFe5GJwT sjOJI/t7hFdy+7fFErC9OfqRFtnXqt8lsxvWSEKlY+vRG2T+PXSZvjdcCmiy M35jZN6melS89Jk0cD+OVV1Bfn4qHvK289tl4EFnxvR2ap7Y7Nfr5ZODqeCa 3eep8+0btsP7kRxsWJTtkk5m8YcZ1+Pt5EEhk9+tgMwCe86N1vfJA3vydbUv ZD55VzRY67QCeMq5xP8g87etz3ZaqyjCSEp2aBuZi03rd5x9owjlt+vyusm8 LbV9+UtnJaj2zArsJ3Nv2FRQxqgStNF3iFH9bWsoqH1+URmkTf7kUfOYkX85 67SOCrDPPCik5jGRPxof+kEFYjk4tKj++hkZWHv4qIKa610Tqr9HTCIDeWhq EM3FxUv19U/2qddF19Vgl0ZKGpXLfG/yrCHU4c6hH+JU//iidh/71KAOmtZH 9lL5vUqnkE+IBjy13/2Ayr5We+WLRDSBPcCihsqp5yONLDI04fn2znEqR9sd k3llrgUjiWa8VD/dY+mHxju14HPKgCyVJ2+fNA0N04bxJyu0qCzVqxXRY1aG Wi+Yy1b8YiJzwxVxsx970bBwns7vyXpUdvnDzbvSS0Ah+kzzgflcIJZpudK8 kA88hj0S9Xu5QORmyWknNgHIc18r/CaZG/ac4whcZS4IWWOH94hz8wB7rm/g jkNC0BFb0lhLzstMkazz3L9E4IH2nThnsk9F5mnpdG0xGO1zMTYk+7QseKNX xX5xmKgvy/lJ5uY2Bc0daRJQ6KsqtZPsj7vb4pbYDknoXv2hvIzMuYWbWuol pOF7X2KcKPl+ZmXmNE0sZMAiXeGNHZmb6luPyEXKwo4ByV+hZK4ovsxzyVMO PO/0CyeR+bo8WHvMyEFrkJ3xC+r+/6fMReimPGisKJl8T2bliZ7AgZUK8MFE VLOKzPIhQrPXahQgml04qInMMQEDmVZBivC6d66mk8z7Ww6d5eFWAo1TTfq/ qPMTLrP1/D0leGY5sm+QzKYpwb6SoAxRDc5HR6j9yOra6kMtylA1d6aGmo9F m34FtBxVgQ8ZlpHUfNTpeUJup1SB7sqeT/Wr99GF/vPPVGG9bEoG1S+RbqnK chs1GOrbvZnqk1p6rlZbnxq0mMh1UPlnl/7Glovq8KQ9yYLqh6U5RM6pasCC vTIXqHxR3U2z74MGbILrhVQ2Py0/0eGrCVkPfLupHOSZ2N0zSfbtFLBRfen1 XVr/LF4LdppNiFL5e1sQK1JXG4w79qpQ+XXVvW2V1dqQY7xWl8r8A6JXpmpu o659DVmbbyWi3id5v+5tr0YHl7n4m0uUoKXxPWVsVR1oxonn/uXYakScCA1O cBlAqyThAF29Bb1be+y8QycLKX60SfSS/ImWBi5ia/rCDcVPdHPWRrBB36vi CbalC8EluKvZmZsDXlnn/eI8uxiWl98WeGrNCeZH5U/SOfigTnl6yX1fLmgq uKb10oAfPuuv5Zpczg1t+VvH3Y8LwGpJ4lXcV25Y7pqawPtaEB7/fljvIkb2 sW1R81SvEKS8j7+1jZyPy44UvfDRFgE2uqH8c3I+Ns08WDrnLQqBkR/PZ5B9 njDpfcebLgafVfvE6WR/fcQT9bS6xUEmXKhOiuzrgY5D5mFikvBSb7n1JTKf f53avcFTCpYVPpfpI/MJ9TqhfeelIXeziv5S6no1fsYMzZOBbdwJhA+ZD7lV /J73RxZmp17siaLu11mX97bEycHsZz6hu2S+Ibxzz2FjeRAu2P47n+pzyQFn 0Tp5MFFpjSij7sf7E/gr9ivAAYHHa2rJrCDve81aUBFO5LtcaqXmhaS+V89D RVi3uGAxNR+//6zacXKNEnxGc+3UfrUqT2JlZasSaO3KyKH2q+kRh3+YhipD eMQef2o+zjodNQuUUoGcxysuUPOxcN/pkaIXKmAUI8RB9bfE06eV11YVYrr7 JKn+Ojo0x4v2q8IpM+dJKmcah8itOq0GwdukrlL9fT/PeKW4hjrUeNgupvoY LrbCeOajOjzkbdxGZSEVyyUzWzQgePbY7f/u98a0x3lsmrDVKq6Cyo8TmBdS kjRhJVc4678+f7R/emS5Fvz5enkh1c88WkSCQKUWlLbLyVD59Pexqa3+2rAh 7YMGlXXPLHzWf+ED8is2kF1S/xrVd4zsLUvoQbZj2m7oRh26dspLOLeMFzpM alJfNnPCwMJggcgbfCAX++bst3IuSKtVqt9Zxw+ifIXnb0VzQ/jvZy5LZATh bbHA8IU5bli8aN/hgQ1C8PzJR5UH5HzcqmG/VKJYBFbq3Rw1IPu01DCoaAe7 GExd/nNEhuyT0o39iw5bicNaPw/PKjK/70+dYp6QgONL4pe7kf2ZXPNa9V2+ JJjGvPJ6S2bri9stmaNSsEeJ48gS8v2IyXupNsvLQLit3QNL6vPO3z+Q4CkL tgbrJw+SWf8+T9VdKznYfCMiKZ7MtfsdNjR0y4FsR4j/MzJf3hmpNhYtD46t cYPvyCznVPFNXVkB5lzOF1RQfV1zLcmkSAESy0XWN5K5RfNmk5W3Isi/lFpE zUfO3HL6rjFF4PbISqH2j/yflsRvuqIE8lHBE9T+UavmmgpoK8P+T36q1HyM 6bz8nbNMGXy+3oul5uP8oaq5j34q0LTU0IWaj1nJKCplTgWuOWokUv2y/poT Acmq0L3+wlWqT4N/QqabDNVguvyWNdWnRs3HMe61arDls241lVsiv9JfharD vJRvq/7b/31fYLZcWANeS6RGUrlB7bXy2ecawM988prKiw+9CGuw14RV7906 qHzCr2rVmi5NCGTfRKP6UtE4z//AKS2Qks8UpvJK+xCh2zLawN/UrURlG25p qTdMbfjDEF9G5az6BaovPwtA8llhH+NebpDLOhM1yykEzQdCxMzJPjhJukXt ChCEZd9LedWW8ID2rWVPenq1YUbTazn19yEOD2vYaq+gI01aDotp0WjE9Aiz VKYKvdvyaq1423t0eG/Jq90mHYj5VXATc6YKPVl6/cnM23500bM5/83VZuRf u1dSK5aF5nzq2a7EdaHyqk3PKtO5wbG2yOTFLjYQc/IxyuVeCBKHBE5sH2GH G0WR92J8FgNvWK5UtwEnbHUM+IE6l8DqfNeO3o1ccLe+6DuhwA+/Wp4olapw wwDLaPfaXQJQOLtDUKmEG3LC7t1wfCAI1p/U32WIkOc39JFs+nch+HTHp96W nK8L2K5E7pIQgfUec5dukfM1dpxvVZCNKIyXztBvktfDiP1UUutVMcjp5SwM JvtfKVN73a1aHIJijzCFyL4Xutr3irFLQsBOrogoMjsppEuttZKC2NvmHj/J fO7hWYG3R6SBeFx9R4P8/Fo1pqYN7snA3RlR281U342t34v1yAKH62Ov01R/ 6sSHU8/LAbJcveMOmTfbFFX6LZOHutLBojwynx//yfGyXB7mXfJ7Ukrd32tc W9J2KkD8zsbLNdT9/aTx4088iuDnFihCzde0My1uibcUQexJ7Qvq+4CL5z7T t61UAv+0K0nUfLVy0UzcXqsE/EfET1Pz9ZxrtduCQGVIrhZdS83XFPmhhZ0C KiAbmrmfmq/s1l9v+j1SgbYb/MPU9XA4YOxx9xpVuKN9ZyHV/wL3849S2lWh Il67n8rRx/Y5Th5VAzEPyWiq/6YbuOw45NTh1LpaTqrP+T4SiXFMdQjJ2e9D 5dd3j5wvddGA/ex9Kf/tF7Ks9htMa4CljHY5lbNkmlZaX9GEQYt3w1TuOp17 yF1NC6xfaC/4b7+QzfEg9aMWdLUsl/5vf1Ad+mFweTGqevXVNdIyD6nkf3PT o/Wg0zcOxJqN/EChf9TLTdN4oUGm8Pv4Z074kctDTzvLB8fv69aUFXHBnjHH yOFifngpmi5zl84NF/WiSid5BOFCic28gmluuLLi4LHlSAgSxIdrYsjrZ9UL 6TmFLBFYyPHGVpXsT8eyH+U/BkXB/MWIOT/ZH5lMerv1CnE4oee27xOZjVjN PgN7JMA5DwQcyb5YZl8t9bgvCdbD807kU983jfofy2qVAsc94fYLyfejdHux su4SGejcFn1uHZkTH+WqOVvKwqEe6b0HyNwZv85IF+Tg2OILFdfIPJFYW3Wj SQ70VXV+P6Xuf8mtMZ10efghEt1eRJ3fcPPwD5IK4Ku5k42apx33nXfz5ipA hYZ9NvU8HhV9aOyjsyIYt269Qz2POygfPybepwhoV8IGap5+2sv9zCRKCTac 259LzdNbB+5FVSgqQ/mswR/qeeZA7sCmL2+VwVbBMIiap7dfW5UQ3iqw/sU1 RPVn9FDUCrNxFTBufHOGmqfTLbYOEldV4c2C1EiqP55cSrw7dNTgq84EUP15 tfduocgXNdjsTP9M5c3VN+LTAtXBKtpsJdUHlszQrdKFGqC09n0YlU+l9992 eaABV6tv5lI5cHDG3NVcE9qVzNuoHDEw3NXXoAnvxqpn/9uPJu3RdzqiBTaP TwlR/SkQbL2ekisAHFl9Sxd3cENa/YXzpqOC0MJe0iJGnm+fjTp/HN0F4duL jI3fFvJAxtLrsZ++CMLNvPAVd8TJeVlU3668XBB0W2Rd57PzQFJUWESeuBAU jBpu8Cb/3rI9XIgeLgi3Rb5elhTgARD+6itWG44uRpldurIsFIVcqNXwOlqJ wlxqmuPWvkcptTlLZQbbka6k2UfO51Wog1PDetmhfuQhVHzDcUUzgttdbYl7 WIixlPWp2akLKXAdi/pyjRvWark3bfBkg4xb2nWC4wvAM01SatNPduCl/zrl bLsYSuzNcn9pcYIdjd3Cu2IJvBjmMztsywXcvXWP2MT4QW3z8I4kOW4YXaKs ZOQtAG3XNLesf8cNoXEPUkZvCsK7rwH3c4R5gPl+Gp0sEwKftIkaIOfrhMVU fz+fCJjecXuaQM7XgaB3hZprRKFkZVJ7PHl9DP6gc5WeJfcb1pNs+8jr4fyt Q3ZDpeIwa736Ph/Z/14Bk9cdUxLgkbFDOJLMhtWPDN4gKXBbUTvcQV0fe7bw 7w6Uhrd7+6rVqP2jgrSY8A0ZOCOb8tmDzGc1T2umNctCl1+uUyS1XxxoXB52 Rg4KskzP3yYzsWOYa4umPATH0FSo+fppsUITW5k8jFoQQM1XwwW5Fhd9FWDr 2kxDar7KPL2Xs4BDESz8NX5Q37d+epPtMnxDEUaXfj5DzdfdjR8XuyxXgrdZ VSHUfI24q/cpo1IJBreM+lPz9Vghm8TAbmVIz43ToebrwBmNQFleFXhz+/VW ar4q5RwYz7unAu3vfnVR14fDBONK9SpVCD20hY26HkabfVe0NalCjkfkTyof lvbf8z1EDbqFoiOp64E2tdftt4Q62O67wkb1uZb9gmV7vjqUvdDzonLMdoHS LEcN4PogmUxlZsDAxuAxDRi3Hv1C5XnHsyoCOd4hxg7DfblTr5CNytuvXc+7 kdX49LmNKT9Q36tLT7hieEEn40/A3DtO+BJTZaBP5wNNjZ53K95wwRe23e7Z +fzg0W2ccu4oN8TaH4jsnxOAzvSYdfqT3OBkffhE1QoheJp35GoE2X/1qYid 99NF4EdWia8s2Qf05LzL1U5R2Fq8OWEB2QcpY257fU1xWMZ87VdM5pGDJ4Ui fSWgU3zeITvy/AcGnkxWTZaE8FvnTr0i8/i9wDjNWino5xzR4yHfz0PfTsU6 DhngjEyaMKPuJ3ca1+kRsjDS+1shiDr/Me2/QkzI53FLgV/U95ecGTdEjv+Q gyXDHYial3qvlhQ3HpUHWbcbHtS8bEyku4uIKkBXQVwa9f1lXd3LbxPPFWDv SMUual425LbTFmxQhPOBjgHUvAzx2Bi6/yc5PwPPaFDz8h6DnVh6SgnYlf8k UvOy4W1GrqSsMpy0c+ii5uU2RWnRrNfKILaE6UPNyxGFCK0j7iqwri1Jj+qD cKfW+WvDKmCQ2HWCmpcVu0QNuC6qAnPJpRNUH66cn45/oKEGTWf4V1F9uMt7 u360RA1E7yR8pLLUcbY71/eoQ4BqkP5/3/8U+W4Q49KA9IcVJ6m8ye90K5Gm AVF9Aq+ofPvRbfW4NZqgeNSwlcrvdMqcrj4VgOz9Lvo1LdywYyjmYkevIJzL SjFukeCBHfsksi0cBOFD1elt8xaQ58csOc6/WBD4Dm/04iHn4bHm98kSaoLQ q+WTVTmPB7ySI0578gnBzK1HBY5kH+zm9n4JPiwIee9prhl8ZN/971zPzBKE RwoJPRdFyX7/9yMEQw1hK1aRv+++cq2p1zZB8N8bMxG1mAf6xOOvqNUKQhSP haIyuZ6qFLEja2qD0D2f/CVrrXajV8u5fe6rVyJGHgdb0FgxWnbxac9ESTsa dnhfWHmhCtFY+xM+buhHmcGi0rs5m5EG1533Di4s5J5cLq2v34WsU3lHbc5z w6mrKkrXndngiGWsxtu+BfCsuzyxpJUdLL1SRlaaLgahdSaWP1U5YW3Nl5mB kiXgs+ja11xLLjDev0OkS4AfFo9dMTkuzQ3jyRJheu4CcLm59617ITfUyz26 uS5JEKqNxS/pkfO01l+hfPcHIVjIUv5iTM7TgF4thWWLRIBX/bdhLDlPpXRl TnOvIver0nO8seT1M5Cy9g0jQgy0xH3k/MnrpcfXIt3kgzisvHEsnpe8PmYH l939NCoByY+1PE6R+WHGk6IpYymIMV6a305mZ5vPMQV7pOHx2oh+il+VyzxV YY+XASnFJYupedqmqNTUUycL2rptXyh+xTnF2DgcIQesnydkqHmacYBboVFN HjLcQr9T/Gq3OLJ+9FEe2Ipteah5+lxx1+/5Pgpw1/7DQmqelrz3fPNwviJk eTnmUfO0ofbWpuTrimBVL7efmqeunJZO5TpKUB28cRs1T2+V5fhu/KYEHS1m PtQ8PTghMe3tpwz6pqBMzVORfIvbrxeqQJVFtic1T1/0F8tvS1MB63NfW6nr 57XJXQ5bY1Uo0DOao66fSwp206caVCFl8eMO6voZ2Nt7aF2wGgRprD713/Oa rbx3iJg6eET2zftvv7nJPPVsrjp8uC6wmcqhxV67VRw0YCpb9waV0xzsXJ8F FCHufTwf2xxeoab6V9HMC93ok3dUWnLwD6QcbyrVG8kLFR935RxncoLVHyOB Y0f54MFx5SWduVxAOzf2LiGbH+aPlYpOHuaG+Ea/tp/TApCX0bPk5zg3vKw6 clJZVwgkf4zuOkH2PzXpVVLPHRHo37TWT5I8//57uiQCW0TBadk7Ey7y/EvM lbKrq4iD32mv1kIy26+0DyjfLAG1vHH3bMnzHbH+4OnFCZLwurKILYfMfvQg Rb9KKQgc3a/ETX0ephvuLJ0nA6Xjm7Wo+Rl1c5+TghF5/q2Lj+2nzu/55cXi RnIw6301hJqfvK9OrOz/LgcOzrGtFP9JK1ZpdjsiD2LuGqLU/Dx2N/n9GyEF WL+yKZian86j2yP9nylA1Oh6M2p+nv6WyPnQThEOL7mxkZqfUSHEEelORUi8 0ihCzc/Y7vCI+3QlKJVUiqbm51T3ckemlDJsKbKqp+bnZlf9CcU8Zdj+lOVC zU+JTbe8RFxVwP5qrDZ1/u9JnswhBlXAI/ZAKHX+iYw/6cfPqcKlmrlQ6vxr f+30tFFTA5VX143+m5fect1b36vBrbnUD1T+XZ6dLrxLHVQbOPWo8y0jLPWg gF0D2JfXnKDyhzdvn114KABCP7mC9Zu5oST0yqUVXYJAuL28lUfOI7+ZJYKm NoIQf1tlOx8PD3z7nBL/hikI6w48ufhcjAdO7n09LaQoCLKrrj17TuMBhurp M08WCsG+Bs4AW/J8b7iwVXPfAUFgk1u9YYB8Pt80kZY0L0MQrh4+lytPzkez DefPDU8KwpqhtY2a5O9vLja66epN/r+rjF7mIh5Yn5Zw9UilIOg4lWj/JOcx x45LF64OCkL23rf358j1LclNuib5SRB2LJU0cyP/P2zV2bP284WgtnjyDSJf L/rStcs1DeS8P1e9eDP5+399g/9+hhjYN/gyOHHC/P17BvYN3l8oeFpl0f7X NxifWOHvxxj66xskJ3B8mE5n/fUNTvhm+7pYs/76BnJP8kVNO4b++gbZ8kyL oLe9f32DFclPHhZWtf/1DcL61g3VoQaEfQOZjGKBjNpvCPsGhUVWOn72RQj7 BjV5ZXe+Cach7BtwXJoUss9+zsC+wZ9617zrh0sY2DfITi65P8+tmoF9Az/5 ns5hvRYG9g0alvs8XrBqI8K+QQz7jxf5FywR9g0eOzJlvioDwr5BedLBTP5w fYR9A/r4xThpMw2EfQO5dLmTJzbKI+wbMCV75jgFRRD2DZYpPjngPL0IYd8g dXdDynltNoR9g5bTUxFvwicJ7BssW5+yx05xiMC+AS3/zUeOyA4C+wagtWqg yq6OwL4BU3Udv6vPNwL7BvRDUt7iGu8J7BuAIPcdSdk3BPYN6Kvu+hvZPyew b0B3er6GVpFOYN+A1nVNiLYplcC+AX1fq/OFwlgC+wb0mC8n6O7nCOwb0KNy 1q0xCCewb0BbvUJmyPMQgX0DGkPYM7c+gMC+AZ075Xbpva0E9g1oq4YWEXOu BPYNaP/7wb4Bztg3wBn7Bjhj3wBn7BvgjH0DnLFvoNgd91VMqoOBfYP3Z4T8 y6b/+QZOW2mt++i//voGHcyVPy8/GPnrG1jU5es//8FCBtvzV8s9n0Y8glLf 9puOoMmh+KdHb82hPcql++S8BhD2CU4IFQtZXCtnYJ/g3eEHXQsv1DGwT3Ds Qcf84HQXhH2CqO+8Wp/z7RD2CbppH04d6DFD2CcY8tbytH5thLBPkBrwcR1t 1zKEfYLuVcW/8pyUEfYJypccFnBJl0TYJ4CYdREmbfwI+wQwkPWB4yoXwj6B T23jDp8HswT2CYYCfjYeamcR2CegBc3yKr7uIbBPQAvd3Vi9t4XAPkGL5s0v x7ZUE9gnYK6wfcdilhLYJ6C9CPF7PPGWwD4B81ONYfGLHAL7BEyzIk3F8QwC +wTM+DN3s1TSCOwT0Fqln7WyXyewT0D3CnI+WRtDYJ+A/sAneIPzaQL7BPTN FlkLtY4T2CegH6mU1pwNIrBPQH/+SfD9TT8C+wS0SvX53/y8CewT4P5gnwBn 7APgjH2Amqb1hi/LfjGwD+CQtdroeO+9vz6A6rxUz02Pf/71AcQdnNtjKof/ +gD0tV+2ezWw0LZS+rGVEVPors7hl+GVI6h7bUeOgdssuvVBy6uGdwhh3r9A inksPa+MgXl/459Hn51bahiY96cFV3fxPm9lYN7PbJkINdHdgDDvl3MdPnla yhxh3p+wfOlB36pVCPP+2mmeYjfX5Qjzfu6CFxOaj1QR5v20M3vyVcZkEOb9 Dm0OdoebBBHm/eXntkkOKyxAmPe3vOjuuqs8D2HeT2trqFUVGicw74fnLTp8 FX0E5v1MTQXLHZ5tBOb9Pok/Jnfl1BCY9zNTYPYW71cC8366W6nT49EiAvN+ 2m6r96/W5RGY99MXbQ1WsnpGYN7PHBHxH/e6R2DeT+d9vu+LWjKBeT+dx+IZ W+YVAvN+mvvD5jevogjM++kTbDvHbOkE5v20A4cLA/gOEpj304TYdA5f3UNg 3k9fk2+59doWAvN+mobnwkuXNxGY9+M+YV6PM+b1Et23R5kBPxgVe5XsJIVb kcO6hIgF3fV/+X2kj7X3+eIBNFKWIlUhOoKuygrEFa9loeX0RROv+SaQNoo6 OnWPhbjnxma5234jtejS2qakYYT5/aoalT/btjYyML/3rExCM07OaOdAnatm tjDEtIvwBR+2QZjnM+Ucvu4bWIMwz3cYTbJdO2WAMM+nV3SZ/vDQRpjn+zUW 7okyUkSY57coez7d/FIMYZ6/7PGLX51ifAjzfAcvGW3CjANhnu8T/GK//O7f BOb5TPbeGMveYQLzfB9rDf3e6S4C83zawjXzb+1oJDDPZ+qc2+BrXklgns/s OVPu87mEwDyf9mbzp89aTALzfGajU8OLbS8JzPNpKYducuc/IjDPZ9awjbCU bxOY5zNPXPp5Z3U8gXk+bedrRxPvi8Rfnq+Z8KdONYLAPJ++3npei0wogXk+ zdp2e7HUfgLzfHpyS6DI3HYC83yamJjBbnZPAvN83A/M33HG/L1keFBxZ94g A/P31ODEGs7wTAbm713eG+nK5zv/8nfWAcvu/RuG//L3BgXdQ2UfWejoiXbJ or5JtLrbgTtcgIVaAhasEno5g66e2z8jf3QIYb7uoxc27B77iYH5uq1mZ4RZ wncG5us+b9Qqk4ZaGJivJ1jnzbfTcUSYrwfyZgmN2logzNdpXEZH95wiEObr MWeM9cO36yHM1zPdZpujBtQQ5usJm28+cPeRQ5iv04r3mHgMCyHM1328b1Qa Ry5EmK+X8479cFGYjzBf95n/hd3WbILAfJ05SdvVfHKAwHy9pfvoD7Zd7QTm 