(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 231880, 4291] NotebookOptionsPosition[ 230340, 4259] NotebookOutlinePosition[ 230802, 4278] CellTagsIndexPosition[ 230759, 4275] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Pendulum swing up, as a boundary-value problem.", "Section", CellChangeTimes->{{3.698811497715045*^9, 3.698811509022469*^9}, { 3.69885144307857*^9, 3.698851462312389*^9}, {3.709636905485622*^9, 3.709636910921179*^9}, {3.715342867107555*^9, 3.715342872342836*^9}, { 3.7153432690028687`*^9, 3.715343287448956*^9}, {3.716532618830523*^9, 3.7165326217793283`*^9}, {3.716570684194786*^9, 3.716570736464383*^9}, { 3.716613642404841*^9, 3.716613649251136*^9}, {3.7166173099843607`*^9, 3.716617315405965*^9}},ExpressionUUID->"f5006cf0-1224-4794-8ac0-\ e829719a3280"], Cell["\<\ based on Mathematica example for FindRoot (thanks for help from Paul Tupper, \ ¶¡ÏãÔ°AV Mathematics) \[Bullet] revised, Nov. 12, 2021: \[Dash] eliminate unused variables from modules \[Dash] add option in NDSolveValue to prevent (spurious) warning messages \ about InterpolatingFunction \[Dash] simplify Plot and assignment commands\ \>", "Text", CellChangeTimes->{{3.716613652345023*^9, 3.716613661762876*^9}, { 3.716635650557143*^9, 3.716635673813285*^9}, {3.793904900379339*^9, 3.793904916165039*^9}, {3.843071915202323*^9, 3.843071961225065*^9}, { 3.844255613422617*^9, 3.844255654635604*^9}, {3.8457406313604803`*^9, 3.84574067346458*^9}}, FontSize->16, Background->GrayLevel[ 0.85],ExpressionUUID->"6cd6c261-f6f9-4a8d-a21b-a0f03a9acb28"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"Clear", "[", "\"\\"", "]"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"ffCalc", "[", RowBox[{"n_", ",", "\[Tau]_", ",", "\[Tau]1_"}], "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{ "f", ",", "\[Theta]", ",", "\[Theta]dot", ",", "\[Lambda]", ",", "\[Lambda]dot", ",", "\[CapitalDelta]t", ",", "bcs", ",", "eqns", ",", "sv", ",", "froot", ",", "\[Theta]ff0", ",", "\[Theta]dotff0", ",", "uff0", ",", "\[Theta]ff", ",", "\[Theta]dotff", ",", "uff"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[CapitalDelta]t", "=", FractionBox["\[Tau]", "n"]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"f", "[", RowBox[{"{", RowBox[{ "\[Theta]_", ",", "\[Theta]dot_", ",", "\[Lambda]_", ",", "\[Lambda]dot_"}], "}"}], "]"}], " ", ":=", " ", RowBox[{"{", RowBox[{"\[Theta]dot", ",", RowBox[{ RowBox[{"-", RowBox[{"Sin", "[", "\[Theta]", "]"}]}], "-", "\[Lambda]"}], ",", "\[Lambda]dot", ",", RowBox[{ RowBox[{"-", RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "\[Lambda]"}]}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{"bcs", "=", RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["\[Theta]", "0"], "\[Equal]", SubscriptBox["\[Theta]dot", "0"], "\[Equal]", SubscriptBox["\[Theta]dot", "n"], "\[Equal]", "0"}], ",", RowBox[{ SubscriptBox["\[Theta]", "n"], "\[Equal]", "\[Pi]"}]}], "}"}]}], ";", " ", RowBox[{"(*", " ", RowBox[{"hard", " ", "final", " ", "constraint"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"eqns", "=", RowBox[{"Flatten", "[", RowBox[{"Join", "[", RowBox[{"bcs", ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"Thread", "[", RowBox[{ RowBox[{"{", RowBox[{ SubscriptBox["\[Theta]", "i"], ",", SubscriptBox["\[Theta]dot", "i"], ",", SubscriptBox["\[Lambda]", "i"], ",", SubscriptBox["\[Lambda]dot", "i"]}], "}"}], "\[Equal]", " ", RowBox[{ RowBox[{"{", RowBox[{ SubscriptBox["\[Theta]", RowBox[{"i", "-", "1"}]], ",", SubscriptBox["\[Theta]dot", RowBox[{"i", "-", "1"}]], ",", SubscriptBox["\[Lambda]", RowBox[{"i", "-", "1"}]], ",", SubscriptBox["\[Lambda]dot", RowBox[{"i", "-", "1"}]]}], "}"}], "\[IndentingNewLine]", "+", RowBox[{ FractionBox["\[CapitalDelta]t", RowBox[{"2", " "}]], RowBox[{"(", RowBox[{ RowBox[{"f", "[", RowBox[{"{", RowBox[{ SubscriptBox["\[Theta]", RowBox[{"i", "-", "1"}]], ",", SubscriptBox["\[Theta]dot", RowBox[{"i", "-", "1"}]], ",", SubscriptBox["\[Lambda]", RowBox[{"i", "-", "1"}]], ",", SubscriptBox["\[Lambda]dot", RowBox[{"i", "-", "1"}]]}], "}"}], "]"}], "+", RowBox[{"f", "[", RowBox[{"{", RowBox[{ SubscriptBox["\[Theta]", "i"], ",", SubscriptBox["\[Theta]dot", "i"], ",", SubscriptBox["\[Lambda]", "i"], ",", SubscriptBox["\[Lambda]dot", "i"]}], "}"}], "]"}]}], ")"}]}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "n"}], "}"}]}], "]"}]}], "]"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"sv", "=", RowBox[{"Flatten", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ SubscriptBox["\[Theta]", "i"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ SubscriptBox["\[Theta]dot", "i"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ SubscriptBox["\[Lambda]", "i"], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ SubscriptBox["\[Lambda]dot", "i"], ",", "0"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}], ",", "1"}], "]"}]}], ";", "\[IndentingNewLine]", "\t", RowBox[{"(*", " ", RowBox[{ RowBox[{ RowBox[{"initial", " ", "guesses"}], " ", "=", " ", "0"}], ",", " ", RowBox[{"very", " ", RowBox[{"naive", "!"}]}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"froot", "=", RowBox[{"FindRoot", "[", RowBox[{"eqns", ",", "sv"}], "]"}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"\[Theta]ff0", "=", RowBox[{"ListInterpolation", "[", RowBox[{ RowBox[{ RowBox[{"Table", "[", RowBox[{ SubscriptBox["\[Theta]", "i"], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}], "/.", "froot"}], ",", RowBox[{"{", RowBox[{"0", ",", "\[Tau]"}], "}"}], ",", RowBox[{"InterpolationOrder", "\[Rule]", "1"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"\[Theta]dotff0", "=", RowBox[{"ListInterpolation", "[", RowBox[{ RowBox[{ RowBox[{"Table", "[", RowBox[{ SubscriptBox["\[Theta]dot", "i"], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}], "/.", "froot"}], ",", RowBox[{"{", RowBox[{"0", ",", "\[Tau]"}], "}"}], ",", RowBox[{"InterpolationOrder", "\[Rule]", "1"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"uff0", "=", RowBox[{"ListInterpolation", "[", RowBox[{ RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"-", SubscriptBox["\[Lambda]", "i"]}], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}], "/.", "froot"}], ",", RowBox[{"{", RowBox[{"0", ",", "\[Tau]"}], "}"}], ",", RowBox[{"InterpolationOrder", "\[Rule]", "1"}]}], "]"}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Theta]ff", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]ff0", "[", "t", "]"}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]"}]}], "}"}], "}"}], ",", "\[Pi]"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Theta]dotff", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]dotff0", "[", "t", "]"}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]"}]}], "}"}], "}"}], ",", "0"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"uff", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"uff0", "[", "t", "]"}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]"}]}], "}"}], "}"}], ",", "0"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[Theta]ff", ",", "\[Theta]dotff", ",", "uff"}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Tau]", "=", "5"}], ";", RowBox[{"\[Tau]1", "=", RowBox[{"3", "\[Tau]"}]}], ";"}], "\n", RowBox[{ RowBox[{"n", "=", "399"}], ";", RowBox[{ RowBox[{"{", RowBox[{"\[Theta]1a", ",", "\[Theta]dot1a", ",", "u1a"}], "}"}], "=", RowBox[{"ffCalc", "[", RowBox[{"n", ",", "\[Tau]", ",", "\[Tau]1"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"p1a", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]1a", "[", "t", "]"}], ",", RowBox[{"u1a", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{"None", ",", RowBox[{"{", "\[Pi]", "}"}]}], "}"}]}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"2", "\[Rule]", "Axis"}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}]}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"HoldForm", "[", RowBox[{"n", "=", "400"}], "]"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "=", "39"}], ";", RowBox[{ RowBox[{"{", RowBox[{"\[Theta]2a", ",", "\[Theta]dot2a", ",", "u2a"}], "}"}], "=", RowBox[{"ffCalc", "[", RowBox[{"n", ",", "\[Tau]", ",", "\[Tau]1"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"p2a", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]2a", "[", "t", "]"}], ",", RowBox[{"u2a", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{"None", ",", RowBox[{"{", "\[Pi]", "}"}]}], "}"}]}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"2", "\[Rule]", "Axis"}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}]}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"HoldForm", "[", RowBox[{"n", "=", "40"}], "]"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "=", "3"}], ";", RowBox[{ RowBox[{"{", RowBox[{"\[Theta]3a", ",", "\[Theta]dot3a", ",", "u3a"}], "}"}], "=", RowBox[{"ffCalc", "[", RowBox[{"n", ",", "\[Tau]", ",", "\[Tau]1"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p3a", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]3a", "[", "t", "]"}], ",", RowBox[{"u3a", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{"None", ",", RowBox[{"{", "\[Pi]", "}"}]}], "}"}]}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"2", "\[Rule]", "Axis"}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}]}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"HoldForm", "[", RowBox[{"n", "=", "4"}], "]"}]}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.716614292162437*^9, 3.716614675402801*^9}, { 3.716614733462763*^9, 3.71661475553444*^9}, {3.7166147878306103`*^9, 3.7166148080761003`*^9}, {3.716615049387476*^9, 3.716615052160734*^9}, { 3.7166150874331913`*^9, 3.716615195479767*^9}, 3.716615227807933*^9, { 3.716615819025228*^9, 3.716615853454791*^9}, {3.716615900967373*^9, 3.71661604623131*^9}, {3.71661608707449*^9, 3.716616106945179*^9}, { 3.71661641854959*^9, 3.716616443449791*^9}, {3.7166165978217688`*^9, 3.71661669500036*^9}, {3.716616726139389*^9, 3.716616733079867*^9}, { 3.716616782109913*^9, 3.7166169106569757`*^9}, {3.716617079500738*^9, 3.7166170990893927`*^9}, {3.716617185954321*^9, 3.7166171961061697`*^9}, { 3.716617246521448*^9, 3.716617248199464*^9}, {3.716617293955492*^9, 3.716617297519842*^9}, {3.71661756021132*^9, 3.716617626985359*^9}, { 3.716617806014511*^9, 3.716617862250918*^9}, {3.716618624635622*^9, 