6z7i7syI6VoC8/WW1KBtOnvLCczX6Z8z34xwFROYr4PncFR7ej6B+Tp9P0dn 9tosAvN1GudJvYiY+wTm67RGwxR6UwqB+Tot8qJgxrOrBObr9Iu0iF20aALz dab87yiNVWEE5us0b6fsmKUhBObrNC2O361aewnM1+lNWRre8b4E5uu0wUaP 9BwXAvN13CfMx3HGfNxyl0THhFcLI4vj/Tr6jWZ02shOdK/E97+8PFu3Ve+l fj/yPV7gvDJ8GNl5Z+vYzI6g8PuDQsEB48g88u6R8WIWks1yTYm1/o1sdlpz XxoeRpiXqwz3eBaM1DMwL2eGShpxHNqE1GTF6s5cEIbULUPc/rzrEebn3cwE PftOU4T5uY/SBb5CB0OE+Xnqwsy71xfoIMzPh3JNraVACWF+PvRax8NISQJh fr5M2r7l7AQfwvx8qEPQL2IrJ8L8PLXoeKvE7B8C83OfhaffW7aMEJifg0/p q4sbugnMz31q/hSVCzUTmJ+niovE/7atIjA/hzbTjRGrPhGYn4PDdm2rRW8J zM/pK7fuEI/MJjA/p7XcXLJt/RMC83N4+vu2gOwdAvNz2ti7U3rxCQTm53Tz 6O+Gs5cIzM9pXV7PrQ0iCczP6Y1+9b+uHyUwP6flPr7VyxlEYH5OZ8gK5azb SWB+TjtpM1P+cDOB+TnuB+bdOHMQAdJ+Bj9RT7z8463pPQiaZj7McxlCOxZo 3FI0H0FK4y8d2tTHkFbQuJV/KwutF5NpfCQ5jcafntw8emEEcejcb+lkJ5/n bGLOJf5xRVIrOGqV7pD3axAYTT6bRKRM3CyIHyTXI3ql83GSM/Hs3KGCZb9/ oSsGe3Ofiw+hU1In2/2fjCCmLm3HyeMs1Oaq/oPj+QSqXX72dziZMV/H66V3 /H525ud3hDPm69yJ3GHfOgsYmK9nxe/2owd0/OXrL+1l5vYtGP7L1zdX6D41 yGchztrYX9y3JlFafaikpw45V09Jz87fOoM8oPijXOYQwvw8oa4w3zDyIwPz c4Wni5xiJqoZmJ/LyNsuuHK5hYH5Ocw9XPzxuSPC/PywhVLT6l8WCPNz+noL A4ttCGF+Lre4y+bLsB7C/NzhR8urG3HqCPNz+osPFitq5RDm5z5J0/us6cII 83O+DqLBa/UihPl56uc7OwXvzUeYn9Mv2LT0t0wQmJ/TH37q5PIZJDA/9xHJ 41sw1k5gfk7rX116+PYPAvPzVE9xi8Wd5QTm56kRF+qk44uJtP/xc6bmtYqL W14TmJ8zBUe1FpZkEZifMz9VpLcuTScwP6cNSlnbv71JYH4OWmK9ToaxBObn NPMthtMPownMz2nJb869zAkjMD+n8/M2JBeFEJif07pUzgfMCyAwP6evbDu9 Xnorgfk57bLV8GdXVwLzc9wfu6HM6tot//qFeXiozeiTGeM2Ru71CIm7zk2o Jgw9zRWu/MvHudSX8HJ696HrznYju1YOo/I5maE31SNIw6T1jr30OMqIhXrL byz0cOGCgLrZaSQkWjB3W2IEYT5u8atn7CJRz8B8XGrdopbCxS7obE62hMER YTC0vFQr1rYeYV5uaBRY8Xi7GcK8PFNU0nWYzQhhXg5q1w/K/9JBmJcnLEwb TS5RQpiXl5/57H+xXQJhXj50/5Lxpj38CPPyGOOkSMcpToR5eeo0j25B+QyB eXmqWZjnMh8WgXk55AY3m7P3EJiX04LerxQcayYwL6fLft4UXF1FYF5O961t nv39icC8vKVR8PNB+lsC83LanJ7dhEQOgXk5bOM2+CGTQWBeDpkhvRK37hCY l9ND7Y8etEkkMC+nCSGBg7tjCMzLae+7ZphFkQTm5bRwWu59n2ME5uX0NdI5 cmFBBObltFmrYyZDOwnMy2mpi1a0nvYiMC/H/RBQqJ3Qzf7XFweh9Txfk7tQ xHTy++aMbnQ4+8I2/UVDKPiB9aFi3hFUdvZ+85vaUbQxw7H4bAsL1e7/+nj4 6xTi631ZcurZCMK8/NyWd+pnRdoYc9y+rn0J5Ps7Hu4uv+kGUYMipXW7yPUQ ckEhfJuIP1s2PYz3/YXaT/EOlNMHUd4oL/2mL9mr/UePVPiyUHSfhF/rlgl0 b9cxu7CrLDSa9yvKq+Xfer98djfR6x9AV8fXSB6JHUZSz6Jngg1Gkc7BZwsr qlgI83mDju0lohtaGVbl9vVbK8nj671reinjQmjcXZrL/nkYFWhHXbRUZKE6 wdnIBMY4Ymd5P6/MYaFjvu/ech4dQyJPxD5KNbMQ5vmj3oLKehauaPKYu0vA JPl6Jz6GORk5E7ZrB82NJ0fQQHbG6QZyLhsXr7TWYJ9EueUqCqLbWWjHmYPf gsf+rd/p7QntJAHevxnz/47ULuKIWBED83+dE38sbRra//J/PVW/+L2dQ3/5 /8PNpS0Xs1ioLGJvpebRSTSqsO27yGoWcudV9Z42mkELU5+a230aQpjve8hf mbo+W8LAfJ+wGTHlSK9mYL7/IW1y9TXfFgbm+/6EhdW+CUeE+X5mcqD/qIkl wnzf0ixyjVwNQpjvJ3DvWrHPSB9hvl/Odu7S+j51hPm+q15rwm5heYT5fozV BlPtj8II8/2hlM9Dq5MWIcz3+UaJ45t65iPM92m7DB3tdCcJzPfpEUd3hlUM Epjvg8nmkDOrOgjM9+WEG7XFJn8QmO/TZzoCzRS+EZjvy+3bskCupZjAfJ++ ebFqDuM1gfk+pBYuVV74nMB8n95YrPbuZDqB+T6tL7SwWiKVwHwfLh3XmDkW S2C+T/P8OCM2/xyB+T79+N2guPEwAvN9mtztP3lLDhGY79NWGc5W7w0gMN+n P74jnrBlK4H5Po0pz7X5kSuB+T7uz/LjF82uev7rF+b7U2yv/fs12hmrOtsj VmY1Ij0Ptpdz57795f0ty1Mv1A79Qtlr4oBNYBh9iXF/IsUcQbPs7nvejI6h qDVmYQ3VLBT4qs15pnYadR/NNHuxdARh3u+eafr+cGcdA/N+NbfJzUnuLiiP jdNk8T5hsLzlYaxjZ4cw/w8M/Rwtf98MYf4Ppqu1Q7yNEOb/ryLdQluXLkOY /4t1NhxbyauMMP9P3eWlbrpOEmH+Tz+xZte2e/wI8//AYAXdjHVcCPN/OpJ9 ZrtqlsD8v3zttYYdt1gE5v9y17PmLnj3EJj/w4sH8z7qtRCY/7f0nC9kl6wm MP+nyaHLHzaXEpj/t5ycrcvIf0tg/g/6C3y8duYQmP9DXXQt42wGgfk/02NX ekj7HQLzfzoRphRxP5HA/B9WVx6SuxVDYP5Pm8kqVlp0msD8n35pX3hK8TEC 83+6yPWH9owgAvN/Wuwpt80WfgTm/7SeI5HSE14E5v+4H+MZL7f3Zf7ry8GT q06Gb+hCYxp+kq+XdiO1dY+2J30eRE1lYh/vkc9LqRvl7mtmjqJ08adpTU0s lCKTHiv0cAq16M+/kF04grAfUGjlJJXU0coYCooRK79Kvj+Xl6b5BTeI0faJ suOt5HqOCrQfs99EyH9eJ2cj8guxF9kcW6c0iL63bPpiuHoEOTEesxk5sZBX 9lUde6MJZHpqNO1SMnm/sfg4Llb/b72c93prtt8eQDOM4yrBB4bRUChbcdvi UVSxt6+Z8ZXs6/98hMU854YfyrUydgQXRmd+IY9fNbwmb5cLYX45hCvl/jAy TTzVZcxP3i8aQ9Zzxo+jjdKZN1YzWMhBa/XZYMcxJL/88MYH5P0O+wsdq7cF yCW4ovCN2ktsRsnX6+3in97uTPgtW3mtsmIECZyo64w7y0K8lzL5E+on0Je9 AyqJ+1nIWmgj0hn6t/4E3rGNBa/Jz7Ey7s9oIQtt2u/X0LpuHK0+kbjydykL TTKWijnMG0OXL57L9SWfV36Xu8pK/BaE2VZ2fjBpY+QlCQR09JLH94xknKpy JlK4P+hyRo2gF/dEhq4GspDlT34DLu9R5PQpu53jB/l8YB1ZoNE9jmJMyn7m P2Wh9ASb6YQ7Y+irw8oXHxtYaJnr/clUaRbat1vX3/EmC4VPx2/Nm/633v8v /6PRsF/Rsahxi/vAOwb2K9I8GmVdr7T/9Su4v5/dd65i6K9fYdb77XzbExbS qXezWO03iUI2pES9N2Oh65WPloQoz6BZ6arz9jVDCPsTATbHvM/klzCwP7Fw u8/NIHo1A/sTMUWF+w1tWhjYn9Dfmi+dIr4RYX9i8ubom5fbLBH2J1omPshe 4waE/YlMpx/sqZv1EfYnMjWWBFwW1UDYn3BIDIh21ZdH2J9gXglY8LtfGGF/ AsY/7bz9aRHC/gR0HhhxXMiGsD/BpMU1tbtNEtifoJt7r9bmHCKwPyFXftbq nk8Hgf0JWlTVY0fFOgL7E7QlgQW6a74R2J+gb/a/OcP+nsD+BNP57p01g68J 7E/APf1PS7SfE9ifoHPq+RanpxPYn2BuqO2xMUwlsD9B22i1IP1mLIH9Cdr4 liGFpecI7E8wH1qzOYqEE9ifoGvflFtucIjA/gSt39k/Pi2AwP4Efan3LqGI rQT2J2jbdmxRrHYlsD+B+5Nmdjx0yO1fv7BP0Wdz09bzTjvjRLRgHt2nEUlF m/nYFZf/9SvYuZ88//XqF3q3Mu+n/dwQivO1jB99MYK6d4nYB7eMoXeg/KS5 hoUqeb9+5CX3MBIv3e8nG44g7FcoVE9Za+fWMbBfse1edsjOMBdU8UC7dHKX MHCHWnWVRdgh7FuItYc8XVpihrBvkRlWviD7ghHCvoVhq+/Ad5tlCPsWk+dM 33voKiPsW/Dx9UJqiCTCvoVct26GwTt+hH2LwAItC2N/LoR9C1pixIW7QbME 9i0clj/r2FjIIrBvIWeZFppxoYfAvkVqcPS1lw4tBPYt6PoTcYpENYF9C6ZT xa9ll0oJ7FvQ7N4Nx/54S2DfAuZJxw9fyCGwbwGTycFvGRkE9i0giO/HJHsa gX0L2t3eEu7viQT2LZiDYpy5r2MI7FvQ3kbN3l92msC+BX3Jn9N3J48R2Leg 39Pdc78piMC+BW39llN+B/wI7FvQ3Jv9S3S8Cexb4H74HUy7YZXxry/cK/SN PTW7UNQN8ehv/T/RWl3Wc/30QSRwpPh7Xtswin7VEN2WNIpqP7/3yG1koXkH Y7lV4qdQXMFMknrpCMK+Ri17x/eS0lZGz/37k2suk/erSY2iONYNYr7BMyWl ZnI9W1/TlAM3ES/CV9crDfWiuBMpxUvHBlDH99CDkRojyOaV4ePrtuS8lXQQ 5FSeQK8fSdq53SbnPe8r7ZDaf+tVuLJcZe7YAMpumnl/xXcY1TUz0hOnWKjq h0pYWxkLYT9k/ldTRjx3KyP4/dG2TWXk8U17jJ1jXAinM9czesnnnOijSv7N XCyUYKqn+yZ8HPkFWHllkvcP48tT/prEGOoxGl2mRN4vsE/i+tuP/Q/TFcXc 7doxPEy+XvLbsAC6MxGi4rFKjtznGa5LO3X3FHm/YfmP2X2YQKdURqxvHWKh 13VrQs73/1t/+IFnKw+ms9C6E8z65eT9Eb4rMRN0x9HB0t2SuV9YqE3p12/O /lHEVjXkykceH/spTeX3jO7qtDFK+kuLo7vJ4zfFy0mMOBOPZ3trHQ+OoFar RqEvu1houe0X8QLrUbQmdfQKF3n9DmWsud1aOY7cCxQ2NT5noSszXE32l8YQ IRnWtJDcfxB2pTf7F7CQsGmUne518vmQefq66OS/9QqlJp/h5BlHPMxpiYeV LJQ9sLUo+N0oyhqpv/eFfJ7DPkzgMq3vkTOtDE4Ri1ZNhVHUcy98cFsF+bz2 gX73zY4xJHg2j+8P+fvB84Jz0sbJ9Vsvf+hg60zwegTpJwqPoaZa2pow8v16 hTs7OhwYRcmnJrw+17FQgd4lkbacMeSW0ZmxqZ6FZh/NM3SaUf+7Pj79B1qb Z/6t96hQhkXrtDoY3Y4Npfyi//v7//d58/9+X/l/9wf/+xTAUxK9e7u0goFf n3GS+vt1hOfR+34F52/97/vHIQb+e3w8/Pr/v+P/7+f/AbJ6rwU= "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[{ PolygonBox[{{765, 968, 520, 1093, 681, 608, 570, 1006, 899, 803, 719, 646, 521, 969, 862, 766, 682}}], PolygonBox[{{960, 1094, 861, 533, 534, 975, 868, 772, 688, 615, 577, 535, 976, 869, 773, 689, 616, 578, 1012, 905, 809, 725, 652, 536, 977, 870, 774, 690, 1054, 947, 851, 617, 1045, 938, 1077, 842, 1067}}]}]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJwV0VkrpmEAh/EHc2TfDtAoZC9bJhpmcGQ5MKJQJLyWw5kvgfcdysewZIti isyU7cDMyPY97AdI/BxcXf/rvu+ekyc39KPre3QQBFGYxYsYiAmCdE5DKlKQ jCQ0YRxriPFuBCdI1DO4RLGO4A6N+gFt9uL7dz8EwZheRbQO4T8SdD/voNCb Z91hryFLT+sDu8Lu4S3k2hfOf9sldhFXc5hv0eCuXh/aldzLtfyL8/je/Wf+ o0u5lT/xAqfxqPs63tfl3MU1vMHZvOJ+1y62o3gY/xDv/IirnPfxNgrsJ+d7 dpn9jVeRaf903m1vIkef60J7Cjf4qu/QYs8j1ZsR3Wmv46Nefv+J9hD+Ik4/ ot1eQYY3EX2GAj2Ja3zRt2i255DiXUgv4RWDzo4Ra4dxinw9gSvU62G8AQ7E QfI= "]], PolygonBox[CompressedData[" 1:eJwV1EVYlFEUgOFR7O5ABexABbsTG+zCWLmxBUHsQN2pWNhiom50J3Z3rgyw xW5dKba+s3jn3u/M2cw8/0zNcQlDpuUPBAL5GOjlm+hdIBDow6iQQKCt85iz jvO79865N3aPcx6gsvtS82HuWYTrmzrCPZUPNNf7+EKMzqSUvbF6CTcIN1vE e5rpvXymu95NSftj9GKuE2a2kHdE6z18opveRQn7o3Uq16hhtoC3ROlMPtJV 76R48PPqRVylutl83tBU7+YDXfQOitmP1wu5QjWzebymid7Fezrr7RS1P1Iv 4DKhZnN5Ffw+9U7e0Ulvo4j9ETqPWL2fSmbz9SWq6jm8JFLv4C0ddQaF7Q7X 87hIFbPZvKCR3s4bOuitFLI/TM/lApXNZvGchnobr2mvt1DQ/lA9h/NUMpvJ MxroDF7RTm+mgP0henbwGaKiWQq51NdbeUlbvYkQ+4P1LM5SwWwGT6mnt/CC Nnoj+e0P0jM5Q3mzZJ5QV2/mOa31BvLZH6hTOE05syQeB591vYlntNLrCdgf oGdwirJm03lEbb2RXFrqdfyjv07mJGV0Ig+ppTfwlBY6nb/E6SROUFon8ICa ej1PaK7X8odYPZ3jlNLTuE+EXsdjmuk1/KafTuQYJfVU7gV/szqdR0Tr1fyi r07gKCX0FHII02t5SJRexU/66OCfyRGK68lkU0Ov4QFN9Up+0FtP5TDF9CTu Ul2v5j5NdBrf6aWncIiieiJ3qKZXcY/GegV59NSTyaKInsBtQvVKcojUy/lG Dz2JgxTW47lFVZ1GNo30Mr4So+OdR4PPgOfjPx0cpe4= "]]}]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwl1WWUVVUYgOGhW5Du7lLpku4ORVK6u7ulS7obJRUElJbu7u7u7vI5yx/P fPvd59y5s/aZu26Khu2qtg0VEhISMXRISDBX+VGXCPyl65Gdc3ow2bikR+Il Iav1z0Rkla5PDsKwxl49IrFaNyAn5/UQsnNZjyIsf+v6RGaNbkguwvGPvQZE 4W/diNyEJ0Lw9xOJyERhrfsaEpV/dGPyEJV19hoRjbW6CXmJxnp7jfmKdbop +bigh5KDK3o0X7FBNyE663Uz8nNRDyMnV/UYorNRNyUGG3RzCnBJDycX1/RY YrBJN+NrNuoWvLNeRHXC8L29y+YIcnNdfzKXUYtf9QdzCTUI7cGtNMPxhT+o E7yH+zabzYkZ6v8H/Ke5yfKjuTR4jb2awfuafwX/J2ZL199bLyas/skMZa4w w5thzc8spzYF3X/FHEkebuhxxORf3YJYbNatKEQstthrSWz+1a0pzFU9irzc 1OOJzVbdijhs0W0owjU9mnzc0hOIwzbdmrhs1W0pynU9hvzc1hOJy3bdhnhs 0+0oxg09lgLc0ZOIxw4dfNjis123pzg3g2cUPEfu6snEZ6duRwJ26A6U4JYe F5wj9/QUErBLtychO3VHSnJbj6cQ9/VUErJbdyARu3QnSnFHT6AwD/Q0ErFH dyQxu3VnSnNXT6QID/V0ErNXdyIJe3QXynBPT6Ioj/QMkrBPdyYpe3VXynJf T6YYj/VMkrJfdyEZ+3Q3yvFAT6E4T/QsknFAdyU5+3V3yvNQT6UET/VsknNQ dyMFB3QPKvBIT6Mkz/QcUnBIdyclB3VPKvJYT6cUz/VcUnJY9yAVh3QvKvFE z6A0L/Q8UnFE9yQ1h3VvKvNUz6QML/V8UnNU9yINR3QfqvBMz6Isr/QC0nBM 9yYtR3VfqvJcz6Ycr/VC0nJc9yEdx3Q/qvFCz6E8b/RvpOOE7kt6juv+/MBL PZcKvNW/k56Tuh8ZOKEH8COv9Dwq8k4vIgOndH8yclIPpDqv9Xwq8V4vJiOn 9QAycUoP4ife6AVU5oNeQibO6IFk5rT+hYK+uGqYb+0tpAof9VIyc1YPIgtn 9GBqBmeiq/LJehlZgt+ns3LWegi1grPQ1fhsvZysfKPPmUOpHZyh/mL+EVzj W33eHEad4Mx08OX+Z3CN76wvmMOpG1zSK4J9LjKCnwltf6UZ3sxm/gdswQI7 "]]}, Annotation[#, "Charting`Private`Tag$47585#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV0mtPjmEAB/Crk40UoaRhQjnNaVJTFDbHTa0MG0M9OnnDh0AHfA6H6Ghq 06iVbBSV+BoOHV5g4ne9+O3//1/3vefZ/dxPfuJ2za2kEMIQJ1JDeJocQi2l fEsJ4Q5bmLRbWMp7+xqLegd/qaOM787vspUpu5VlfLCv809/RoIs3/fI2Ulm 7cP80O9RwLTdRq77Ou1z/LLTGddrCTy317unV6/mhr3KfqyfYs4+wk+9hUI+ 25vc81K/QLu9zu7SK9mtj8jfzgv0V/pl9uvv5HLnE7KOJLY7fy07nW/Q+/Ri WSP3yFFZKutdXy2f2EXytNwph+QhOe/6Zjlgl8hLcp8ck2Wy3PVZvZUD9ja5 Q76RM67l6/36Rfbqb+V953l6t17FH7vQHtSvkGF/lAmS6bIbWBP/D/YZFuwK 5vS2+Lx8sR+Qyaf4u5NCt93IUVawMr7r+E7is8fP5ar7smUOk3o9qfTYTRxj LVPOGkij127mOPPxncVn56v9MP5PmLYbWUKfvdEzvNDPc9POtjv0g/Ks3CWH 5X8mZFgW "]], LineBox[CompressedData[" 1:eJwV0zVYVgEYhuEjJnYXgmKLqNjd3YWBOrlYCCYGtpsdhGDnopvd3U52F4pi TnbeDPd/zvNe33j+yLGJQxLyBEHQ38/XkCCokS8IjuQNgpF01V88lxHFXb2S StzU4yjIfj2RbnzVy6nPPb2KytzS4ynEAT2J7nzTK4jmvl5NGLf1BEI5qOPp wXe9kgY80Guowh09kcIc0pPpyQ+9ioY81GsJ566eRBEO6wR68VOvphGP9Doi uKfjKcoRnUhvfuk1xPBYr6cq9/VkinFUT6EPv/VaGvNEp1CNBzqB4hzTU+nL H72OJjzVqUTyUCdSguN6Gv34q9fTlGc6jeo80lMoyQk9nf780yk047lOz/0G eKynUoqTegYDCHwfqbbmvNAbqMkTPY3SnNIzGUge92m2FrzUGdTiqZ5OGU7r JAYR4j7d1pIsnUltnukZlOWMnsVg8rrfYGvFK72ROjzXMynHWT2bIeRzn2Fr zWu9ibq80EmU55yew1Dyu8+0tSFbb6YeL/UsKnBezyWWAu432tryRm8hiiw9 m4pc0MkMo6D7TbZ2vNVbqc8rPYdKXNTzKO92r+7LNz2cQrbNuj05ehvRvNZz qcwlPZ8RhLrfYuvAO72dBmTrZMK4rBcwksLut9o68l7voCFv9DyqcEUvJI4i 7rfZOvFB76QRb/V8wrmqFzGKou632zrzUe8ihhy9gAiu6cWMppj7HbYufNK7 acw7vZCqXNdLGENx9zttXfms99CE93oR1biR+591d8B7LEt1Bb3Pez+ivZ/1 /J77rXs/mvu9ecZ5/gctmaVT "]], LineBox[{1084, 605, 1039, 932, 836, 752, 679, 563, 1004, 897, 801, 717, 644, 606, 564, 565, 566, 567, 568, 1005, 898, 802, 718, 645, 607, 1040, 933, 837, 753, 680, 1051, 944, 848, 764, 1063, 956, 860, 1074, 967, 1085, 569}]}, Annotation[#, "Charting`Private`Tag$47585#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{1088, 1092, 1087}], LineBox[{1090, 1091, 1089}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->NCache[{None, {Pi}}, {None, {3.141592653589793}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotRange->{{0., 14.999999693877552`}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}], GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxdnHk0ld3//o95CJnn4ZjnsSJD9343lwYaCEkSkoRKppJDlKSRMlSo0KCB kqk4iopSEcmQTCVkOOap+N338/vs51nr65/WtQ7n3uxrX3vv87pWym5+Wz3Y aTSaOSeNRv078b2qQu1sAkETiLxa/SqOmP5qdoX19TPSr33hle9chcpX3smo vdWFbocLZkwkNiP5tqJuN70BlFuqu70m5gcS99l9n2flKApp2fxp77l+dNl4 zfPNdlMoMC5x+uiCUdSUZFQ2LPwX2S2qlN1zbxKdzQj/xC7DBoPPovsOxP1B UgldZ+JvcECj1Ls9SidocHr7euLzBBe4/tzV5WXPDkfMb+6uiuQFPq8uETVR Tlg1NBPq28UPFXsktacPcUGE1ZY9sksF4b7TO5XfCdxg8Sg57wRzIawe9VjD SuIBn6lhRqWgCHxo23eu04EXpnWFv+vbiYJsSXfTjgFesMp+kH71qhjQ17y5 0ryYD4ZFrV3tX4nDHylTr2eL+OBHnKv9YR5JEBc4Wr7ZgA/WDwWt/2kqBW+2 mky80+GD/r28R/LCpSH89uOPdC0+WKMmxX76lQwExwdx2mrwgegHjfM5Q7Lg libpq6DOB/Ixj21NTeXB1urtU2M1PkjSNRcW26cAEYZn711R5YN3ssuXjF5S BGZzk74mqS3kX100bFCCpTx2RrUqfCDEcStgTyQdklNP300ktWKEkpWjhjJY ekS3epOaT905f+tbZXDSCI/bQGqDZTKPg3apQAxS8zIl9eHvouXWNFVI+brq nTqph0bj7NYnqcKB/pCLsqRea/gmZb2+Gsy07gsWJXXpqOXs5Ec1mLiutlCA 1L56Js21HupQ0h38lIfUywbd6x35NEAm7fVyTlKvVpPeJHhLA4p43/WxkVqL ERv8ykwTBviml9JIreNhzlRv1gRCXap9TpkPPEq9ovIOaYFa0Iuxv6Rmpte7 D0towwEDVwtKj92dnzQs0Ab3dWPP/pB6r3o2X8omHVj6SnUnpYd14k2fsHTg 87OLopQuzJjtGI/RBW6N/e2zpHZapQqWinrQG+b4nNJyB08XGZTpgddR/huU luD3yd20Qx+qWH6nKZ16sHh8fl4ftq2JCqD0GrW+1uGvr5B1icuqpwVFqFNC w7dCUAB+dgqo1/Nxg8vR8djqY0KwxN/dfkyBByr2pQ2UBwrD6jOQIjfPAyai EYbHckVgBTr/KyibF1IOuKDOcVGI8V4hdE+ODyR3H2ME6olD0D1/wylTPuiz sdv5w10CbhlOJL00Il8n+j/ppkmCFaEp46nHByna8H1jixRkli73sNfmA5mK C8UKyjJw4ynrkqomHzyYUqyUc5QFodjP3PdJvyXqHPAbvSwHxHaWxA3Sb82O ATkZH+Uh4KzzylbSX8aqJSon/yiAYHsHzYnUkdfY9oosVoIEtq3Hp8j5uhoT kfrClA7SKa+Vn5Ba8pWrw656OphWsnaEk1q8btn0l0BlYJ/l6XYktXxusYmH qArcevxMC0hdIyhp3vFIBY5seL5Pn9RGvTYC1htV4VhGT4kSqa9d0g6u6lSF 0x+GlkiSOlKE7T39hBqION2nLaSeJ1zQ5y6rDs+/DuXzkdr+3IavVwrUwcAg vIGL1MvPlF58aqcBe9R859lJbbq1tvNXvwaMS+WxUf67N9IhNxajCds58k7M k/NZKVKrPKCuBQvSYvZQ/rv8OHXsc7kW3Fo2eIHyW7Oa96OLntqw1KFthPKT 3r4vNA92HTCKMo6mtI6WEl0jTQc8azkWU7p+31qBeitdqODKmaT8ciZg4aWk Ol1o6U2upnSxw5c/i/30wGKzfDalk56HLCldoA9iixIuUbrZMr4uK1sfwhq9 wyjd9mKz39jXJ8ghYK/8Mfb7KD7yYkBy8AJwvVElFMPkApaDauBokyCoX4+z Nm3hBn+lidvLdYXBefeH03EfeMAm2rzx5m4RqAuTMdWO4oV3GwqEYjJFoUPP dnSImw+0uRIunuoQg+H87BSbpeR6zv2064aYBPxZu+2dtgkfhHloiNlsk4Tj V7pabPTJvBD4JiZzRgo219bz8pJ5xy5eLbm/RhrKjnCeuE76LURIzqNWUBbu LHa/NE36rX62cm7LcjkIYldwbyb9Nsu6xDgYKQ9yoy0lXKR21zwm8z5XAfa3 HrkVSPpNY6fyRvYuRYj/ylcnRGqnDYcW9QnTIWX1Lv6X5Pxddovw3J1NB9eN NjOxpJa5/yglcbMyLLIa5nYjteiBs2Mt/cpwz7795mpSh2dKBeidUgG93VkF xqSu3Zu7z1pDFc7NLcxSIfXrFS2eZ0pUYZeIwGZpUrund5k8s1OD35Ob7wuT ui9i+vCjMTWwF034yk/qzm+ljU/Pq4OVidZzblIzn196cspQA8bG/VI4SE08 H0sMfasBLPfuQ5TfvMxNrXe6asJBW9FGym8hltH+fDQtkHnmlUr57U/+yRfl KVqwlndVGeW3arc0vuWENnSnGEtQWjjG+/i7b9rg1/DgOuWvNxo/xV0DdWD9 1Q9rKO22/qByuaQurBy6xUnp9Lho87WPdEGBodVA+Sd283HFwjV6UJ81+OSf /EtgBE381AMpH3oipaduha8IjdAH+5ZVkZSuvvQ2LVNhITS1HdlqtIsHpHPW ma15JQwg9kM+Xp8XJNMqT23nEAW7zuJt1z/ywoGzXP5Wa8Qg/02qs6IuH3AW ufl7BomDg/bE3VVL+GDfYLODbr4EJOwyvxxiyAc5kk/ieH9LwoGrHx9dIL+/ fE3GXYa+NHT8GQrKI/dLo4BtLp8PyQAfcV3oGblftnWq6HpmyIKI8IUaV9JP To6C7Qk/5MBjRRS7B+mfolf27S2yCtARX/23gPTLnOK8ruVaRQjJF4tHpP7e 0hFCj1aC9QXL5rrI+fj8+hLfBWc6EDfNXDJInaIM1jv/0iF4ZvX9AGo//VO9 QzxNGX4MxvhsJbX6ZK//oJkKuHgukbYktXKg+NyVryqwws/KX5vUF30Hc9Yf VoVVqYGCCqQ+1B50ho9XDd4Uia0WJ3V6pOLeuCw1UN16LliQ1CtSA9zkQB20 uP2zeUn9blnjl6B2dbCpq+Og8qvc/rdv+zENcBr95Efll2HvQ/J4ognVOvHJ 1H7Zl31uIC5XEzhDluhRfpLska+r2aAF469ktCk/ad0t0uvs1wKTlfv3Uv75 1b14W/t5bdDIMKmj/LFuDUTPa+oA4/BeP0qf13bU7X+rAwVmmSqUXnNKefKH my6s33v7N+WHw87JPb1TulBT8aic0n1uBi25iXrw7mPdbUo3dB4ejTbWB6V9 znGUflGf5V73RR8MghqDKS0yKHV5+ustxFvzaS7YMAX1F76e5DBYALf2rFbX SeaCQuvi39xnBGEN98FlJwu5Yc0x5XAGlzBw7HG9lfaUB76XXtF7ZioCRQMd mux+vND5fO+EU5goxLM1yxbP8IKJQ3qS0AsxsLjvGWdtRvqnU6Btuk8cxLN6 RvvI/DIKKc9z1ZcEJ0GRuGoyv77/vWcwv1sKHqxLs9pH5tekZV+F0F1p2Cui q9VK5perTPIivR4ZWPWK84cq6b8jP4LWREjLgXNQpPYs6be4F+k9W5zlYfZc 2Co5Up/Qbhb3i1OAsRThhmjSb1MWuWWhxYqwYolhiSypgxw/z7L9UYIG0ZnR Smr/e3LpYPtVOjj0+hpcIvV1iX0Hgi2UwfP+OSdPyn+VR+ykmpVBNzkgZh21 vx1KEvl8SAVC7NZxLCa1irLbFWsx8gwj5WykRmonucUuvfdV4WDB2/0ypG74 Ve8ZvlwN3kqmxomQur5Y1qyuQw201rr5LyD13ajgphWh6rCJKFtMndfmth9b 6S+vAUfuhfdT+fXK79RIeZ4GHPA2fUjlV6Wza4fQRk2ov36Gh/LfVtu2RKkB TYjZmV5K+S3HIpBudUoLBj9MNFF+e8NmYSajow3eg/s1KR0pvcTib5U2MBQk 7lH+EtdYt/DvHh1I4npt+8/+aUF7UMyhCzH6IQso/SCp7FzqNV0wvWPc8o// qmweh5iQ+6W0cME/+yctKkm0Tg8i6XwplD7VMD6910cfsh98iqL0lZMuEkXV QiBnGbOQneCBwQUBotHXhYHNfN7wuSQvZDSqtexrFoFsN5ZYfAkvRM7m7lio KAZ9i8dVxMj5FBTwCx7cIg6zyhWPZMjzl5aSdPPpcxIwvJj5UoY8f+3VsTGQ fS0JDWfWJ0yR+WWw9HC5J6c0PMwtv8hBnr/Urh8SCF4vA+k+NqK/Sf+8GUif LjshC1YM+3tRZH5NLX+hWfFcDpofN/owyOdZn/dYVzYmD+HWZsQ70i/Syi6a bcqKILNq/amNpM55fmgwyVkJnHi7OQfJv//iO3z1mevp4L6kVj6b1I2HbLd8 66GDgPqHrhBSX9oXrTUeqwxDxRYS9qSmb/9cq62uAtLv+uOXqVDPv3LNslwF 9m7dvUeX1O26ad/X71aFbxN/XBRJzV1Uw9g/rgpB9e+WSpBa5N3CRPvLahDx KHmpEKn1vl7RAH11+FNwx4A6f138eamBu1odNIPYDlD5xc6qn6/y0gCHAyif yq8nN1BM6rwGqGner6b8Y/2pIApuaALf9Zvbqfwa+hM4832pFvRKVK2i/NSq ++CiU6MWZJSbhlD+aY/+xCgM1YbwwoJOyh/FDfwrTSR0wPylZCilv2m9UD/z VAdyjLV1KS0YlBfxzYY87y85P0z54YRXvdXybl2QrBOupPTnVjafIyf14EnJ vjuUNrMJFL+lSPrHbvA8pTfwKsiXlOlDvrXMMUqXbWg9eT5GBDTSvhzdmsQL T1r4NZ99EAW9L3z2gyLk3/fJ6Zg5bnG4GrorpZ3Mn+1yjjH7fcVAcOh11nPS L/o3jR729ulDueGdQOr9Am3vf+VovIwGVxWlDqyNRdLbXc2LeBfAqtePDR9E c8H18uisi66C4Ouny6rL4ibnybcJ/VwI+x32WLlm8UBmS3kDoSICbl1haiLu vDA4au69ar8o3Ov72ag/xgsFEVnXt94Tg7fMY4ME6d+LodlKdxvEYZmHzd/N 5P2Vn+Ny9H5ZSWg72z8iQN5fEyaErQ5vkAJnmlp0EpmHIzbT1zripeFuaVTy HJmHdYqNKY5fZMDv7Loic9LPrxxs+qQ55cD7RLOsAOnn7Sp35Vetl4c9u91d NEg/n71/RvRliALs2eOdfY70b4fO9IxpliIYf9r+g07qRgvrN9K9SvAh6irP B+q+2SwznB5HhzeTZ90SSL1rQ3mdl5Ey8O6YueJF6riJX1zPapTBI7KI25ra P786tGfsUwHvgjCTJdT+GW7x4B2fKuwd3zJL5WHG6XbH5Jukf9uez1J5eP7s B4a7mRoMv9/ERt1f1+/QTfZoVAP6LjYmlYdnHb448vurw7jY0SNUHqYqsxb8 FNWAh6+LJKn7K6f1pzSvbA0osc5/T+VhsO/4g57lmsAapNEpP5c6xWWndmmC geqiT5R/Y4/7bZ06pgX+t0x/Uf5dsYVnMxddG+y7qo0o/dxVNvlqmTYUJR19 TPn1RWZI3PsdOtBt/Mvun/34yfpDpjM6sDztjxClnyh+N7O+rEv+vd+2Uv7p PlUU5KSlB8Rjw6J/9uN8rnvpVXqglHHqGqU3s3K+NO7Rh3BBhVOUDv2jXbMi g7yPXp/UlzLggaYiPkbGGWE478lhyrmAPL+Nb40efi0C267nL7uTxwvnF8W8 n+ITgz8Bu7j46OR5e8nR4yZIHG7t+FV4mvTTmYJ8WdMQCdD4nPzEh/S3VZ7C vMoTSVA568Y0IO+jP4yaapqGpMDN9BhDj8xDxRxGl/USGfA1LqXxkH4yH21z HTwgC8fqIzQSSf+sy49/v/OOHBQHxyedJ/0jOuZz/EmHPMRH3b9TR/pF7Zag uvFCRUixtTPZRurk7CItu3VK8J3TwGSU/Pv/TFxtbgx04EnYcvURqSeTG+uv f6fDr3UeV49T+9WNjos/GeR5biZiagc1v5FrIt/KqUBZuEILQeofd+y8hYpU oL2gcY8eqWNig8ar7FRB4HaJAHUftVUPOy7TrwqOh7XzqTx8d5A31zJGDebS r12j8vDmkayYz6rq4G2ucZjKwyNFg/YfX6rD8ZZF6VQe3nqxvpLYrQEVG8Oa qTwcC4pZsnJCA349GOqm/DPTvtFWNl4TOFSP7qfy0JlHTcjTUAsyObi3UX4q PJj5SvKjFry7ERBF+WfXl+uJGf7acKAqv4/yx6gi6+b7BTrgO3E1nNIn7w7c 2nFPB056nzWktP/Q3zUOa3TBUTxpjPJD1OBwd/83XdBztX33z+cZ1w4s3h6i R+b9snuU9uKaUjOS0IeSp8RFSouqNE4a5+uD3y90nNIxXgsMpANE4NGI7dCu 87xQKtaRklokCqv4v1dfFSDXX8u5uBVjYhDS28S5mrxPum4z/LPVSQzMN5UU yZF5M1b8O8alXR++jpUEUe/3yCAl4d1HMfg1HXZolszPwPKWLnUTMdj+92js a9Iv12IiooplxKGo9wj9APn6uq5IcUakGFhyjfydJc93nqeP1gaMk+dN9oSj 1PuBxCc36cZIFBwcKVK4PRQ9uqnfLDbBD+8U1m9rOsYFQozfJ+02CsKWMuuS 7hvcsJnGuXb354UgXRq79VEaD/D2NWdzSIvAHEdaZIQLL4wtVFcz3y0KC5Mz Z9+zeCH06r3UsTQxkFo0UZxI3m/K3syg8Gpx+Bad+TOCzNfJtdMDA8KSULEk 7KE++fsOHq54pbtcCuY+KCXlkvk61MTgeX9GGkJ8t19bSN534m4GbWa9l4FC q9lPq8h87RO1fPFjWha8v0kUipPrY+mXbNMSRJ43dS+x6VHr48AeEW9/Bdg5 uD3zErkeGlQUpCWuK8J3iVJONVKf0T2lm9GmBGd2Wst8os53g60mEafpMDey luMqdT/1HObZo6sMTy+YFe6n/Cyo8p2jWhlO89+vpPJ1KX/R2vNuKqD0gFFN 5avi46wCfi5VeLPP2o36fPBdSf6O4evk+fNX2Wrq80Hv1irBHSZqYPAxzorK 16jMRe8e1anBM67Obipfj7/ikB30VoftORvjqXwdPK3jrySkASNm6npUvqoV HJkoztKA8yf0W6h8tZ1kXv5ipQlrC3z0qPUx1ua2pPO7JtT8TPlKrYdgBZ8D DYFaYFPIGqDWA236oOOsLLke/C8uoXQj57l1Xc+1Yb1K7hPK/xc9RN8/2aoD z1UjHShd5ju4LWBcB6ouVghT+llHv0D6OV2Iqpdso/yT7jHYYq2qB+MbVhZT ur/wwkOei0IgM+ZYLqDBAx8v1psuZghDicVRaUkuXvjI4e2U/1wETrzvH5HK 4YUEmyPRA/OikJnKe7dLgdwfrYNP1C8Rh24LZiaTzM9iDm5LQT8JqOza2H2V zE/t6ah9d+5KQrUE+xprMj/Rw7gd8T+lIP3H123LyfyUt+C1WawrAx5BrxZL kOth5Gi4eLSbLByYV49NJ/3h7x9+Q/OGHJRsG6i+QvpjIsv/qm6jPLzN1vFr JP1w3+2najOXItAEll+xJ/X5262rFxFK8ORect045YeLXb8DLekwsPWtYw51 /nt0XTKsiQ4bmtaOh5F6UeHC163HlOF5xvSAA6lbkxlOklIq0HtUNgKRurn5 We3kUxXYpS/3g8rPb0VdNP4tqiBf9cOdys/AndtCD/1Shd9dpeNUfmYxOQmD k2oQc6/9A5Wf314+KpJTUodvJnsSqPx0V1WQevJCHZoETZ9T+TmiEqUX4qQB vppt/VR+SvzUi7syrAErupaPUf74vF/KlOe8JpTz8wRQ+Xk5bibxno4WnIki nCi/ZArdahmr1IKz7dqxlD/kwzhupxzQBo+614PU/AuXu22R5tGBU32ukZS2 9zrVQWToQM+nCmNK38q+pX11uS5krVaZ+Oe+kUt7saJRF6o6jrynNC00PWlV gB7YsOnd/8cvgSocrftFIMhnPm7DGV6oMKzeHv9YFM7SFI0/8JF5xbp4/kef GHAo16+1J/PR0082f62tGHg3DSTeJefff+WNqz6vyTxUIwIfkXl3vO3NDVkt MYiJ8TkwSc63y42oU87C4nAt3e1sJvn65vmDHwOCxWARPP71y5hcLz63U3Ke iEHLOqexT6TfaP98iYMqj8BLAfJ5TmarVri4i8FcqAcjyJAcr0ziZa1GMSC8 y5cZk6+veJvodDZODIbrXTImyTyrT5UOWd54GL2e3ZbnsdMbhaxL0HnZzw/R YxE9fYFcsM4ldcRshSCUsQWXeCdzw6qvH/8OVi4EO+E7NbbXecDikKdkt6gI /DK1G366kxcmbshGLHISBYnjvUbiQ7zQQs9OW31NDBwjBbssyTxt9FGp8X4r DoebYuKvkc/37dNTMRKQhNTjf/QIMk/ljRVP8VpJQQK9YFkpmaeDqatKmFHS 0K721kCazNNet7V3Ld/KgOCaY57WZJ7ODRllvhuTBVrc1EIZ8u93/9HD8mkL eUjfV9loQK4Xuw0fLpYeUIDV02pZ8eT6qFF8rMGZqAiGfxYlqZO6U1Xte2+z EjwbVlWrodbHNHPbcBQdZC/bf6Hy9NERXpVWLWVIaDhmTfEWbxlknV2lDPeZ O3Qo3vJUdf8su6sKZMsrylK8pfKNc8l9djI/F2tepfL0W+NN+xspqtBax32A ylMH7nXbawzV4M8LTycqT29WF7htq1WDZVyTM1SeHp2UndntpQ7XdRxuU3kq +XztrRcLNOBixaAplad5A6+V3TM0yH1kspPK0xeWmVwbLTThU9UjE2q9XFDZ PHPymybwH2loodbH4MG+oNUBWiDgun34n/vWRuXdgdLakPh2wozS3fZr0s8U acPHsi151HoIfe3irWGrAzrynx0p3VgNq8VGdWCp/H0RSqsnrpDvixaClL7g TewqPLD+j7no8WPCkCMl4yHLzgu0s+MVSfkioPXIkePdQ15IbPXq/DUjCjfz vOYr5ck8rg8JVzcWB7N77Q0tpH8/39N/P7VfAg5O3jV8QOZl+rXCa723JcF0 w4S6A7lefA50y/q3S8HxK6X1G8i8lJ1/z6mtIQMb3ui5yJN5aWNm41uzSxa2 rNuxOpOc/6hNR08JJskBZH7xTSbn34txWNWrTh4sVmV/bSbne3DFltsGbIpw 5OT0egdSx6T5bVcxVwKRH/yak9T8xpm8ljGnQ3z24mW51Oc1hSfMBhrocLRf JesEdf94rdHmGKIMsbEP91P843jmjTcl4irAwZlXT+Wl3ZhHtE+uCkRtYapT /ONUbTL3/c2qoDJnfYnKy5hAIkThpyro15ZLUPwjoScy6g5DDfZ9WfyLysvp HpOtZfLqcI0tNZPKy10OiydVi9Uh6UltJZWXsvY3XSQdNGDrLH2CysssufAC YkgDGNMTM9T8E4/+3A07qwlX6U4hVF7qf/rpvEFLC57u7NhF+UF+N71n7xst WKbNf46a/9ma/LsS+7WhdFUti5pfRQn5e6WcOvBkT+VJSkPlZ8aTmzogd73L 5J/X5x4eZLqLQFLYDZcXp3jhbcnL3HP3ReHR01sce3hJ/4devrCkm8wbceK3 HZk3Xn8Xiq3YIAbbUu45duvyQe2H1MSSMjHYYaS0M5zMt/CDL2bEVcUgWjqd l5ecP6bmqdMPF4hDRS/MvSJf33Jur67fETG4dNiqcjuZf/aTGdfYHomBg4KS ZSzpn5Vb4s4OT4mBWJvhpkXk83a9Nk9z2C0GTPe3cdVknmzKSIoPqRODJJ1T y2XI11fbnSuIPk2eP1UCu46T+SMtcPfG7Qwx+HL6uOQgmU9cnhfOxQ+JgVv0 nru25PcvLLp2Re4ded83KvjylRxPfOfN5N0FYnCojy4qTOoIqzNnbNjFoa1t dPccqWMvXLn09Rt5v3LVdllJ/jzm7StyxLkW//nMxLx9Xd4Z1zOPq//l7f3R 1qFXo3/+y9sPttLKRSwG/+XtjmssJu3mWP/y9uUbhJgid1n/8vbG0Jc3D58b +Je3V2TkMtUafv3L2z0Lo/heTHUgzNs5OpbuP9LXhDBvt755O1squAZh3h6P +HMKbr1EmLfHLlm/VYktHWHebl7Kxk5rymNi3n5C04YnsLSSiXn7xl2rVBOc vjAxb58rc8uJV2tnYt6+zswhtv/jfoR5u/MpeXexEFeEeftdH1pQxX07hHl7 j0BaDiNqA8K8veZlmEJE6nKEebu0gP5sEDJDmLczVqx08UrVR5i3S/s2Krf4 qyLM21nPulmxz2UQ5u220qcv3z0kjDBvzykRDXhwhwth3u56NDNgOmaWwLxd uONXxGzWMIF5O+P7vE7zll8E5u3tp2csOJitBObtdPauHpe4OgLz9jIjP1uF nioC83b66IrLby6XEZi304+VrTnR9IzAvJ1Bd/AKqckmMG+na355l7XsFoF5 e5msYZAzPYnAvJ3xl+03z7vzBObtZU1rjEwsogjM22kOUnVzhSEE5u00y9n9 3876E5i30/73hXk71pi3Y415O9aYt2ONeTvWmLdjjXm7Kz+n6xnVa8wyw5VD VUKtaHlp7Om+b63I/1LO6pR9PWhf0xuxiON9qFb/+/nr/Sw0/22X6M8dLFT3 8bOJbvU4epI4MRAuPYxMPZ4voz+dQRNPhNXmng2hKVbi42M351HulVOKgx/6 EObztZWXVPju1DAxn9/vdTWj9kQzE/N5rzyxdONSP4T5vNcehd5Dqe4I8/mk i5zEywInhPk874oAutSqLQjz+bv5UxENnGsQ5vPpWrrF69OsEObzjSVydaLn TRDm89DxiDU3p4kwn6/5aSGSelMJYT7POpmpwn9ZHGE+T5thJNY95keYzwu/ flVvs4oNYT4v3Bdb8GXBBIH5PBiu+BmQ209gPl9mmmdelNZJYD7PCN8sLKnQ SGA+X3a/98/I508E5vPwEBZFFlYQmM/D318Lj/UWE5jP04Mj/dt9cwnM5xkG Z4oiT2URmM/DPna/1vs3CMznab1+DVfXxROYzzPU23pER2MIzOcZptbNLxQY BObzcKvrulNaAIH5PPYP5vNYY76ONebrGxPdahx9KpjfTi5bsWv0KyqLbf67 dncDSunTHV/C1Y1OWwgdctTsQbsVLNk/Rg6h3sjw0KGUIRSgkOybfHoM+XIK PN6iOIzc3zOOm0VNI5eN197QNrJQz6ofBaaOc8gX2al3mPUjzONnCm70zQ5W MzGPX12sKCvQ/JWJebzpNecn19I6mJjHJ60W8Doisg9hHp/uYMxllb0LYR6f 1CQfHrxjG8I8fqn6bedzN9YhzONrFMQXK71CCPP4GPp71YGKxQjzeEZwmBPr rg7CPJ5lt4TZHqOMMI93PfXmdiObFMI8HlI/r7dMF0SYx+cMs+wM7TkQ5vE5 q+qXRd2eIjCPT1c6eai0bojAPJ5R3Cgz1/CDwDy+7CE907OymcA8nqY0vpR1 q5bAPB4utuWq674lMI9nCG1aVNpaQmAe77pXzNMk6imBeTwtKZizm+cegXk8 SHJ6aBxJJzCPZ2TOZwpfvkJgHl82I2palH+WwDye1rJyabBgJIF5PM1RL6aS J4jAPJ4mSDM9r+5LYB6P/YR5OtbyfXpRvSur0cWU1PN9XMXo80G1zXISHSiE 9vW0iVsnWrN0ydW5qj70eXuUlNzJfjRSnSr/WWoEafNmfpIrYSEThsDkC+FJ FLGA/SZriIV458fneDtnUUGiwON9OYMI8/ehysjjgptamZi/2/o8XLYxzQdh /h7s2riLzdcNYf5eqPkU+S10QJi/2559sOlk3WaE+Tv9oNCiHU9WIszfy/b4 Zia8N0eYv1duPHwsO94IYf5+8dnBn2uT1RHm7xdDF71OOi2PMH9P36rM5+Qu ijB/L2vqa1Ph50WYv7c/kjjJ0TBHYP4ubFv3Xa94lMD8nXHLuMHkey+B+XtN 2eXflzLaCczf2z/onODP/0Jg/k7/dmW4LL+awPw9vVF5yDLmFYH5OzysW/ob FRKYv5c5zJ80UntMYP5eNm3uL7A6g8D8HcKfGmeXpRCYv9P6M6xcLC8RmL/D G+d0FHSKwPydMeq/cqbqOIH5O8Nin/FA0GEC83fsD8zLsca83Ejo5cwz1Q/M vofFv7M8vqCZieHjAwc+I4PE3mqO+h9IMjhU7kdbNyJOhAYk7RhEf2qa/oiM DaKKVcfjbH+OogPX896Yiw2jYye65Mr7p1Bbfedo43EWavfltxJ/Rp4H35cY ZfzsR5ivn+ridLCrfcfEfJ39rGr3rysNTMzXa9BXEfO2dibm6w6+v087eHoh zNdrqn8vfbpyN8J83VXvIVdu8HaE+Tqt+Rj9Ibc1wnxd+GT365kiQJivu95w rlg7vQRhvs5Y9PJ+vowewnyd7mmldyFQBWG+npMkKz+5XRphvu56c3rBd9OF CPN14aa9RScDORHm6wwTR/0/C2YIzNeF4y7o33nFIjBfp9c/pQUt6CYwX6ev 93D4YP6NwHydzsc95XLpM4H5Os3m+/mv4ZUE5uvwoGl3ViCTwHwdHj1+6pyV R2C+zuAs/PHS7T6B+TqdOOQRsvUmgfk6VD88wVVzlcB8ndZucpS15ByB+Tpj 2TGTL3InCczXGb/dVD/aBxP/8nWnCI78aD8C83XsJ8zHsTY+vSB34NxbJPxm dn5hwm30hOvNasb1NrSPw3mB8JN21PJj5GB1Ui+aI2rd8s/8Rm5hpXZmkcPI GlyR5AUWirwzJB7gO4EUs+6FOfEOI6UnDqkJ1rPIb7CBscJsCGGeXlvZxx3W 3sLEPN2/mWXqreaLME+/KF6a43JiL8I8fUrKVSvHyRFhnk4bEwkws7VFmKcX 5lQus65bhTBPZ7XNeXLrWSLM03vQ56+vzhgjzNP9nc0HF1RoIMzToUj2qQu/ IsI83V8z+Mr+I2II8/T0v8rx8tv5EObp7YecgydtaQjz9IsK8veLmscIzNNp z0LWRhC/CczThSUux3Ne6yAwT3d9v2LyaEcDgXm6K9vklysWHwnM0+n5Fo2X k8oJzNPhS/unnrNFBObp6eydt6pDcgjM0xnOXx9rumQSmKcDPeeZiN51AvP0 spU03TqLywTm6bQD4bcKHpwmME+nydP9nh89QWCeXsYvYk+LOkJgno79gfk3 1lyEr4KX6S8U/JrzXcbOXgTf/75lI8/VI4E8Fe5SLKQ28cy2U3scySwOTRxV GkabpBVbs+Vm0OGsE8G/JViIy/BO+09OcShkvYTV5f4odTKtNHGI9KvVsILZ vA+Rezao1Gj2N6ro1tge7zWATsqHd/k8HEF39Kx20TtZqNNBu4nr6SQy3J2d l/OJhQbXpqjz3ibPexIVFlqhhwjM1/F4MV+f8q7Lsn1dwxxZEVL2XrEeMY74 sBo8alDwwcpCb8sfqMbhwEvRJd3ooUHKw78vB9Cbw5fcg5IHkU/jQTm9hFHk c4gZys0/jLgbE37z3pxC3TpzpYbxLPTtpMIc+96/6PqZY893WAwgzOPt3wgc uf6miol5vKfchmGdyS9MzONf1tnSTSLamZjH866z2C8rvR9hHi/gxHZeUMAV YR5f2MCTc2GhHcI8fh1STet/ZY0wj0/nix4p01mOMI+nPxhnk0wxRZjHpx9j Hwxv0kOYx9tWsoHUiArCPJ72ynO2jEsGYR4vXBfIpc4ljDCP97dYVDIowIUw j4dqs5Nf3s4QmMf7R3zrsl80TGAeX9ZO49r5oJvAPB62OG1umf5GZPyPx7fT LG6uFKwjMI8vK9jAFWxcRWAeTxvZL5uhXkZgHt8e1MrDXPaMwDyeYSyqbCyV TWAeTx8/X3rmzU0C8/gy6/bW2qOJBObxtNArb23/niMwjy/723R38u5JAvN4 xrmB2ENcIQTm8ZAblBem5k9gHo/9hHn6v/v1l9C3QyavEYN7p3NGTjAqSomS zbT7juo/fC3clNmGNJ7XOi6i9aL1sUGn4rl+oxS7zSP7zYZRXPtJ78wAFtKx 7LhtozCBgnh6Co+LDKP7C/h9m+dmUNO7obycoCGE+fvV5SlOWw1amJi/e01f i7kz6Iswfy9c9Z65V8AdYf6eYyYqNcTthDB/b9TwKvaptEWYvzdulR0c2L8a Yf7enjesgbosEebvMXfG+yT4TRDm70bM3VcP7dZEmL+nN86H7q5TRJi/p7fe P1FIE0eYvws3bXPPnedDmL8zAp5u6K+kIczf/X2nMzUOjROYv9Pv+j1MGP9N YP5uNDPfGSvXSWD+TmcWZBqHfSUwf6etvzpJ5/xEYP4OCi/OnNaoIDB/pxnX L/ZdWkxg/s6wPv/q5kgOgfk7bcA1Yg8rk8D8nZbvpPGn5zqB+XtZq9SHDuZl AvP3smqBgbxNMQTm7zTxde0r7MIJzN+hOZPr2cIAAvN37A/My7G2Fd/E9+lG N3LY0yLTW96DgvPPuS8WYKGh0JDLFr+GUPWZO20ljWNo0bDUgQ30YXL/+fRg +NM08uh7GZ9ozEKYp9M49KZ52DuZX1G0gnE3ef+IcUX3Yg8Sf/bY3090+43k 78202k31o+IxIUaa2wjqCpxUel7DQrH9sl4deyZRZfBSuYp2FvJO3Gc1lkTm f3lPpO3kIQLzeDzejx+cLBcNDCLLH4ORXeuHkHxu7N8A0zEkU3rCZEZmGGFe 35fQLfKY6GCur7Fp2VtHric3Ic9fH30JnUyDIs4Pw0jBd/8Cqzss1Cw2F53E nEAvu5x3af5loeNuFS+5j42jrv7GIHuFYYT5vnvRWfar6/3R1HGnHb5T5PuF 9glJn/UhNq4aWmMxNYI+LU7+tmWYhSxem1nrcE6hnTJbWl6/YCHM//H4Mf/v Ps5z2qG9lhl4rlHH5VgdYu3R8YtnfkSpjQUGikNdqPHZp0W9rT/RD24da6Og AZRnG8Pv4j2I4FZ3Z/KBUeSlGnT2BOcwqo46WKd7bAqJl77QrLnBQk5Cmrtn zP+iGZlpFVn3AYT7As4q5iVLV1QxcV+gW2748rW7X5i4LzBkP2aTv7WdifsC lWJC2m2H9yPcF4hT+S25ZIUrwn2Biya/9W442yHcF5A+FnuNT3UDwn2BMv/5 BHBfjnBfIIclvMWk3xThvoBRN5rdZKmPcF8gJ9THX9hYFeG+gL8j7SiHqwzC fQEvIeXOBZbCCPcF0g18vF46ciHcF2i/0xH3XHOWwH0Bmt1AcJXPMIH7AvTI VzrRc90E7gtAls3Nqp2tBO4LMJYdst+/sY7AfQHXKi9RrbgqAvcF6DEifM07 ywjcF3BdFiMtcvYZgfsC8NCJbemRbAL3BRiRQxufsd0icF+AcZfgDXuXSOC+ AO2g3KV5t/ME7gvQ9CT2Cw+fJHBfgNYmTkt2CSFwX4CxbzAibIc/gfsC2E8m YedXxjv/5y+2sCef/bkqUNlj88ffO6OYVj+7osyetCK+P98iN7z6jjZovPzU /bQHbYpuGbrzsg/lL78KHKLD6DxXWMAFTxaa43Q6UDI2jmKFjMVXSgwj/8JO u7+NM+jtX2MehcQhhPsDZrFKj5c1NDNxfyDH+8abMjs/hPsD7Y/l3/7a7o5w f2DK6cunchcnhPsDlQa3L9dybUG4P5AzuurJ1/zVCPcHhF+Y7b4LVgj3Bwq5 FLbf2GCCcH+AMcN1PveRJsL9gZxgfYkv5koI9wds097xtq0TR7g/YKtewzLY wY9wf8BVjtlowM2GcH+gRvo5z1jJOIH7A67XlMZ7tvYTuD9QFjGRoLurk8D9 Adfspfw3qr8SuD9AO32z5rv3JwL3B1zPvldm96sgcH+AdmrX8T0XiwncH2iv bru91SiXwP0BxsjColGLLAL3B2DbJ8mN628QuD9Q9q3a/w1HPIH7A7RtWr1f 0mII3B9glNnvjH4bTuD+QFn/0Zc8OwII3B/A/ph49MyjP+c/vxwNtwqP3NKN WmOZZpaBPUhrdbbHtQ9DSDbjYe2Dl0MofRv9jm7OGJpiWJ1OJs/PqYp3E8Tv T6PvXCl24wSZb//rCwyKcK24WdPBHOuarA7rIP3r6bFpWcNBQvnDavoGyd+o PSSex6G0HzW0239cumwEPZZaprHoLQu55Mcb2phPopCX3UZJPSykhT6u7Ysn x5/Q42hgdphoXFs1Id3y33i5s/q+etwaRHmThnnxSkOIFcrxulNwDA1l3C79 JUn69X/9hFqXp8zXQh1Mz4BXsTkfyfWz7eDgYy0/Ys2lQJ7UO8NIeGWp+eFr LPSoNXATd+IEym6/tYSdYxjZ6i07E7CVzP9dBlP9isMI9xkWqxvsbAv3R5Hb 9BduGCN/P/dRZhLTh/AyMrtS93kELUgJN5nvZSGhCzkiSS2TKKbniu3RNyxk Lb4NGbL+G3+S0Pi20hejiGtzo8yQ0DCyP+T1rWP1BErmYEs0EBxGU0wDaVu2 cdQ3MPTLi9xvZ2sclGRnxcD7Lx/XTo1OZvE1Ud8ffeTzi+50D684SKTyvjXm jhlBKOfZ1bwmFlr3S8SUZ/cY2lkLew/LD6O7SRtmkm6PI++mI8nGcsPIyOHO VLrCKJJMl9OVmSLvyzOJe4tn/hsf7lNcrt7nouf7mVlowut6R7sOXTx8zGdB 4QdkdP5x72RlF7r+AHX9yP2JaKOHkqq2DKCROyZrXLYOIh2e229sd4wiHt9x 7xNsw8iwxXHtMq8p1BOZ0P3nFgul1GUvDFT/i0ZkJNvqggcQ7l9cLzcOWUmr YuL+BfNV1fypiC9M3L8Y2mk7mGzZzsT9iykTn+Mv0vcj3L+ofrAOzu1yRbh/ ETxcvP3cSTuE+xdJt5jxyds2INy/MNoodXVdxHKE+xcx+YWPH0uYIdy/cP3o 6pjro49w/8LWTMe/xVYV4f5F+k/nFannZBDuX9j2NDistBdGuH9h5DWVFc/g Qrh/ATJxxoYOswTuX0DX5gPvzgwTuH9BDzsgxK/1i8D9C/rN0kKrc60E7l+0 c4/wW/vUEbh/Ucb38P10URWB+xeMqWZ786AyAvcv6CIRgmpPnhG4fwH385Ry b2YTuH9BH7dXvqJ0i8D9C4ax1+/V44kE7l/Q6i1tHK6eJ3D/gpbI+SdcIorA /QuajHXn7bMhBO5f0FaKikYe8idw/wL7KWNlWCjL8T9/Zdhudsj1LUdlY+vm Rt5eZp6IFStmuLYi3jzj090239H3lsLYsnM9KGTR9TbLtD5UYVb8y2aevJd0 zTdt3M1CPfslbQLax1FLrVP1CLne64Q+VQmRZxbvvhjdtKwhhPsau8M6Sg7f b2bivkZZBO/0hzN+CPc1/EPXN5wNcUe4r9GTV2WscNYJ4b5GjNvcgka1LQj3 NWhLT1rmta5GuK9R8ynsQ62fFcJ9DQf9RsliHxOE+xr0eFGn/AZNhPsajFNi PecPKiHc1zDakPN620FxhPsaRlveqjmf5Ee4r1FmW+Wsqs6GcF+D3rhD5tWP cQL3NRhvunN4IvsJ3NeA973J2090ErivQWvpuFkw9pXAfQ3GodTPJamfCNzX cN2YYXkzvoLAfY2ytutLql4UE7ivQRt99ijMJpfAfQ3GkZRD11yzCNzXKDPl 39kfcoPAfQ2o5VIU0YgncF+DwW6YbVsVQ+C+BlhtCsygMQjc1yhzTesVPhZA 4L4G9ofX0Yzr6x/95xfeJYstnHW7keOfayWszT1olfHo08V3h8j77V+VgEdD KLbwW2zntTH0KkTkMC+5P7EdTeDVSJxGT76EHIpezUK4z7Flj8N+0cIOJrtp rppaG+nXrWZK/n8PEnmRy1rUWH1oyk3TryO9H/1oCD0arTOCOPzaDpu/IvNU zlaMW30SeWvTZrf1sxBvfMQmj0vk+LvY9x3acZiwFirUD2z8b7wql0005o8P IgGhIflpviHU3Ma8mzw9ijy+5a1RI89TuD+SXOXdNTrRzgx4c6zTvprcn8S/ rvxg70dsP53yqC9hGL3przxrf4WFklYsMi6JnEDAceB1Kdcwsrg07aNLjKPd oRd3RpK/L+6b9M87Fa295o8uZnZ7Dg+T71cut7vzuw8RqLHTil42gtz1JxyV u1loatRnfPPbSTQ68C1N+T0LvWheHhg38N/4I4/kmh29O4o0Ax6nnhcYRtCg VpZkPIHuewREeS4cRp1qv2e5B8bQNl+xGz7k/oT7K3HbY061yXYyKwfev47t IZ+v3TJt43mQeDDX17j16AjyyfK7sf4LC5ls/ChTaj2GeIr1Tqwn96PLf3m+ 21wYR/QF2c/tyP2K2Pw+bYB/FBWH2XW+GWOhsbJTKVJT/43PfpnOfGf4KGq6 Nx5pzzOMxNNvnObmm0Bvf9vN+osNo/zBveUBFWPIJ9BaiYscH+7DKO0ddVvX 28HkllzboasyhrZfvmsXJT2MPN8yMks8x9FRP5vri8j9PoAtoCBjghx/8gkt l5s+hNDOw4uTJcaR+M/acCDfzyXSbqvtEfI8tFJ54VHyfli66IJkZ8E4ygst WtlH3j/nstmWbv+r/e94hRff09v197/xHxN/tLZjRhss3neeofpI//f7/+/9 8v9+Pvl/zwP//6fEgREWE1rP+ZmJ3//7cernnYlXEe+WDr2qQPj9RxiOhg9+ C/53HsT/n8b/vvD7Y42f/3/Hh/X/A/7rsXQ= "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[{ PolygonBox[{{1076, 1078, 504, 951, 845, 749, 665, 592, 554, 989, 883}}], PolygonBox[{{944, 1079, 1077, 517, 518, 958, 852, 756, 672, 599, 561, 519, 959, 853, 757, 673, 600, 562, 995, 889, 793, 709, 636, 520, 960, 854, 758, 674, 1037, 931, 835, 601, 1028, 922, 1060, 826, 1050}}]}]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJwVz1tLE2AAh/F3B0pIyMi5BR1YYliWetERKkhQQUHdln0AP0Dd2Db1c3io dKFgQVFBJWQpmvU5SmeBelGaV1qWvy4env/zvu/Glu67l70bDSFEMIyL8RAu Ie4whigi/x/gn0fNfAePsY1cLIR5/HU3pD8jpYsoo0l/xzX7AWK+u1eX8AtZ Z3PY8/lOfo6ENxvubtolVOhB3WY/QZX+pF/aKTvJp7nAK2h0d06/tU9yO5/h p3yEv7mv51f6GF/lWh7jKN92f5bf6BPcwnU8xZU84f6FnbS37DRn9Af88T9m +JSzDn6Ganvdu9f2cfsGT+CgPeC81Z7GYb2ka+w8lnFBr+KKPYqINzl9y57E IT2uN9Gj3+O337Cmr9vjOOBNUX9EQt/HV5zXZVy2RxC8y+pH+IluZ7PY9X0F vYhq3Y8vaNAZPMQPdDl7hx3v83oBR/U+E/xGNw== "]], PolygonBox[CompressedData[" 1:eJwV1EVQVWEYgOGLWKBid2J3d7cYM864sQsVAxVjZ7cCiu3GhQtRsbvd2IHd mBvF7m6fs3j4v/e7LP7hcG50bEKv8VlCoVAYPf3IFE2zhkLN6BoeClVxbnYW dD7z2W5zSXML51qymSfbdzSnEqWP6XzmCdyjvH5FG/M6IvzOGv2YBnolf+ih J3GUvDqBDKL1ah5RX6/gN931RI4Qpcdzl3J6FQ+pp5fzi256AofJo8dxh7J6 JQ+oq5fxk646gUPk1mO5TRm9gvvU0Uv5QYwO/pgHyaXjuUVpvZx71NYpfKeL HscBIvUYblJKLyODWnoJ3+isx7KfCD2aG8Hz0Eu5S029mK900vHsI6cexXVK 6BTuUEMn84WOegx7yaFHco3iegm3qa6T+EwHPZo9ZNdxXKWYXswtqulEPtFe jwr+h8imR3CFojqZm1TVi/hIOz2SXWTVw7lMEZ3EDarohXygrY5jJ+F6GJco rBO5TmW9gPe00SPYQRYdy0UK6UVco5Kezzta6+FsJ0wPJT14N/RCrlJRz+Mt rfQwtgUvmB7CBQroBVyhgp7LG1rqWLbyj8F258lvns9lyus5vKaFHsoW/jLI 7hz5zPO4RLSezSua6yFs5g8D7c6S1zyXi5TTs3hJs+AOpPGbAXZngnfcPId0 yuqZvKBpcAc28Yv+dqfJY57NBcroGTynSXAHNvKTfnanyG2exXlK6+k8o3Fw Bzbwg752J8llnsk5SulpZNIouAOpfKeP3QkizTM4S0k9lac0DO7Aer7R2+44 EebpnKGEnsITGugYZ1rwTH2n/QcNF6i5 "]]}]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV1WXUVFUYgFGkuxulu5HuRkK6W7pB6U7pVukuE6W7u7u7uw3Edp8fe973 ubPmW3fd78yadK171On+XoQIEd55CXOpl+r8bv+aJuQnIpGITBSiEo3oxCAm sYjNMp+vwTv7NzSlAHFY7npN/rB/SzMKcsC1nqTmhB5BXFboWvxp/47mFOKg a71Iw0k9knjhnnVt/rJ/Twse6BmU52ddmEP23qTllB5F/HC/ug5/23+gJQ/1 TCrwiy7CYXsf0nFaPzXnUoXP9WNzNpV4xSJ+c/25OZ9qvGEJCcKzMOuG++Mf /cJcED7DSv3EnMOvVOY1i8P/iU+8/8icFe6PirxkIW/DZ7z/zJxHVYrqI2Zf 0nNGjyZheMa6Hv/af6QVxTjqWj8ycFaPIVF4xro+/9l/ojXFOeZafzJyTo8l cXimukE4aKwy2lCC43oAmTivx5GElbphOJus1m0pyQk9kMxc0ONJGu5ZNyIi a3Q7SnFSDyILF/UEkoV71o2JxFrdntKc0oPJyiU9keSs0k2IzDrdgTKc1kPI xmU9iRSs1k2JwnrdkbKc0UPJzhU9mZSs0c2IygbdiXKc1cPIwVU9hVSs1c2J xkbdmfKc08PJyTU9lfdZp1sQnU26CxU4r0eQi+t6Gh+wXrckBpt1VypyQY8k Nzf0dFKzIZxHYrJFd6MSF/Uo8nBTf0EaNupWxGKr7s5HXArfI/JyS39JWjbp 1sRmm+5BZS7r0eTjtv6KdGzWbYjDdv0pVbiix/Ahd/QM0rNFtyUuO/RnVOWq Hkt+7uqZZGCrbkc8duqeVOOaHkcB7ulZZGSbbk98dulefMx1PZ6C3NezycR2 3YEE7Na9qc4NPYFCPNBzyMwO3ZGE7NF9qMFNPZHCPNRzycJO3YlE7NV9qckt PYkiPNLzyMou3ZnE7NP9qMVtPZmiPNbzycZu3YUk7Nf9qc0dPYViPNELyM4e 3ZWkHNADqMNdPZXiPNULycFe3Y1kHNQDyeVHqq55z7VplOCZXkRO9unwo5ec Q3oQ9bivp1OS53px+Fvs1z1IwWE9mPrhDOtSvLAvIXc4XzolR+xDaBDOri7N S/tS8oRzpVNx1D6UhuHM6jK8si8jb/jO6mPmMBpRVr82l5MvfEf1cXM4jSmn 35grwvfI/jacr3DOzf8BmRz6+g== "]]}, Annotation[#, "Charting`Private`Tag$48026#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV0vtPjmEcx/GrE20ymQ40h+U0ynkUprYYNqbDo8Kv/QH6AZXD34HS2WLT 0KI5JBX6M5xKGzbkuCLxun547/N5f6/rvu7nvu8nv64+cTophDCKaeVBSgjH 8Ck5hGZUogAvzc5gZ2oIS+SwWQNmXPOQl+Mzb0EVCvHK7CyyMMIb8dv+R7wC X/g1JBCce9msCON8E17r55CNUd6Eefa18n14z/8477FeiSneigX2dPEyHOdJ /IpejAm+GW/0BuTgGV9kT49+EOf5fN6ml2C53i8/mGfpt/QjWKUPyFm/YVBW Id/sq3258jZv0zP0bn2d3C9XyHtyo6y2niyv8jVyt1wm78oN8p31xfImXy8P y5XyviyQW6y/1RuxmufKpfKOfG4tU7+hH8IFns7b9VJ85Nm8Vz+Kv57jiUzg m7V21CDFnmazPZjkWzGuN8V74QW/iDnXD8V3ju+8A7XYhn/xTxa/RXzeeCZS scvZafG74qnrqvFD78QJbI/fAsPmNfipd+EkdmAifq/4zjDGL8VnxAivxS+9 Gwvd5zo/gFPx3rxFXyv3yjzZJ/8DBaBbEA== "]], LineBox[CompressedData[" 1:eJwV1DVYlQEYhuFfwcDuwsLu7m7BWFxMDMRWMDa7wcReHBzs7naxxQJFBbEW u7vrZrjP/z7fdbYTETHxfeKyBUHQ28vT7EFQJDQItoUEQSSN9WPPqZThgp5B GKd1X77ZGxlAE564TSOci3omeTij+/Hd3sRAmvLUbTpluaRnkZezuj8/7M0M ohnP3GZQjmQ9m3yc0wP4aW8hmuY8d5tJeS7rOeTnvB7IL3srg2nBC7dZVOCK nksBLuhB/La3MYSWvHSbTUWu6nkU5KKO5o+9naG04pXbHCK4pudTiEt6MH/t HQyjNa/d5lKJ63oBhUnWQ/hn7ySGNrxxm0dlUvTCrM+Uy3ooAbv0cNryVs+n Cqk6gaJc0cPIxm4dSzve6QVU5YZOpBhXdQzZ2aNH0J73eiHVuKkXUZxrejgh 7NUj6cAHnUB10vRiSnBdxxLKPj2KjnzUidTgll5CSVL0CHKwX4+mE5/0Impy Wy+lFKl6JDk5oMfQmc96MbW4o5dRmht6FLk4qMfShS96CbVJ18spw009mtwc 0uPoyle9lDpk6CTCSdNjCOOwHk83vull1OWuXkFZbumx5OGInkB3vuvl1CNT r6Qct/U48nJUxxHJD51Efe7pVZTnjh5PPo7peKL4qVfQgPt6NRVI1xPIz3E9 kR780itpyAO9hopk6DgKcEJPoie/9Soa8VCvJYK7Op6CnNST6cUfvZrGPNLr CPOftkG355WuRKY9kUKcyvqNe88muwtTdA693m5NuL3f81nWb8PenvX99Izy /A9y4Kg8 "]], LineBox[{1067, 589, 1022, 916, 820, 736, 663, 547, 987, 881, 785, 701, 628, 590, 548, 549, 550, 551, 552, 988, 882, 786, 702, 629, 591, 1023, 917, 821, 737, 664, 1034, 928, 832, 748, 1046, 940, 844, 1056, 950, 1068, 553}]}, Annotation[#, "Charting`Private`Tag$48026#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{1071, 1075, 1070}], LineBox[{1073, 1074, 1072}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->NCache[{None, {Pi}}, {None, {3.141592653589793}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotRange->{{0., 14.999999693877552`}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}], GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxM3Hk8Ffv/B/AjylIhSZIkIZGsidJ8xlKJQiUhcSqFLBHXLscasif7WkiU kMo6nxMqlSRSomQthFQUFX6f0W/0nX/ufT9uac6c17zf75mej7vh5LlDpxfR aLSExTQa+c8fXU/qxS/FY+hfaaLPeHZNv9l+ZfxNC2Bs8u4x2GMN6rSu57y8 2gdE097rB70MAsIfKj6e3DIKaHpjLrkacYDf3rKAXes7oHNe6v30MxHEKeyp 0j8yBfCGNT8aniWDt0nyzK+8M4D2ObIn63kCuJTj92LRGhacoZ2wq00lGqyO 7wu7nM6K07SNTi4R9wEXjfZhLT8W4zTa/Yavd4Sgi1q25ZMADpy2pWqXqLMb 1P7yy8uxjwunNbRrWXD6Q3/1gyeEVJfjNNtwzTfWgXBHUXLZBciD0wLDha4E BUL7qa+MhuUrcJpvg5S2cQCcluHtkj3Ch9OKlwjlOTKgeuHNrISElTjtj9C9 oOs+8CufLt24lh+nLbmE1bp7wP4IuvF5dgGcpqLc7PXDBe774r5vQGU1TrP/ rq0p5QRHTnG4lPkJ4rT9O9WGNWzhHvHViy7WrsFp6o+PwthTkO+5ZFTxFyGc Jr/sXmyMBRQOvW2ooiKM06SKcl/JH4VJMmq8K63X4bSkg2caXhyET4U0tn2P FcFp3Z3X31jqwR3CtTFyr9fjNNFCzT4vbcjNetX1RIAoTmPy57wWA1DEf726 qeQG9N8veT7l3g45JczvHXqMajwySX+9Aty6a81t9+Ni6NeLKs72bYbnu/jq dGkbcRqDKXWXfyP88j3iyL4kVNNSp1flC8O9co9S9smKo/+OVa5JXwWJ7zt/ /2xCNe2WctJTHui4RbHj5WkJVGMs7W/Y4a4xq1emnJKovrxWxYkF7hYXPLD8 Kllzr7i5+BchxQj3qN2+CdXVgb2B3wnp02pQooOsY9a0RowQpwmboDJnKVTn iMkZDhAw65XV11WbUU3r+czxgZjIn/spd5+sbe5q3n9NnJIo5Ew5II1qVWDy q5n4Kn1ZpXScrEVP5z9rIMpzfvdMhsqg2qluLqaWMNPeiO8U2UL+vNWEWDWx 1uFixVYmWePnnqy8S6zisi85cFQW1UwrD/tiIsOhcnJujqxpP3jabxB7xIff f31TCxgHe8NX8O0DTDmtL0+43wNa386Q89qewCm2eHeK9SBgROm9YO2MAC9l u6LSRsZB945EPx7GFdDa1KIo0zgJmLnBNjdDk4HKaZTjO78As4kW9+F1Epga T7ztnT0HGK+2PnaNvwwOppVs0Tu2CKctG9JnFIQAA1eBfsWnbCivbZN1a86C mT2TTc/V2VHtMSLjZAvN+fVH197hxGnKO10zcV/Yu0rSsX75MpwWfuHSqZgA aPHfZHijNzdOSxkV5SwLhPXWmaN1brw4bRFvPztHIFTk85fzLkH3R6kYEebo D1M24137O1G+2YR2tmXawzX10ZXrNqA8N7Qqp2mdgTenRBrWmqI8q56f8DM4 AROl7c59j1uL8uy0nT3PDHaYuhbnNKF88zbH0I2NoMLGGrHAPyjfzTfqrDED GJDKcmqFMsozvTc+s3gvTAj1z6hWQXnOWjr9+Z0GFKilmxx/hepuM7aPz3dA /tZd021uZJ7Hc5W7laBwSaXiaT6UZ8bXsPMNsrB5uYBaTxFZd1dr7JSE8kMG y3T3ozwz167MCxOFqbGbPZ70knmP/LGsXxAGrGB5JnqBzPe17JowPijAe3/Y SojMs4zwx9Cl0DhS782V+2Qt9z7Pig1qhBExd46Qec4YHRWdJVQOvez9NELW Zu+Phf0gbnzrWTsRSuZZXXhHyTjRsOLlhlEJMs8ju8sLB4m42xkTLXVkvT9M UL6X6BA/WxRzhsyzU3R0ZAexxbqNdnoRmV95qcXXWglpqfWikplk3bycj+U5 8cp677JX6vN5jljl/JAIc+WJTWol62JZXIJJVJq0/VE+R+aZabD6QDmRVOW5 jVhK5jdr989LpUTHzsuteYVkjZ/68f0m8aFa/9zEm1JAm3WUkRzfDN4F7tI8 /v0NYPy6o+o14wxShmUmty3+CERPqH1uex0KLNftXNQU8AXQyyr33Ju8DFzX JTsmX5wA3Y+3TO4ZTAJWzxg+24OmAdP0akvNf8lgULv/vorpLMDZOiPC9K8A xyzBWclKFpz2wUH5+Z9woMQ2o9KnhPJML5567uAKag9kLmlOXoLTQllXC146 Bgfz3PO+CaE8n2n20RX2gpcDYlyTPZbitOXrptYO+MNxk41u39+ifv+770R3 ZiB0Wv/jmoYMyrOGVZ+5fiA0CFZrz7ZEebYyvWzw0R+eX/Zu5ZowlGeP3c+H HRzhIv5GAdtm1K/xDnyq3Bp6cq89/XI5yvMU88KszUn46nfD7EENlOcpkYuj l8zh7/FYhkMAmWcbsZTyI9Bqk/eaZyUoz/mj3waKDKHksQ37F/Whft2c+43D Yx8003NWGuZF+XUqCBoS1YJxJ/3PWBaS/Trmztl+dbimoCglUR/lOUtia7PN Nshnd2micwTVjHeCQuNy0C93teuWELJf98grzW6CL0+VWOtKovziVqZ36zbA h5qdZ8JqyDzbvj57VwhaZfUp3j1C9ucLFlFs/HDYf/p80QRZK/6ySFgOe98R 7XeiyDxv3Ci2fAmEVbGlIXJkfqO6Dm6jQaxqItHrMVn38+ZtnyJs1FR0j9HJ PIfqJSz7RnjuDHbipJH5feWlGT5M/LkXWF2XQtbmGQeK+4jGk5mcGhiZ52Lv 12XvCN7Qsz5P35G1qkOxSBvxSHKAn+5G5pn52+/EC+LkPocNdQJkfml6vNyP iayIYLW9RWTNUA4yeECE6/uIlO+Z78+sChsrCbN4hvuPgfl858rV3iGmrvpp evnP92ehrmdFhPDwlqAhrUZA01ls5Kd8DLQ4iOuvXdUD6Kw/N1qlM8Ae1W0J s0+GAYNj9T39UzHgW2OGcMvqb4D+3G6G0Z4AFBnLflbz/gTMJeJWEm3JgGNu cpaj9zdgeqv9F/EtEQQ15R7udqXhjNIHS5ULYoFdv1xsAB3tJ8UD55WMTIAq rpf47APqx39euWp9cobN/uLKu/XQfoIZHzww4AcVb1RZf7mK+rHu79+NPIGw MfZxZu46tJ9YSHSduhEIBYt1tu+pRfnd+UQtrCwAmpku747vR/kbV9zn+t4E VtQad3cKobxxpLULch6GsyJzMjv3orwVv9OoAwdgV2ePp2jwevL72hLJvge2 PIzljDYn+6ma8n+3cJiyAdc9NoNq0aV5b96pQu4/jUf5M8m8SfKxuChCiZ9D TmPbUd5otoXCD2XgBjf+2StvyLq1ZDhJHMY4jhXvO0/mLdCZeCICnbvdwzg5 yHzxS44qrIZZASKnIvLIOndJgfQKqJnhenItTubtGC0pkxM+3dXe5t5N1gYV TzoXwTrjz47d3mTetojJ0v4QckO30DpG5u1sITE1QQwXRo5GlJD1skceH8YI gUHh1mY9Mm/avaZjHwmp/IotvSNkTds32NhNfPqofLg7iswbh3ZwdDuhswcP nts0vx8swzRbiKjNpjIjj8nasESx+SmxJ2TDz/6TZN66/9R8qyPOmycPDk2R Nb12dANBDJ/c2lmSSOaNriqVcY943Xv+e7DCfD+Vaj1XQlS/yrNqbSNrRpqw fiGxYmx13PSbq4BW6jMke5wLDN+q/Jx3ug3gIdlz7ccdwNbEoUbWV/0AD7UB 9S0hALvg5Zp0dAxk/RQPPyd6GdRr+0QYDqD9+YBGzB3PJOB9oW9t3Qjan5P0 VdgLkkG3I5c6/90ZwHS+prJGIAH4iDV+jLdF+7OtxC0dkUggsd+JXjWI9mdj FflK4AHED7qKHdRB/TRr9f7fbQfgVqdlrF1NaH92qt+5yMQDjpQ//Mm6FfXT XbdmYn39Yblu5eclYaifpg0tvxoaCPd4b/BjLEZ5nMvmS7ULhF3ElS13VVA/ VQneabs+AHbN3Ng6Z4n6aSO96ob5Ofhz53A9dz7qp4Las9NeNpC+JllpyyDa F+zvlTn9Pgld+t33+AuiPKuOPDoQfhxGVGcNHjRH/ZShqNzvbAwvbO7gPxeB 8t09IC6x6yCc2lHC9KpE+cb91OqsdaG7actvlj8o3/LyBO8zLdhcGuvQnSBK 7g+KLrO7YNoqazuPHeR+4JLJpqoCuRtcjqzuQDUt4sPmMHlo7Jy0osWZ3A9M 7yaNSEGxDSev6K4k990GxV22YtBsrbLFUAGZb07LcwVr4etPr874aZB51ij5 08gPX1UKbW/tIWu9HV6F3DA/yOOtpheZ5/yRpWNL4KyRt5aTMJnn4LefXtBg 7bmQb3VlZK2ueklommgwp/dw7yfzfGFLYv034pDhh8TVo2TdzNUZ8pko3uEm qh5C5nncRMSnn3jEsmP7Gun5fqrB/fY9ESC4bcfME7LWCVT/1EbwS+rwzJwg 8zz1e8+hZkJ6B+1mJet8frlvDD4mbiYxIzNSyXo8fPfoA+L8E4PbnopknrvP Ja2rIippQUl8rfP9tdfduowIeT05fcp+fj+gRz27TShcXFoyGvkY0Fz8Lz7a dRiULn60m5H2AdA8Mj7byvqCzv5vDo1JQ4C59FWhQ1sUOOlLHNke8BUwmKwP fykmgIDrX/hdHX8Axthrq/CKZLC+1CQjXhf10+u1CusckgCjr3zVCzEajt/Y WHUtJw4c33Kt0mwV6qf4Rs+4xadAipbonf1RqJ9mwZ/vGhyhgF5FjPwc2gcK rAKsr16A4R/Gh01NUD/1qtA92BYArwRarKpoRPttzXXjQ6WBcGypK19wGsrv Kmb4yw8BcEqjelN9FcqfyY5UCcIU6kad1mFOoPwNDo7K3joMBTdYbPqwgZzf r78K79SHxVXOY0nmKG9Omy/Zt++Bytc5X+XuI/dRkdlSTQ3Y7mx48N0g2V/p X9qa1WCsdbDUZDjKG5P33QFJJShq1PJyswQ5v3nXW9RuQX/+ldSddWQ/vZEj fUYCdstkdu2zJPNn9Jo+tB4uqWhm2E6Stc0xZXZBuOIpT6JxHLmfqs92vl4B t7y5IonLknnr394XzQVjBmJfL2kk689hDmmscNH4q7knNmTe9tenLJ0hStNB aMYcWdOOudVMErov7gfh6WTerBabLh8nvvxx+9WlSubNqZ3rySfivczNGLN2 slbW4fLuIbqDXzDKvci8SX1PDXtLVL7m0lJcReatWPP0lxbinVS1RNgdsqbz 9vc+I5a7l/m/MyDzJqqzraieuGDzSl3j4/x8P/9BHhIt71nsXQLn8yf/zuk+ sd3Ajf+qyPzz1sN7v0oIPY51wjXM+frFF6GbxL2A2FUjWtWApnwSLC5VB3jX zGOWo+MA93imWMSMB+I/7hr2bp4Eohe+DNzRTAYHBEXeF679BRgbdh3fJZcM 6LpPh/U/o/4XYWT2re4UvPq+dx+7NcrP+BbrXsIb7th/7OvWOtT/1ie8uYgH wE3WEbRuaZSfhp0PRIsCYUrd04ZFB1F+zHYM02QDYZDk9cJvPs0Abz8et13m JAgU9uuzv/UN0C4ZWRSdSwS9JpvfLr7zEzC+OCupdyaDcb3Llr6efwBjzX9B jdaJILw8+o1pItoH1t9pkAtmwI7zIf1Boyi/0lvPOOOBkDVLXjrOEe0DTbgs a0oglM2WvzU0PL/fNKhHFhBuhgVvWNvjAC2rc+Ty5WHsm6Yn85nIK8DsrUpx w88CD4eG8rM7+0FWLO/qvJfB4NbWlFszD0aB6OD0rg2lccC+3WHtlng0XxTj dmzemQSWtMd/5shG82X7uzj1mmS0/6+bXXRqBjDYMLuvLgkgqE+iU0+DfD9T /rhDJgqIjG/+b1Mdmi+PuINfy3mB1y0WxbHr0fUdv+zLWoPD5lfGJa35aL5c TbL9bOMOBY3oahUc6PpO9o0I7PaHaXXBeTF0NF9aLZV8PAPhqUOOb8EA+rza tybyPAJhbmfda0wMzZf/HiuK7wyA8T941c/rofnCq5Q00XYOfjOYTu25jObL H4Htr97bwFaR9hTTNjRf+jf5r91zCtaaGAwLsqH720lB22mZBTQSyxfW3ofu 7+bTcbnNxvBSQRjfA080XwQtawaDD8Ie6elfKnnofo85FUP06sL2HbqPBIfQ /T6uzqIppg2/dKz5mhVB7uuj6w9HY/C4Xl2rjTy5L51afv6qCoz48Wnx3WZU 0++6J7XKQ803Jt051uR8wXMlrDfDp347bj7lJPf1ElyVEIM5F7tNk7PJ+XLk iZSUMIy69JxhtZ28v39841VeBfcdlUk+3U7OF9q9OjUeeMmkzZTLiby/cZfm E+wwY8P40gE+8n6uiDFazwLZdF9k2hTO7+sbeaKnCQ/HyZuDGvPPn1n6G78T hFlEYUYfWfNr53KMEOE+5w5NeZP3d7H9moF+QvMgu/5iUfL+Zij6n+siquhC yQnM+fv98H7910R1rmfEs6Pz+1Ond24zEVW6z1nl1/z9bytg2kCUinRt142b f/5MsMRqiY8hFe5mUvP3d9mzjCpi+N7iG1lP5ueLTGV1GaE/XtzWfmL+/i7T kComqtu8Hn9RfAhohac9Q1wMQEVKkFDukS7AHPvxmV3ZG0hWvTRVoqH5sv+F kuzbSJByRP+b7favQBS+/SXUeQVI7+y5ZrDuB6AF9TnUX0sGBUu5HDtm0f0v lV21IScJ/OkMGo34Pgdot+v+TKy7DIybzV88+oKeN5WDewpDz4D9D7k0Ik+j +VImoD4qaQ8rbrMCybeoP3jIjDhN+sJ7Xpe28Cih+3OH8EM5tI97/dncrJmD +oP/OuF1ZYHwbQUnIycM9YfSlF6jiQCoc+/ys2PXUf7K+2lbFcwg34S9T2kP yp/huswNLEZQ/OpyCQUelDenbb9glT5MLqyQOqJD5u2TW6LWXjiQuFtNASfn ibPI1mgN+DO5/VVaF7mvu+Wr6O+Ah9J7YgYYZN7kWM4GKMGMgD0Bj9eSeeOR 19WWhf3Xj5zlriDr2c33XkjA0HD3ySdHyPcf6tuCMFFoKOHrs2aEzJ9lSoGr IHzqwFGyM5TMX2H3eTk+mO2SF9qykcybmJfO0qXQpWLMuOkBWdc3xM2xwqvV +xowSzJvIfqLrswQE+6h27R+kHVLqJ/YD+JX935Doctk3n5Y+1qME+bs4txn 5Mi8qd6xUBskyh1yawWa5t9/xBa96iGOt6Ul5jiReZuaO8TVQXwXGc9+tpTM V/eakzqtRGD+6NWjN+ZrrmCnRsLpy8wekz3z80S/jPshETT29ePIO7LG1x2p hsSeVDtlI08yb4xr9e/vEzaLp8TlV83v5x9DNUsJPrH2nwr35usng8E3iafr nTTHI+8D2pft5nmCysDjXqSV8rJxIFrcMBtuHg8aw65/qGmfAHS0Cy8RTAbt zi9ufn0xDZjsQ8uhUTJY0VjmEV2L+h9H1MHBJjrcrSk79QdH+YnfyUl89YJn Pk0q9qej/sf2kXmAPwAu6z5aZbsI5WdCPG5NfiAMdqariGEoPwZaGTJYIIxL rXH4lNEEaIcniryzLUHlBDcj8+Q3IDoxbPxRAs2PESGbnhM/AW3Np/8GOpKB T662XJ3sH8CsebN30+1EILuuI9jAGc2XkPszcBcDLuHeILmjAeWXOMPU3xwI BwX/9K/dg/rt/Q3P3a4GwonKz6EW3fP73n7FkQJi8I6Z6letm4AWcKoj324d EC4Jn3FVmQBZ6x47/XcnCYyLK+73VUWf/2joi61xyYC5Tuae/mH0+dpAZW+p P3z1ckzetwT19y/4sTNXAuGx55dWnBBEn++w9vbA44EwTzUt5fPgE0BTqfyj y3cUdKycDU6CaD/c9Xov69NkEG9yvUk/4TdgdBlxDSgkAQtt4xs5vuj872ca t30PgMVcl83kJtH107y99x6az83nTSe++zABTYHeU22uBXxO1j9Y4j0J6BxR vTo2yaCWsF9+xvoXYJbq39ZanAw0x5i7jQ+j3y+rnbkC7Yc7Hm7XlWabAsyP 0UkKr5NB0ZvPV1/wofM3iZPYcyQQimw6fY4jEV2vzjfrOGMC4ZmL/710nZzP D5uyQgGBr3pxUrA9ANDwegfd4qeYW2S7tIV3K6BNN/5uJ2xARvv9rSJf+kCW 41CG88Fg0L9EWlfefRRkDS1VkfCKA/jVj73Jdt9B93Bq2HqhJNAY5NAq4z0F GJKhLIIPk4EZ9ybLX2roeY+xiNswOwFw1B86skmWhXx+uV1cEgWEakP8jheT z3v2m5w3e4OilUY/FZaiPNI/52VIKkMxdp/QpitoHgvdrRQec4NF2bIdK3+g fJgv9b22yR9yMz4HHtmPPq95qNtvp0CoT2Pba9mCPu+PA7x1FwIhx3BHIasg msfdNNkGnQA4dr6+VkYDzeO4nyvCOZ3gl7cM9mdh5PMevfo+jy2MyHbXH3+G 5rGJ9/omu1NwmG9ndf+0EOp3Wn24vgVUbStUqQGoH47nb4ymHYV8didWnHVC 81gn4VlZwUH4Wmyd4Ko0EfL9GDv7Bj0YJhMik/MB9ccsBwMrfW04O/Ze0f8i 6ocMl2zYjkHszFf2EzLkPPbeT29XgU+Xi3WxNpLPf4KY7rQ8VOWq2Bt1EvVD vOLu3tzNUOR23n2uxeQ8thXeMyQGn9bcO/o1jdy3k5XarYXh2fdPlh9VJPth AJexzSoYlKv0tKiVnMclXzr9eaBPLavQ2FmyH3IqXkpjh2MXpZ3Wc5P9L94g YS8LFL/v8qMyj6yn2tc8nSYMf8K4NnWyH/aeMT/8nZj4cHJbbxdZM+YcdUcI j3X2dq/dyH7os48uNEDQph1MfwuR/TDm1uuqLqKdLVKnr4qscYXwgNdEzGm+ Z6WHyH44PlT2oplgOo4ddp2c//sOPqG4BuJuz8iyrEiyH8Ycv2BdS2SdHuvU 3Uj2wywh++4qYlHcnpJP9fPvMzLYB8sIRd8orcvmZJ67OSV0iwkW39IWp8X1 gHGv6XeW7H6gPtAXtL30PaD9d5RlcocX0JN88OLjnUHAlBpq3G8WCe5pJOCs fF8B81bVy6lbV8Asm5ldzcQkoD3129WXkAycynuPzLT/ArTmzCIuIgl4nYnS D3o6B5hRx9fGmV4Gh65WvP3zDs3jd6+2+xjYAPEltFDZg2geC25y2dx0FnL1 SglseIT66ZRnyeI0X7i/weS5rSjqB4+EWzKvBsCR8uhb7DHofs5JXG+A5nFT zCsVZQbqN6kHw3VmA6CTk1/6pnQ0j9s5cbqdGfyR55Qg047yR191PlHGCBac HNjYsRjlbVwTtvzRh1HX3u9WwlDemguOffDcC7GYvs9uO8n3Cy89++9qwCVF aQK+b8l5zPuhLnIHVCrnefjem5zH2axrSpTg+2SGmcBq8nnP7phAiCzs6Lj7 8ucdsvY6sHOxJHxX0UfjOkjm7cfKz6dEoduxw17On8g6vmHdTUGYB9mwrYFk /tbtOWHOB989KKpYu57M26fkF/uWQquN61aXVpO1FehSYIPfxIK2eJqRedMe z+uYIVYNbIm48pWsRVpLj/wgWmxXq7BHzb8/25N/cZyIi/iVeEOazFszp+75 QSKX+2rnRANZh8pKL+olhH1Zr6XYkXkbLM3U6yB4604eFGQn82VjeuG/VsLY JqQHy5l/f7bLobyRuFp4dXOCxvz7Wsl88JAIKaFVa7aTdfO9MBYmQfPKStJ2 nZ/HMqKryglGt6qsO+/88wy2zLqU+FF09/RI8fz8SYiovkkYOX4w+aZ4F9DO S3QkmsgDqd2Fp1OffwGifcHOLpvjQdZh0esyxRMA51l9/QktGWSI5MfzF0yj OsD7xelkMLysAMoVkf0v1TUs2QImuB568VMW5SehvIgn1Av+Ua5rxS6heaXp 94J/xh9eSKtJ2jqG+h/7rSvaOYHQS0dmtEQZ5WfLf7FWewLhG81JDxvn54Cm flGr5cRx8LrbuEl1F3res/f8ljeXACzuXZYzUEPPe57xJ0vb0Xw5tG71R3Y0 j1n3qpq9TAQXDObMdS1Qv216WnBDkAHTjo09ir+L8qvvtaVTOBCatZ2o7VZA /fZ65ReRvEDYvvfJD8HO+fli1iBcSPwxVDs9GXkd0HZY1scE8oNxL9aHvcsn AOPz0C+5xCRw7yWXchbfNKB1HiGKMpKBsd2U8Q0cfb5x+dMZSf5wT5QRt2Y6 +nyr66L0owOhYY5xwzg3+nzsXCeLrQLhyIfWXPuqBsBwVkqSEDkCit67HViS iPZp5S+/nGrR/FnMuOfs9BvQ7ljQlxgmgYnYjbpzZ9H5Ayfpj/0BUOzx1PaJ bnT/sT9oqy4OhDLKYnNDGQSgueXsOlKPA8Mtu8JcD00C/Oz0gJhxMgi12z0Z qoH2cxexl01CyaCsQHLjWoB+v/WgtBn6/dzRxSuSOn8CXOHq05Nvk4G2RIWW NA2dP87aLq4XCGP6nu5/HoCu19KaLhW0X+jyHwZy4/N5Mui0KCD2C4z6/tZK AzSTFc8sH89guEw168dHaJ76C/arlCUDaXbRJ89c0c87mSN93D8QGjvbvOvZ jfYPm22fDW8nAw68/ptvOTqfN72HXe4EQvwlbcvYYAWgFR9ifFJRBVNwq6Ah C/o8Jp/V52STQcrGb+9zBNCvj9CrO1EYCO+JXc1yCUd5UB68XIOe/93ME9iP mvGQzxc5DhmB8OxSIviHTzGgHa3Mbh3fCKQ9TK3MLFB+Xzy/HxqUDE6uCjtc /hCdH0/FxGf0/L9EN5iQHkTfx0fePtCcDDB9Wd+znOjniU2Lad4MhPlJer+S rk2iPHj4i3kmg2aFYzax1uh82jVqdNH5n/lNBFRvmQK0xKT+/JfJIOBX4qnK X/P5+rSbrYB4lSHoqdF+Hu0vD6J66guwckUO+vXNrYCZcFXMkcUGyEfdHvrZ 0AdoFnd4nFcEA9p356QnB0eBaMjYwcnjceh6XntkePQ7yJJ45LWZMwnIdZru 3WWD9inbsqYrDej6tBbyuEnMAJqagHvK/QSgq2zLt2oj2l8GrrebTkQBQZm7 QVN5aH+pz+NOz/MGQmVNQotY0P3L3Ldlw3tpqJvFPaEXgfaXsw/w/ttu0FMn XvrBCLqfhl6CVEF/qGOR8W27JrpedheXXLAPhNpvmmbGGtD10SP876Lvd4fz GYGPfGh/oV3BLhkEQGEFkRAOdbS/XHgp2iPoBMcytGtgENpf4i+ufSxlC4dO 7s3f+RjtL43fe4kLp+DsF/ncpxNof+muxU3PWcCColt10zvI99XHLPIEj8Ij es9jCDu0vzCWp2+rOQibRW5LsiWS+4vkXgtcD/ZuFO8a6kDzhLFSOslKGy6Z hoe/BpH7y+fyuzMYLHLhEHsvRXqNmZfB31Xg2TVAt/AJWZcu11ymAO9stP29 iE6+LxTXj6nfDBsemdcULCKf3z44fZ0Vg+/as43TU8j54a80cFEYmizRMWqW I+dH6M/rAatgduP9k4dfkvvLOh+JPB7430+hX5Y25Py4qbm+kh0KVO29Wr2U nBd2ZzqOscCy0YcbrHLI2m385adponpn7uL9O+b3F+MYu+9EtJj+r8B38+8X bkTajRBjDsPuu13J+aGTrbJtgOjev8HSTXD+fbXSvt4u4qPxnqywCrL24H6T 9prwemhxVtKQnB+M7dP9zUR7I7575ff5v+9uelHUQKhouf7UvUTOD/lCRZ9a YuYVB3ed6LzXeHKBpZqImjuz7VLt/PuF4bczZUSOlq/XuOn8/Z+LHysmcgz1 TUoc6wAtZcYsMEUXXAhfWcmgvwd42ykXC+gJujrLw5mRaH+5zX23TCgS1G+v /GQwNw5ol8aXrEu8AgZtBQxcu9H9dHDw7LfoZNDK/eIJ9yP0/NB3riHxaRKo kFk5N3cX7S8Jr0XXul8GhksHuxJb0f4ysTJWUdkWxOR5Fc7sQfvLoEJey/qz UMm7yj+jGs0fgtge5+gLV5+D61avRv3TvvBwYnIAlEjUFB4ORver5XHxnWh/ 2fdHjc/Hm+zPxzO2sgbCoAP/hSxPQvuLoatwbqgZtGGc32jTivKnisd8xY3g mObBa1tZyP0leTBinQEMzTxnJKaG8lasdlz+yl54NkLx4Ro1lLdmDx6LJxqQ u/zC9tHX5PsFP1B7awfMeSj5wdQT5a37uXxygxL0yU1/VMNPvj/YcUrxuiw8 MnE62L6EzJ/U3q2ikjDkZfKSAv3591lLCDdRGOqGea4bIPPH27y4QRDGDwYE XWeQ+VPJZXHhg9ODioeYwmTeeDt0bJfC4ybKPzdWkrX3K0U9NihknG0hYELm TZD73swMkbfW7z72haw7YjzO/SCwoj/5vpfIvOnvtkobJ2RfDJjrSZF5K7sz HjVICFuKDp56RNbqY3xreonfzffyV9nO+6D1gfYdhMgq4RsE27yfsFCOaCXw hhZGaTZZ06auv2skqjgnhbaB+X0l0cDkIcGxMjRvtG3+fdas6UomcXyo8mm1 M5k3UTUOhXJimb5piRD3/PurB66epYTNfzlp+4rm+2meVPtNImXVaiuXxWWA dm0yOV1VFmgrfL+jnP8F0L9Zb7/BEw/Cy9+F96ZOgO4h1RUlE0mA5b94DslE 9Dy9PHlu2AHN71vifXPXUP/zmHiTsPI4hMsHdvwnjvIjPyvqdMgLNnRuFh/x R/NdfhFD/qs/vO/lxL6iH/U/zkcu4uh5fvJOTMO0HMpP2ug3G120zwjEzuZ3 NAJGxKRTu4456H/t9V+w9DeA27g9lR9JADprDVcukUDzVkeVa/WbZJCbz3np 58Rv1L/dMlb2JoLrg7ENj41Qv10c+uHhYga0XnRkteZNlN97F69YCwTCy3f4 Feo2oX77XyVb03U0j7nLZd3a569Pjtm2QiIkM9/7p2IuoJ3mMLLI4wUdH2B+ 8vR3IIovPZQUmgQEpX5eL5mbAvj3xmm/nGSwgc/yuvF29PlkpS0VLvlDP3t2 X/HL6PMlh69fGhEIn/FUX1PlIv8+kj4paxMIo+6ck7kl3gBoi7hz3WWMQJKm kkJNwA+Ah/iLSRHJoPqYvXTg8d+AofMS3LFIAlA1POXmCXT+3tsi5N8HQPPc wrzXr9H9J6f55UpJIHTqNOWyc64BNOHoij8rANgRO20vg6HnmTfQMH4/2i8f KNimbEX9IHHqwWaJZDAW+jZ2Rpm8fwvHDtwOhFPf7Sf1H6P5vyPfx6sjGfA0 ro9/8wP9ebE27u93B8KnD3yrbnug66VWtu9GYiCs7tBwixidv153J/4rIE7c eVYwF5kIaOViR7LKJ7Br/vnuP++g/WXL+7mu8mRwaqBle9FZdD2wVHuGL9pP XoszkxTQ/vJh1aa7N5KBhoj7CXoROh/W2i1v0PwP9lDdfq6qHNBknZYKCKuA XvHPv5eMToCsU8X+MhtRf2PJ3X9xGfr1qtxLX9wIhFkXLYKk3dD5bzHu8EH7 y+0d+9zUDNH58hCmF7ICocXpzxu+ZBQBWn94ZuaODSCyaXe7nR7K7zdeF8al ZJD6fWdtShU6P7O75juTAuF4kcbVnlZ0fs3yJ/c/TwbuW7o/759Df95hZnHY rUAYN8PeZRCN9qmpYy4fnJIBJy/3G5fjpE9bD2tK0b5K9z7jIojywX5MWvBV MphghqSsnpq/37pzhQoIgc4VnLzaEYAmmHrm9uR7zHarv6VQFNp3DNuuGDxI Bnc63mESKejndekI7Ub9dTfBJb1/ivShJf042rddD77RSzqA8q+yGf+J9s3z i57qfx+8AWgerlwRDwVBvUelrUEhOv843gdWj5LB0ODuJys+o58nPOnxGH3f 3o0uZar7UK32cmg3yo+49IRsz5efgBasJzmJ7qc09Yv5v32yAC1i8Ey1Ghto OrEiKLWW3M9E07+iz0ffDc7ViqJat2prC9rnGmsGqqsz0PnsevDlOrr+wgMN HS5/fgDmGuv09y3JIPFw/nSRM/r1GmHLK9D365OwKHOxBvq8e5Wb+5qSAa/y jS3HZ+afp6ZXjt0gKM/LXHLVUsrgDqA8b/NRImuTav6C52W2/Lc0/kbsgudl HJQU8XAOgJTnZTqH3r7yOQP+87x8W9/V5kLK8zKdWZZx37kGFzwvcBVh44yD C563PW4li5rfgueN0VJePdqXCBY8r+OuZYds0wHleaV2b2w4tjEVUJ53/YtK 0ZS1CYDyvMLfG7p2n48BlOelrz997olLKKA8L1PpSXqMZwBY8Lz7ZrNS7/oB yvNafb7N/2zaHVCel1/esqwjxRFQnjdH1B63ELUClOcNepip7hJtCijPi3vu Mkg5bggozzuiV6k5kbgbUJ5X1HE79iBgJ6A8rzm/8ZJwbkVAeV4p9WUv1D9t ApTnLW7hYheMEAGU583/rHZqRpgfUJ7X6bJL0ObLnIDyvKGGu8QWn6aBBc97 /OLOqPxJjPK88mdS9gZkfcYozztu6er8clMvRnleesx0WTZPO0Z53u7g267p T5owyvMa3hCr36dXj1Gel3Ff+MqztgqM8rwx+yXZz34txijPS/92yE/KNg+j PC9+86ruurQ0jPK83QPuF/Ua47AFzyt40UKx+yK24HmfFBW6F1zA/nnev8c/ z/v3+Od5/x7/43nnj3+e9+/xz/P+Pf7H884flOfFwzz3ipy9veB3adEJ2/xf Oi74XTwe/kwfjIeU38WLLpz9Gn4NUn6XUSqyb92zXEj53SzvqAyL0xlwwe/G sSkdyD0PKb8r/85y9IBa7ILfbc54K3+fLQ1Qflf+zVpF7q40QPndpO9CE9oP kwDld6XkuUTD5S4Dyu/S1TkeMI5GAMrv4o6P+iBnMEixswC9k3w4veXu8i/1 DCBg6c1w28KP24dVanv6+oJhgyPH+q1W4bhCfzZjkwsQwEZeyGSi++HezqrI lzaA8r83jdXtIScdUP43bbPPnncuRoDyv06bttsPXNEFlP81+i6/mV1dA1D+ Vz5jJPz2PhVA+V8Ozk3g9AlZQPnf/EC1sbi1G8GC/5XQCaE/EQSU/5XyEQ6v 5OQFlP/NX9+/utmTDVD+lym4w8s47xdG+V+6+ptdP/S+YpT/ZfrybHE9/RGj /G/3q8HSi1HvMcr/0mOrTj3EWjHK/9I/WMb9nG3AKP8bc8nvtpQCE6P8Lx7W xdAaKcMo/yuqNJBjF1WIUf4XH3prVzOUjVH+F9847ieqkIhR/pdxggFEvkVi lP/N0uD5YCcaiP3zv3+Pf/737/HP7/49KL/LcECbWEDJgtdl3ipMyLMMXvC6 zI54tpWeUZDyuqJTtsGeZdmQ8rqMauWMac48SHld+obGNtq9bEh5Xfzio4lF FSGQ8rqMLuNtHTfDFrwuXlVb23skBVBe16QlJij9UDqgvC6vZXveEtYUQHnd soGc3rtX4wHldfNrmdyB4VGA8rqM4ZbHjGsh4Knefe7QXJTf20pJPsH+YPPi +JiQnpU4Q2tplMUpP+BY8uJ4+spVeDcW9o3L8T/ge1pypcFhAbw9Nzr/XLQd oLyv1bOWCcufJwDlfV35zZV03xsDyvvqFKTxF/gdAJT3Ff6Vuj5KVwtQ3pe5 0+rTpjpVQHlfj6EqW5N98oDyvrz8DRuXWUoAyvsyn4vg24LWAsr7lq9wV52c XAEo7zv1p2Vqf+8SQHlf+WDtH07RMxjlfRm6Y8v7zb5jlPftVl0V8+XDIEZ5 3278nfnBE90Y5X3pSlMi9UFtGOV9GW/1GoNrnmGU95Wv3q11QbQWW/C+3Noy f8B9jPK+zLC0+j9RRRjlfZnGIV3RnDkY5X3peWG1y2uTMcr7MuQOb7d5FINR 3pdR5nxf3CIYo7wvQwJ/fnvYG/vnff8e/+N15w/K3zID2uI4pFMg5W+zOB7q tQ3lQMrfGgqlSv5alAspf5u17+moVVASVE7SPXbuD+qvPxTWWr42X/C4dOPE zSVD8QseN+u20PP7rOmA8rh4Xbsfj0gaoPyt8IPw014NsWDB32Z7aVsZhAOB zIYQI1Y+XDSqyrwiLxDYXVrspL5nJc60T7tQr8IAbBUnnc648+NZz89fE030 AtZjHSYy91bhja4OsEXEGRQLlEZwfBbAjYJf+webngF1e3LyGbKCuODhRW3b rpoDedfDFi3Oa/B8kdMfMvQOgQ+9YjJncoRQf0gGJZN7AeV/p5KbBvY+wwDl f03Wsl64wqMMKP+rcypeRIchDRb876/Oiy6rNgDK/zK9Th3sPywAKP8rL1Ld uS5nGaD876DvcsL60CJA+V/0+B5tt2QKo/wvr0/TGsHhMYzyv7yZ+7M3Svdj lP/lbRoOGivowCj/G7NNxe68ykuM8r/dv+xFvwU/wij/S7d3sH46Uo1R/pfe EfSot7UUo/yvqERXjMvbfGzB/+q7fldblIVR/jfL4BJnWE88RvlfPLK+MKQ6 HKP8L1M78siu9f7YP//79/jndf8elNdtiO7gy7ApXfC5zNutXAkHIxZ8LoMn dWNfaCikfK7ox7nwvdlZkPK5zI1jAs0/ciHlcw0fmHxKf3QVUj6Xpqb1e7NT JKR8LpOn2ibsWdCCz8VrfM10VJIB5XO7WXf51p1NB5TPpcudy/ZMTAGUz213 aA2vsbgCKJ9bHmwmwiiNBpTPdZqMShkNugh6q079MPPlw7uNSo0+TvkDRZOs JO5qtA8/OuLA9PcD8r3LPkwP8+Ou+2bt6gvcgLxnXRldVgBn/lC1HeVyAJTv pZu2L+FiOwUo3xtzJfs33GICKN/LazTHuMlnACjfaxjN+2nSRhtQvnf8U2hd 6ZodgPK9jHb4VEBSAVC+tzxtqEQgRRJQvne8Ryvrz4wwoHxvu231r5ssKwHl e5krg5cqK3AAyvcWn/J/ySI2h1G+10nPJc/BcwKjfG+Mb7zZjMowRvne4nBX qyqsB6N8L2NErEf8wWuM8r3d/QpadLXnGOV76dHPZFm31mGU72UGNfBsDCjH KN/Layy67rtAMUb53qzD5x61yedilO9lrN6r6iKRilG+FzcWeTL4IBajfC+T aa0jnhCCUb4X94rqSFTyxf753r/HP5/796C8Lc7rf2Q8MRFS3pbmLaxtrpsD KW87voV5UM4jF1LeNstTx9opIhVqCs1qvS9E/TNerUVLyhhS/tbpYuJhDanL C/5WlE1gzcekNED524bI1Q7uIWmA8rZpVSEnjnnFAcrbdovVDCjrXwI57eKd 1h3o+ezWjUHlg0Eg4HfJUR6RlXjWcBrh6s4Ay5ed8xg7iPrnH9vTpTQfILVe sONi5Cq8YWDq2Lu158EpaYOtQg8F8Ih9Fzk0Iq3BVtXzdWfYBPHi0FFxS30L IJ7mvMxj3xpcvViHj8vkMHg0mjXNvCCEl3fKa/Ds2gco72vedHH5dl0cUN43 3+qbsLDENkB5X/m9qSFHPskAyvtOZX3mOrBCDFDet7gw2vB0yGpAeV+G9Drr IwbcgPK+HFm/M+0tWAHlfbPKz2mWHZjGKO9r068k1WM6jlHel3fqjJkePoBR 3nf82QW3rSvfYZT3jcnLfGWq1IJR3leUhq/QqnyMUd43a68en0QqgS14XzlF bK79DkZ5X9HRg13D0gUY5X27R3lVtL5kYZT3ZfC8zMpiScAWvO+AMHTUi8Ao 70uv8Z2GggHYP+/79/jnc/8eC/62lmtf662rkPK3TBa5W1G/c+G4EKFkOjML uqM2iT0JzIIa1WHLl/qh/THuaJzuzqgFn8trZqZ/SzsVUD5X9IVBxyexdMDU ex8YFboCZ8p28XI2B4PSTq5Nd5/z4Yw8S8n96/3BYrnr3QNs/Hi3QIR3qIQf yPiZSSR+QfdPFE9d+xsvbMHjWteVjluj8/l/j+uUY9ldapcDPdOqrQsKF+Pj OvyGx30TwGt1N29dBQ68/GqutaRO+oLXxSUc/WbzUkHoaXtFjS1oH3X4vRFy BAKjtaahto4oz36MlNBFDDC2N0WC49pmXPQPqBlWZGD/43fnD8rvZnWUburr LF3wuoyDKrv8m6MXvC7tqBPvB/9gSHndblslUxfuLEh5XWbddYd33bmQ8rox t7O2+Gpcg5TX7Z4JK3M5GQMpr8sYYFlqsitgwesyVmofS76cBCivy7vURMXB IR0seN39XinZXSmA8rrNXz9c2VpzBVBed8J48TUJiRhAed3uDYv8S35dBGPf 1c5q2/LhWTcCHr3ZHgDu++elHbqB9vXpk5Mnk/1AjFfh+vzX/LjPxcdVowbu gIs1LthWSAAvExjYsLvZAVDe1/X56g3yMacA5X2NhN7wZHWaAMr7MovNP8r2 GwDK+9qItXAazWoDyvuK2t/lePtsB6C8r8eiBI6XSQqA8r7FbuzXjbFNgPK+ zX/y5Bxr1wHK++r8lsAOR64ElPel48oJVR84AOV9DTW6End/n8Mo74uXVjp2 ck9ilPftbry9lT40jOX8v/eVP/fE8XFJD0Z53+7KtNgVZ95glPfFjW5c6J19 jlHeV37sFC2rsg5b8L5Hr++7v7kCo7yv4exdnvqAYozyvnRG8ItnT3Mxyvsy 9qSNGnSlYpT37RaIHlTYHYdR3hcfjhp7q3oRo7wv7hB88umQL/bP+/49/nnd vwflb5n++XPPtRIg5W9Fx3tUvceuQcrfyq98dn4iNxdS/pZ5gWEF5tKgbudR 1fhANG/Cb55aLGwDKY/rZFAgdVYlbsHjNvf+d1TcKA1QHlf0QT6bT1kaoPwt 4+qNqJhXcYDyt4zXQC7x5SVgN3ko+OtD1C+ql5cmFAaBKKXQZ1OcaN9h7VVJ SWOAuG3/+SgCflw477+tmdU+IOz+PSEVz1U4/cREZVPmeaBetm5OrFQAH6yq /LxH1gb0y79tfvtlNV5++P7bcllLIFLM6NPdtgYfWT36+2ffYaD2/QN9zE4I fd+Gabs+7QOU/1XmYeWxe4ADyv82DDMj3e9uA5T/zRJUFRzN3gIo/ytffGbq crwYoPyvTajm8UcSgmDB/4L3mkpbeQDlf6cynEXFh1kB5X/HzxXhz35OY5T/ FdSXHtv+chyj/K/TFsHL35sHsAX/e/CSh3XTO4zyv91TdQXy91swyv/idwTF /c0asAX/qzQbH+0NMcr/MgMjw17SyzDK/zLWb5Iz7yjAKP/b3bQ7uuFsNkb5 3278jsaZxASM8r+Mpc5pd9dGYpT/FX3sL/cgJQD753//Hv+87t+D8rjdVevO hytfhZTHxd1ByMySPDgi93Jyb+EsaDagK4+IZsMddC0xd1M0b+7tzKycvbTg dccHB8f0WlMA5XU5xmgmcbvQ8LRZulXQdQXO+4Cmwa0aAoiVPSkZFWje/Ddq MWvoD3I6IyM0J1CeNqYb3jT3A29A8DqFj5txWtV4Es3MG6N8Lp50Yc1G2VxI +Vy6O0fS5aoceB538xEIWYzjL7p1VSqugIsEnfMSBweObzD/FCCdvuB3cU4r SYX+VGAQkPLu6Wo0b+58nFhmHAjoh+X+HDJDz5+PIgTV1jLA2URr9YkkNK+9 Lif4Xmdg/zzv34Pyut2SL7fGsOVBlxdh8bzOqP+7JLHtaUwGl5bWGg1OcOD0 IbHwmhPp4HVgZIBzLhrefaj7aV+NPyjamhL/tAn1byGRoIvn/MC+ZoPOU62o X4g+1e0L9cEov0v3DrVRysiBlN+l8x5d1q6RC4cebJNYdp8dx1Pc3PRb04DL R8feHRJceHmGhxuG7m+3us4+CUV0PTcoqPgeYSx4XTqbaG32p1xY1PDBnJsf Pb9r3+8zK0gFcx5JqSsiOfH8qGPSE4vSQWqof1DlGn7cPmVtxQmtC2DKx+yo 4xQ6v4+Jn67aeWGU76X3LOb5lJwLrb71RG9/+AcwNi2u8VyZA8WrLo1ymnGg /nygecY8Hej0BfAzAtDnffLj6fBbP/DP+/49KO87Lvz+UfCqOwu+V5Tt9pei hpgF38u83Sje8isQUr4Xz3XZmxecCSnfS1NeJ/uuJRdSvpdWt7HVyfsaXPC9 VhPGe1ViIeV78RUHExS/MBZ8L/0iGDqzKwlQvjeLxXIMs08HlO918qalHmRJ BZTv1YnO0rAduQIo32uv5OMToxcDKN/Lu/UNS6tKKJjgkRBXs+TDmUcu/Tph EgC8Em5kTGSi67E7QP1znh9gPvoF/Br58fpYtq9aOe7g597p0VFeNL9d/uP9 qOwIKB/skdisVv/mFKB88M2yAPYhZVNA+eDi09tE/DYZAsoHq75aM5GsuxtQ PrhBfVFbqeROQPlgHcczQftbFQDlg008A18rxm0ClA8O/fz9fbKkCKB8sOHq qancVysB5YNj8lbrtapyAsoHM0tLmn9tpQHKB/NO0dWkj01ilA8WbehSO6r9 GaN8MP1ZRYjdSA9G+WD565YCWpVvMMoH05MTehJONWGUDx6PeeftvKgeo3xw t+Kr83J+FRjlgxnFXhurKooxygfjJk1r7dbkYQs+mGkWlaCehlE+mLHnipRW aBxG+WCGCOPtl0sXMcoHM7Slu3p0LmD/fPDf45/v/XsseN3fbKl8iVcg5XW7 h41O5NZcg5TXHTdU+J1WkQspr4ufvmMweScdNlUFlZ47h+a3SNCi8SJHSPnd LEGnt5oVsQt+l/fkLbHHsmlgwe/+wXe/eZIGKK8rnhp5+RvLZUB53eYPV9ap 8UeAJtazZveq0Px+rL9NoSMIxBu4BI/OoX7E9pzXrJgBjHQ9Lrzaxo9zXDgc aC/sCypZl+xcfm4Vbv5Ibky27zzYPB1kfT1fAA8q9bfvvmADwK2Io5cHVuOh +7qMn2VaAuEdHAbKMmvwqcdD4bYyRuDbf378wSdR/qxCommYLqC8sJHWA4bu LA4oLxwjrnFaYG4boLywjtY3waUssoDywuVtHKkpb8QA5YVD19VWcLkLAsoL i65l5V6cxQMoL9xwQoXpqcAGKC/s5JzhztD/hS14Ya01N6W4v2KUF44xGzO/ L/QRo7ww85x1Vrvse4zywvISdF//Xy3Yghf+LWigdLMBo7wwvVS5QmwMYpQX Zuj8VFqVV4ZRXjgr+p5Nk1IhRnlh0eeh/a03sjHKCzO+Hnhd25eAUV4Y3xBz TywkEqO8cPexrafXvw/A/nnhv8c/3/v3oPwurX5YxWgyG1J+V1SmSzyMMw+e rewwBgGzgHF50srXPhuqKGZtubWHDafFsfjZtYcv+F76b8fatQkpgPK9Oots 5F6i57URNzHW97Yr8OZdD9aYOISAerlGo8u30fyOljPoO+sPzozHRPUPo3nD N8ZqZekHJvp+Nvr2oPmdZ+iRmOWNLXjeC/HZoctyIeV55WkFq9GmDx35WkP2 uyzGGaI3sJ5DVwB97oihzASaT2dm/HQF0xe8r82mQZsYljRQGlNSEr0cPQ+l bL63+EIgOHNO6N5ew5U4fYlFebYUA0iBpr3Dl9H8XvpqcLKXgf3zv/9/v/6/ 72Vos/NUzubC/bx+ncXmS3CmjJRke0AyeLfrk0xfDweuE1XrusQ6HbzL9FA/ cxH1bychpZwOf+CklZ5g/xD1784u8NEdzTPX2vDips04M3jHtZp3PhjlffE7 bzz3/5cDKe+bZe21Z5VFLqxdJGN/8yo7Lo9HjFneTwP1gvEV2/i48NDY88nv HdKAz4dH6UJSK3HRkBNyfGcYC763W5z9fv63XHiRs+1a0dwSPCv+csKERyow LKw5v8wLfV/dFlWxK9OBRXpQiDkvP/6HRf/z7vwLIOCwLI/eBPo+3COyQ9O8 MMoDM7HPNlwBuVA6s9LdLPMP4L2B82fiOXDmN0O5YDfan2gbxa8fTgf6cw5N rh7o+11Wv/PmmB/4Hx/8d37/vwfGTRwD3o7kQr+rCh3tVRz4lJ07Nozm54T9 tZTiUvT7y/1/TUT4gX4LhZD74r8Bb3x0o3hMLnQJWvVrxBN934lpbW3uaYDv 4Y/6pkn0/ZSobj2yKA9O8HBsWGTEiTef0cz/LJ8OfjebrBf6ja7/rbbZ2mN+ oDKVz7F/GPXrg5GRS1d7Y5QXZsoFr8nUQ/uOr13tsDCa51ozmed3pAOz7dqa FlYoL6diowK4GQtemH5+rNCQIw/ueJvmO8rOiU8JqSuMmaH8r0mMk2pHf57l ceEKGz/A64932T1jx+mHhjfVjKSBPyviJbQifwHGI7Nzrh25/3yweoJl4G2U L6+EPFtHDpzB8+qaklU60HycaHYpAv28+M0veh75/Y8f/ntQfrjBfKPgUcU7 C16YmVO0eKVa7IIXZng9ZHdUCYSUF8aX7jj6QzUTUl64+2v0l7XPciHlhXFZ R0Z44jVIeeEsPnrD08xYSHlhZt1lDds9jAUvzDg0vXXliiSw4IWv5oix2KUD ygsndYfw2fOlAsoLi95KdmZlSwCUF2a+VhPttYgBC16YeSNb6Ugo+JEu5K9k huZPcol6v00A6BQtzNydiq7HARfJtUV+oN1erPnsY348/nnHup4md+A4vEVM fpkArv2q+fpda0dAeeMR21l8/PcpQHljq71jpYtPmgLKG8u3JMq7aRoCyhtr v3ihL+68G1DeOKbum9Jlo52A8sYNLA86WsYVwII31stqi63eBChv3JyabL7V VARQ3rihqOpd8dRKQHnjbq3uva9PcwLKGzNVPkQM7aMByhvHVK81qvCfxChv bKh+cGb3+c8Y5Y2b9ZI3LOHqxShvnCWQ59vY/wajvDHTZFnuuYQmjPLGvGt2 RVZL1mOUN+5ece6hSUEFRnlj3kWLznu3FWOUN2byitZJaORhC944JqhAwT4N o7wx47O5tlRBHEZ5Y0aPht7nuxexBW+8ZtWchecF7J83/nv8jxeePyj/y3jN l8SNX4GU/6UPxTSF5FyDlP+lcZnsuFqbCyn/y+DPiV61PAPybkk9d/w02oc2 tgh9mHGClAemJ72ezfaMXfDAePjU0ytr0gDlgceHtB+sfpUGKP9ranrh+H3B y4Dyv4zCGYHH2yIA7dJkfdK9FTh95Hlw59cgkPjepvfTLzRPaozawioZ4O4r Tz8JBbQPuUqXPd3vC1puyD6bsl2F418F0lUXu4Cs1PLUoWsCuJHpNzp/vg2w t/so5NSN9qGztglOby2B0Nwzts2SKH/+HWEBBkbAYLuBY/NxIZyDuT2gyVYX UP447a7Q72XrNADlj5lnsry1xFUA5Y/pD8yseRVkAeWPQ2XyD3tMiwHKH5dv OKK7MksQUP44a65nMvQtD6D8seFJ+9SgI2yA8sfMQ4Ub93r9wih/nHXRuvD7 lq/Ygj/Ws/T5AT5ilD/GHzhJc1i8xyh/XLzN+FWQcCtG+eNu9ujR820NGOWP mYUj/Kz8TIzyx4wzDzq4n5RhlD/uhl8cf9ILMcof0zWvP775JBuj/DGeZbbv IFciRvljPF/7wFhVJEb54+5fCSnXZwOwf/747/HPC/89KA9MP98XI9SWDSkP TL984QYbVx684WfJXuUwC/CB2ST/2GyonNqkoLOL/P//wZF9WuELXjgmaM01 ulsKoLywYbWw0ccD6UBk9pYDtFqB7l8Fc8PQEPC45kFJZAEfjh81rV3t4Q8a vOKit31E8868pkHlhB9YpFIiLv4B3T8Tu923PfTGKB9Mp3U1O//OgZQPHuc0 zx/9mgPtvVkiPtkuxuUn1R7miFwBjZnNLr+H2PHiqinLA9zpC354atvdFyM8 aaB/9S7h8xx86HnpxgeduEBgM8OzUlMP9VOZXw+S5RiA47L/gdOx6PrpdvvM 0fyxf57470F5YdpXjsPsv3NhefH0LOPQEpwWe1F60jwZLH7jmUhv58BV8V8j Arbp4IOsYzI9AH3eps+ON4b8wcvnGYk1TPTnDa35mevjB1wfefcaN27G8YzX TxrZfTHKDzMf8exeRc+BlB/GxzQen7HLhVuv5Ub7JKHnm2fWG/7LTwOjJZIS dzi4cFHrzQV6XmnAz6H6F/9GNK/3pw3ccGQseGF6u/Vdy5+5cOKGweMLk2h/ /b8tOHdVN362faVLwL3OAk6HBX+k0tOk59rvV29rX8st4vAl49lj09t19hOW Pkv7+BHYXhPTDt20s8oOtr5Y4dWNXy6lS/f3fl32Orvnj73CswcV2WFL9mfN +R1eZc3hENDMM1PHb659YG+ydn4xMH5PMXWv/llvj1hvDAGw9cUPdLumSD9f un+F9RHXsE0cDhM8XbgTc+fah31fMptxHVA/f+k9tsn19u5bZX+dEPxtf+EZ V37g7KX7H6hMkN2bz+5wYLbHy8C0Ofal0o8tHjwCtod0znO8ZVm2X2blrJ56 L2D7hPW2f7b5XHvnwJ7ujz+A4S/GbywcU29/4u3po10vgP4LfXOO36LaDrb+ +MA659ylNkv3S8k9e7pLCNi+U4q7eshorn3sUcv5EfHA9qZ5zqdjIg3w9ccP OqJtN7Mt259UpP8y6x+HQ0RWf1Rb3Fx73yUzJldeBrr/pSPnh+x6+xrF3Yw2 B9mB9gvwhz6YYx+f0TAzpOqX/YFVnJEBD5fC1xsvaP5U+ncJMH1JCZ6yTOFw 0KiOtL+TMNfeNbR3e2s70Lyls17qXqhHWo8MAbD1xw6bP9bJANtXP3NfygTO 53DgmKsqyAsMT+sTuxWY9/60P+Ave7kN2H5jTevvnfweaN6MBT8fxgLNi7ut E/2P3UFBeeWrDYpz7YOr5Q70qQLLAwb/Xc8Zl+3fsiTkQOprYHufLVhuMrB9 xr9z9lTpU8Dw/KOa2Vpcb68qGtlYHgKsr3wi2jPfLt1fwliyfck3YPhun7Qu vqHKbkI0m+Atf2D7buojzekRc+3vXTnff+XmD3sF1vWXRYHt9TDO+XnRR4Hh 5/CrjgvYHt6QxxW4lwMYPknnTpj+X7r/uGLuB49CoPstWIwzgP01QQcuoQJB TocTLkybv4bNte/qnzrx+h1QeGctupdab/9vNaNFyF9NePg8uCndPLOCw+HB +lgdVmB/BbFeGQKqRda5P/yl6fBKaY7jk3eX96HrRx/fg4iKOMiVeT+cq1e9 H30+EL39DVNv/Mhg71KHenuYfYUvQOZl2WXM2ikecP6lPcw+puXzwu+fY0L0 Z5HORwYBmPkwPsx+dPfC+ABt81dL "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJwV0LcvRWEAhvGPq6zajGvFSDAYlERJCIkWBiEGiegtEtH+AmZtw8ho0gcS EjGoYdJGbfY7w5Pnfd/vO+fmnnjPUPNgYgghAdNYSQ5hGYfG16QQWnAXC2EU 2fiypzmfs8ewaqvBkf1Nb8W9PoYclLi7ZcvHif7tXrptXk/Cmq1JP5CrUKtX 6LtyEfrlW760d8rncgNG5Bc+9r53bsOE7cG9br7S53lcr+d9fYbLeSC6x0uc 67yUt/UpLuA+vuFFPnXeGlmf5Voe5mf+8dsZ8oKcjF75mtc90xx9Q7kadXql vicX40rv0i/kxui7eM8Ht+PR2QTiKHNnx1aIM/3XvUzbop6Cjei/4dT+qXfg SZ9EHv7sWe4v2VOxafsHP6dAHQ== "]]]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[{ PolygonBox[{{702, 1427, 1425, 753, 797, 881, 984, 1108, 1253, 704, 703, 752, 796, 880, 983, 1107, 1252}}], PolygonBox[CompressedData[" 1:eJwV0MlvjXEchfFfi6QUO/NKzJoYF4aiJTqEzq0QtPRGSIg2IdGRpkmrdNn0 HzAnxoVpYVggOksHJBVKa9iYWZhKfO7iyTnPeb/3vjd3eqQ0ryQ2hBCDXjSN CqEZT0eGsEculeXyikyWCSNCqJcveIlcJ6vlXZktazzv0SP6Oz2if8cjLxmS B+25sgtF+mM3z/R9eqK8iXQ9356uP8Amfo6P1xsxjf/zfR22Jfwykmzz+Vr9 DrL4Ef4Wxfxb9J0+08dX6jeQ5iaPn8U4fhxTbX/dtdsW80tYY5vHD+MNdtq+ otNdLj+DsfwYprgdts+1VeM1dti/oMOew08jnjdgsvs/9jm2KgyhyP4Z7fbf mG2rxCAK7Z/QZu/lK/TrSPU92TxNv48CfoqP0Y9iEv/lMxv1FmzhbZ4/0Xfr i+RFrNZn2evkc75fJssqeVtmygrPa2U3L5av+CG5nX9Eq/c08EH9gMyRNbJT Fsoe9/36Xn25rJDXZIrM8mxAL9VT5T3k6yftffoufbSsx0T9p3dt0B9iM291 t1C/gFV8Jk/SbyGDl/OX2MY/RP8Ln+/my/SrWO8mk59AHK/DBNsPdy22Bfw8 Em0zeFn092Kr7X30d7jL4P8BZXRygA== "]], PolygonBox[CompressedData[" 1:eJwV0UVsFQEYhdGp4e4OxV2Luy1IIBCCu1PcnRDctYXizgJ3d3aQQHB3d3ct p4vTmfv1f3lJG9llQNP+oUEQhNDYj7NhQbAoIgjiaBQeBOM8z3i28Tznd9e9 R3uP8txJbe/19breT9DEXmoH3seS0n7hC65q1eyDNND62acobG+gvJbFrscS 4hmjp9Cf+3xf+ySFtPVE6ZkTvpfF/GO0nlx/5r6PfYKC2jrK6ZnsOsTxl1F6 Mv2p+972cQpoaymrZ7RrJ/w9+MNIPan+xH0v+xj5tTWU0TPYtVjIb0boSfTH 7qPto+TTVlNaT2/XJJZfDNcT64/c97SPkFdbRSk9nV2DGH4yTE+kP3Tfwz5M pLaSknpauzoL+MFQPUJ/4L67fYg82gpK6GkS/kfM5ztD9HD9vvtu9kFya8sp rqe2qzKPbwzWw/R77rvaB8ilLaOYnsquwly+MkgP1e+672LvJ6e2lKJ6Srsy c/jCQD1Ev+O+s72PHNoSiugp7ErM5jMD9EC/7b6TvZfs2mIK68ntisziE/31 eG6572jvIZsdRyH3yewKzOQj/fR/3HTfwd5NVnsRBd0ntcszgw/01f9yw317 exdZ7IUUcJ/EjmI67+mj/+G6+3b2TjLbseR3n9guxzTe0Vv/zTX3be0dZLJj yOc+kV2Wqbyll/6Lq+7b2NvJaC8gr/sIuwxTeEO0/pMr7lvb28hgzyfSfbhd msm8pqf+g8vuW9lbSW/PI4/7MLsUk3hFD/07l9y3tLeQzp5Lbvehdkkm8pLu +jcuum9hbyatPYdc7kPsEkzgBd30r1xw39zeRBp7NjndB3ZxxvOcrvoXzrtv Zm8ktT2LHO7j9YbeT9Pa/g94yqCH "]]}]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwd1ne8zmUYB+BjZWZn7713SFZUIntTyt7ZLWRnq2Rl771LGoiG2aAooyij EKEdKl13f1zu+/v9vcfnHO95nlf+zv2b90uUkJCwO3FCQsx85kzLBjOnOde8 m+286fl485Z+qznaXG5mpaNnT5uXdQNYZM9IKvt0MxlT7RW9rpH9ffsjnJOn yglMkKdZR9h/sT9PpkT/P0rI749Z9lxslztRicb6D3T1OS+/RBIK6GfrcvOW 3Jl7aaL/UNeAC/LLJKWgfo4uD2/LXXhG96M8kNRU1jXVfWR/lO/lVxip+1Ue SmaS6QrpXrPn5R15gnzbPoau8rPyFfsgFtszkcb+qnkX0+xrzFxU8fpm5l5d QxbY0/ODflq8b7zORM9WmTl4l+mejzJ/028xh5lLzXt4J6Y8y0wZ7y2vyOvM POyM78PXFzbn6jea+cx5Ztr4+z2baP6tG8sKeza66Z8zr+oGczcz5OS8ZK/q eXP7PnsjLsZ7JidmUvz88mj77/bhZCG5rohunj0/O+Tu3EcL/X5dYy7JM0hB Uf18XQF2yj2oRkqKebZAX5Bdck/up6X+gK4Jl+WZpKK4fqGuEO/JvXhe95M8 hLRU17XSHbQ35Ud5FqkpoV+kK8xuuTdDddfkp0lHDV1r3SF7M67Isxmj+0N+ gayk0ZXULbYXYY88Sf7HPo4+8jD5uv0Z0lNT10b3sb05V+P3Xk7CZHmOPNb+ p30E2ZgdZzd+h+I99LyUfYm9KPPt6eIM6yeb/+peZKU9O331w80bus3ms+YS MzNvk0GeaaZgGy/La83c7KCWr29rfqLfZLYwF8bX8Vb8u8e5M5PyBlM8Xx33 VZw5z8aZf+lGssyeJb6v+DnN1Lwa75nXlbYvtRfjA3mKfMc+nqfkF+Sf7c+R kdq6drpP7S25Js8lHWX0y3TF+VDuxwOkJ0PccS6FjGYmMlPW65d7bQk+kvtT h3so59kKfUn2ygOoSxbKe7ZSX4p98kAeJCsVPFulL81+eRAP0V7/ma4V1+V5 ZKOifrWuDAfkwTzMY/rDutbckOeTPe5b/RpdWQ7KQ6jH4/ojujb8LC8gR9y3 +rW6chyKzwceoYP+c11bfpEXkpPK+nW68nwc9y/1eUL/ha4dv8qLyEUV/Xpd BT6JO5UGPKk/qmvPb/JiclNVv0FXkU/jnuJROuqP6R7jd3kJeeJ+0W/UVeKz OPM0pJP+S93j/CEvJW/cL/pNuns5HGecRnTWf6XrwJ/yMvLFnaPfrKvMkTi3 NKaL/rjuCf6Sl5Of6votuip8HmeMJnTVn9A9yU15BQWood+qq8oX8ftMU7rp T+o6ckteSUFqxueI7j6OyiNoRnf9KV0nbsurKEStOH+6ahyTR9KcHvqvdZ35 W15NYWrHedfdz5fyKFrQU/+Nrgv/yGsoEucnPpfibuUreTQt6aU/revKv/Ja isb50W+Pu5Tj8hha0Vt/RteNO/I6isWZivsk7kdOyGNpTR/9t7ruxH+K1hvF 45zF/SXX4qQ8jjb01X+n60EiNuhKxNmLz9m4Nzglv0hbntKf1fUkMRt1JePs xeeq/ABfy+OZ5N5oZ/bz7Jy+F0niXtSVivMXd6Zch2/kCXHe6a8/r+tN0riH daXj/MVnu1yX0/LEOO8M0F/Q9SEZW3Rl4vzpd8kPcia+nzjvDNR/r+vLXWzV lY3zp39Pfohv5clx3hmk/yHuVZLzuq5cnD/9bvlhvpOnxHlnsP6iLv5zmoI3 dOXj/On3yPU4K0+N884Q/SVdf1KyLf69dTfto8jBa3IaZsR7auaNn40KXvsf twpLQg== "]]}, Annotation[#, "Charting`Private`Tag$48076#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV1FNwnGEAheG/dqe2bU5t20iNVFPbNu7a69ru1DM1kzapbdt2O33+izfn vOf7dney2WzuyKGth8QJgiDCj0Nxg+BJ/CBog+vxgmAYsuGD/TCO4Kmztrhh H47s+GhfmCAIjspnztrhpn0EcuCTPZXzqfZ4WGxriGP257w9bvGRyImK7q6z FcUJ/tm91LZpPD6W2FrxI3pdNOK1+Xa9HPrrN+Q5e2c9Rm+O4foDedzzvZAR GG277V4PeZ5Pk6N4E7mPT5DV5aDwnpwpczmvJNfzsbKY7COvyBnypPP2YfLJ spEcJu/LL147jT5dT4Be+iW51GNah++hXg+NeR2+Qy+P87wLj9VbhO+L53kp O+COs9HIjcrubLAVRxT/6l5a2wyeEMvC3w0n7a94R9zlY5AH3+zp3J9pT4Tl tkW8qYxy9trWCff4WORFFecbbSUQzb+7l942iyfGClsz1LXt5BVwgUe790bv jPt8HJq6s5/XQD5elW/SS+IUj+BR4fuDHx6fgc/Wk6C3flmudK+Nfkyvj6H6 vfAzYK+n79LHy4pygLwpLzrrqp/Rp8qWcoR8KOfKU17rrd4FY8LPkfs95QU+ XY4Pf0d5gE+UNeVgeUfOkvmdV5ObeSn01a/K0/YOerTeBD+9TkY+R0+KVc7b 8uN6g/Bvz+vz3XolXOKnPead3hUP+QQUwC97DN7bu+GRbSIK4rc9k+eZa0+G 1baWiLV/4N3xmE9CIfyxZ3Z/nj051oT/gzhj/8h74AmfjMKo7u4WW2nE8L/u ZbHN5ymwNvy8o4FtD6+My/yse5/0nnjKp6C5Owd5LRThNfhWvQxi+T+PyWpb wFNina0dP6E3DL/Pwu8bvlevgoH6LXnF3k0/q7fCSP1R+L3h+T7LSDxzJ9J+ Mfxc6C30Q/okWVsOkXflbFnUeU25jY+TZWU/eU3+BwH3uEY= "]], LineBox[CompressedData[" 1:eJwV1EOwVgEcxuFzlW3XzbbNRTM10zTZtq1psm62vci229VMTbZt2z1n8fSd 39v/Lm5zvmI79G3YJyIIgvr+OBMVBM1jguBUdBDU419kEGTRcZ6Ts8HfN+Kc /bPuyDM9hsIEZHU/3Z6Cjbox591/0Z14rsdShAiyuZ9hT8km3YQL7r/qzrzQ 4yhKJNndz7SnYrNuykX333QXXurxFCOKHO5n2VOzRTfjkvvvuiuv9ASKE02s +9n2NGwN/z247P6H7sZrPZESxJDT/Rx7WrbpFlxx/1N3542eREnikcv9XHs6 tuuWXHX/S/fgrZ5MKeKT2/08e3p26FZcc/9b9+SdnkJpEpDH/Xx7Bnbq1lx3 /0f34r2eShkSktf9AntGduk23HD/V/fmg55GWRKRz/1CeyZ267bcdP9P9+Gj jqMcicnvfpE9M3t0O265D+x9bZ/0dMqThAL2xfYs7NXtue0+wt7P9lnPoAJJ KWhfYs/KPt2BO+4j7f1tX/RMKpKMQval9mzs1x256z7KPsD2Vc+iEsnD99q+ zJ6dA7oT99xH2wfavunZVCZF+F7bl9tzcFB35r77GPsg23c9hyqkDN9r+wp7 LId0Fx64j2cfbPuh51KVVOF7bV9pz8lh3ZWH7uPbh9h+6nlUI3X4XttX2XNx RHfjkfsE9qG2X3o+1UkTvtf21fbcHNXdeew+oX2Y7bdeQA3Shu+1fY09D8d0 D564T2QfbvujF1KTdOF7bV9rz8tx3ZOn7hPbR9j+6kXUIn34XtvX2fNxQvfi mfsk9pHh/1F6MbXJEL7X9vX2/JzUvalrO6Arc0U/9/NJbaN0wBJbA33ccy3q hL+f3uG5dPi993zN59nw++35tOfRPuv7/A/cd59O "]], LineBox[{1414, 793, 1334, 1189, 1065, 962, 878, 745, 1294, 1149, 1025, 922, 838, 794, 746, 747, 748, 749, 750, 1295, 1150, 1026, 923, 839, 795, 1335, 1190, 1066, 963, 879, 1354, 1209, 1085, 982, 1375, 1230, 1106, 1396, 1251, 1416, 751}]}, Annotation[#, "Charting`Private`Tag$48076#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{1419, 1424, 1418}], LineBox[{1422, 1423, 1421}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]} }, AutoDelete->False, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{4}}}], "Grid"]], "Output", CellChangeTimes->{ 3.8430730740447903`*^9, 3.843073234359995*^9, 3.843073328177844*^9, 3.843073447436039*^9, 3.843074825169306*^9, {3.843074956640321*^9, 3.843074980301083*^9}, 3.8430750223733177`*^9, 3.84307524281555*^9, 3.8430752988300457`*^9, 3.843091679168908*^9, {3.8442560036348333`*^9, 3.844256025114493*^9}, 3.844258976737165*^9, 3.844259032546761*^9, 3.845740961599266*^9, 3.84574104412961*^9, 3.845741126898947*^9, 3.848356459591178*^9}, CellLabel-> "Out[111]=",ExpressionUUID->"97e2fa16-7b29-4be9-acfb-4ce44a6bdf70"] }, Open ]], Cell["Export data", "Text", CellChangeTimes->{{3.716613652345023*^9, 3.716613661762876*^9}, { 3.7166171500953703`*^9, 3.716617173133562*^9}, {3.716626783084096*^9, 3.7166267858131742`*^9}, {3.716631401415011*^9, 3.716631413565827*^9}, { 3.71663828988164*^9, 3.7166382916885777`*^9}}, FontSize->16, Background->GrayLevel[ 0.85],ExpressionUUID->"8656cdca-d40a-412a-b04a-e6272521e665"], Cell[BoxData[{ RowBox[{ RowBox[{"dt", "=", "0.05"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"datkappa", "=", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Kappa]1a", "/.", RowBox[{"\[Theta]", "\[Rule]", RowBox[{"\[Theta]0", "[", "t", "]"}]}]}], ",", RowBox[{"\[Kappa]2a", "/.", RowBox[{"\[Theta]", "\[Rule]", RowBox[{"\[Theta]0", "[", "t", "]"}]}]}], ",", RowBox[{"\[Kappa]opt1a", "[", "t", "]"}], ",", RowBox[{"\[Kappa]opt2a", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1", ",", "dt"}], "}"}]}], "]"}], "//", "N"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dat", "=", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{ "\[Theta]0", ",", "u0", ",", "\[Theta]1", ",", "\[Theta]2", ",", "u2", ",", "\[Theta]3", ",", "u3", ",", "\[Theta]4", ",", "u4"}], "}"}], "[", "t", "]"}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1", ",", "dt"}], "}"}]}], "]"}], "//", "N"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"(*", " ", "\[IndentingNewLine]", RowBox[{ RowBox[{"SetDirectory", "[", RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ";", "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", " ", "datkappa"}], "]"}], ";", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", " ", "dat"}], "]"}], ";"}], " ", "\[IndentingNewLine]", "*)"}]}]}], "Input", CellChangeTimes->{{3.7167394002782793`*^9, 3.7167394007756653`*^9}, { 3.716739480630252*^9, 3.716739620038939*^9}, {3.717235078875971*^9, 3.717235110858979*^9}, {3.717235145756361*^9, 3.717235260101819*^9}, { 3.717235290174872*^9, 3.7172352963810987`*^9}, 3.793502814277506*^9, { 3.7935040545937757`*^9, 3.793504064857766*^9}, {3.793904837765193*^9, 3.7939048380386868`*^9}, {3.843074974867485*^9, 3.843075030053958*^9}}, CellLabel-> "In[112]:=",ExpressionUUID->"c8960ba3-09c6-4bb6-826b-0e5b38360370"] }, Open ]] }, WindowSize->{808, 751}, WindowMargins->{{Automatic, 43}, {Automatic, 0}}, DockedCells->{}, FrontEndVersion->"12.3 for Mac OS X x86 (64-bit) (June 19, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"aa462fb8-69b6-4376-adca-2304e3c3e908" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 847, 14, 105, "Section",ExpressionUUID->"c2f1811f-5d39-4870-bd7a-071084aa3a3d"], Cell[1430, 38, 679, 14, 124, "Text",ExpressionUUID->"0abb6262-c79b-44e6-a613-7c457120e8f8"], Cell[2112, 54, 9817, 250, 656, "Input",ExpressionUUID->"6e42687c-bd84-429b-9901-9da7fec5d545"], Cell[11932, 306, 401, 9, 76, "Text",ExpressionUUID->"291c1013-9723-4bbf-bdf6-0ec48ff3a54f"], Cell[12336, 317, 3182, 83, 220, "Input",ExpressionUUID->"03e0d4f6-e531-4b5f-ab2e-1a3e95fe7d1f"], Cell[15521, 402, 556, 11, 76, "Text",ExpressionUUID->"cef80cf4-d7d3-4045-a5b9-b38502d93e2f"], Cell[16080, 415, 6579, 160, 383, "Input",ExpressionUUID->"9feaa965-6c5e-433b-9cc7-a1ba3b998866"], Cell[CellGroupData[{ Cell[22684, 579, 350, 8, 30, "Input",ExpressionUUID->"c2be2ada-e7b4-4fc2-9efd-840145fc75af"], Cell[23037, 589, 61359, 1052, 137, "Output",ExpressionUUID->"a8a891c8-5b97-4679-85b1-1113fa6ab994"] }, Open ]], Cell[84411, 1644, 533, 8, 52, "Text",ExpressionUUID->"b346cb89-2ad2-41d6-a092-befc09aae36c"], Cell[CellGroupData[{ Cell[84969, 1656, 1231, 38, 91, "Input",ExpressionUUID->"d092d732-dee0-474b-a760-f9e210498dce"], Cell[86203, 1696, 2538, 56, 84, "Output",ExpressionUUID->"d75181be-e185-43da-a79c-b8b9d3ec3d53"] }, Open ]], Cell[CellGroupData[{ Cell[88778, 1757, 1625, 47, 94, "Input",ExpressionUUID->"d1ba565f-25de-46fa-a69d-fa7793e703ec"], Cell[90406, 1806, 2498, 57, 75, "Output",ExpressionUUID->"312ce645-ceef-44b3-8a66-1e5ed71c6300"] }, Open ]], Cell[CellGroupData[{ Cell[92941, 1868, 514, 11, 30, "Input",ExpressionUUID->"2fcb23c4-2498-46fe-ab81-b6f2873be3eb"], Cell[93458, 1881, 2222, 43, 44, "Output",ExpressionUUID->"d021578f-73d0-4ba2-b1d1-7446d8b624e0"] }, Open ]], Cell[CellGroupData[{ Cell[95717, 1929, 1755, 44, 94, "Input",ExpressionUUID->"2688b364-c339-4045-9531-9610abd9cafd"], Cell[97475, 1975, 37508, 651, 145, "Output",ExpressionUUID->"794857df-e77b-4d18-8f6a-d9d6bd039531"] }, Open ]], Cell[CellGroupData[{ Cell[135020, 2631, 8405, 215, 484, "Input",ExpressionUUID->"af7b3276-2a0d-4886-abb6-ec8eea8ac5ba"], Cell[143428, 2848, 85547, 1459, 137, "Output",ExpressionUUID->"2124a4d7-0850-41ad-964b-779e2d455e8d"] }, Open ]], Cell[CellGroupData[{ Cell[229012, 4312, 181, 2, 30, "Input",ExpressionUUID->"b5a96ea6-7ade-4a93-95ca-7b787f166ecb"], Cell[229196, 4316, 1304, 23, 37, "Output",ExpressionUUID->"4012468f-21fb-4a88-b10c-f0095a8cb7f4"] }, Open ]], Cell[230515, 4342, 634, 12, 52, "Text",ExpressionUUID->"dd3856e6-c205-4ab4-a6d5-859106db8b08"], Cell[CellGroupData[{ Cell[231174, 4358, 434, 11, 30, "Input",ExpressionUUID->"c1f775ab-4d59-4797-9419-aef8385f3a6d"], Cell[231611, 4371, 1422, 24, 38, "Output",ExpressionUUID->"8791e62f-43ea-4c3e-82bb-edd59079f64f"] }, Open ]], Cell[CellGroupData[{ Cell[233070, 4400, 497, 13, 30, "Input",ExpressionUUID->"907e0de8-41fc-428a-984d-486dd436451b"], Cell[233570, 4415, 1568, 27, 38, "Output",ExpressionUUID->"4d4c6bae-39b1-451c-acaa-2c0d21e09ba6"] }, Open ]], Cell[CellGroupData[{ Cell[235175, 4447, 5273, 141, 329, "Input",ExpressionUUID->"bd7e6200-f42c-4462-ac3e-73529be95840"], Cell[240451, 4590, 35927, 624, 139, "Output",ExpressionUUID->"a6e539ba-4d58-477a-8ac6-9f877b6c4daa"] }, Open ]], Cell[CellGroupData[{ Cell[276415, 5219, 7302, 190, 472, "Input",ExpressionUUID->"c272b759-6f4a-4dcf-a725-e87e6311c27b"], Cell[283720, 5411, 86936, 1489, 137, "Output",ExpressionUUID->"97e2fa16-7b29-4be9-acfb-4ce44a6bdf70"] }, Open ]], Cell[370671, 6903, 394, 7, 52, "Text",ExpressionUUID->"8656cdca-d40a-412a-b04a-e6272521e665"], Cell[371068, 6912, 2238, 54, 233, "Input",ExpressionUUID->"c8960ba3-09c6-4bb6-826b-0e5b38360370"] }, Open ]] } ] *)