3.7166186366337147`*^9}, {3.716619120515398*^9, 3.716619165061843*^9}, { 3.716619210709831*^9, 3.7166192699892597`*^9}, 3.7166193062935333`*^9, { 3.7166193393736486`*^9, 3.716619469900126*^9}, {3.716619504205076*^9, 3.716619516798851*^9}, {3.716625377990052*^9, 3.7166255374272747`*^9}, { 3.7166258994938726`*^9, 3.7166261497992353`*^9}, {3.716626217669443*^9, 3.716626278297389*^9}, {3.716626495827385*^9, 3.716626571570623*^9}, 3.716626611088903*^9, {3.716626805430599*^9, 3.7166268876528187`*^9}, 3.716627336613241*^9, {3.716630449361739*^9, 3.716630452785083*^9}, { 3.716631162185403*^9, 3.7166311693906384`*^9}, {3.7166345985408783`*^9, 3.7166346522838573`*^9}, {3.7166350789937887`*^9, 3.716635095527959*^9}, 3.716635153132303*^9, 3.716635197242509*^9, {3.716635243873657*^9, 3.716635273461979*^9}, {3.716635363388506*^9, 3.7166353702686453`*^9}, { 3.716635603237688*^9, 3.716635605964967*^9}, {3.716635706350313*^9, 3.716635707163306*^9}, {3.716635775838624*^9, 3.716635776675448*^9}, { 3.716636122220488*^9, 3.716636174549855*^9}, {3.716636688309556*^9, 3.716636694219042*^9}, {3.716638564251593*^9, 3.716638752204845*^9}, { 3.716639188733282*^9, 3.716639199593244*^9}, 3.7166549371715508`*^9, 3.716655017015032*^9, {3.7166590803322077`*^9, 3.716659099171986*^9}, { 3.7167169366553183`*^9, 3.716716936883856*^9}, 3.7167170491123867`*^9, { 3.716717086568377*^9, 3.7167171006938334`*^9}, 3.717175298268944*^9, 3.71717533169123*^9, 3.717175387491527*^9, 3.717175450618146*^9, { 3.717175491001737*^9, 3.717175494188819*^9}, {3.717175580329627*^9, 3.7171755863590517`*^9}, {3.8430719889389973`*^9, 3.843071989141337*^9}, 3.843072039675395*^9, {3.843072926013885*^9, 3.843072932416291*^9}, 3.844255702289069*^9, {3.845740414043974*^9, 3.845740414498199*^9}, { 3.845740547388968*^9, 3.845740570938849*^9}, {3.845740680015851*^9, 3.8457406924321823`*^9}}, CellLabel->"In[45]:=",ExpressionUUID->"16cd26ea-7171-44f0-884e-4487fde9f9b1"], Cell["\<\ Test the approximate solution on the open-loop\[LineSeparator] dynamics \ (integrated at a fine time step)\ \>", "Text", CellChangeTimes->{{3.716613652345023*^9, 3.716613661762876*^9}, { 3.7166171500953703`*^9, 3.716617173133562*^9}, {3.716626783084096*^9, 3.7166267858131742`*^9}}, FontSize->16, Background->GrayLevel[ 0.85],ExpressionUUID->"62379b6d-8e80-423f-9046-5e21f705f9ef"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"TestSwingUp", "[", RowBox[{"\[Tau]_", ",", "\[Tau]1_", ",", "uff0_"}], "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{ "eq", ",", "init", ",", "\[Theta]", ",", "\[Theta]dot", ",", "\[Theta]s", ",", "\[Theta]dots", ",", "uff", ",", "t"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"uff", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"uff0", "[", "t", "]"}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]"}]}], "}"}], "}"}], ",", "0"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"eq", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Theta]", "'"}], "[", "t", "]"}], "\[Equal]", RowBox[{"\[Theta]dot", "[", "t", "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Theta]dot", "'"}], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"-", RowBox[{"Sin", "[", RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], "+", RowBox[{"uff", "[", "t", "]"}]}]}]}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{"init", "=", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]", "[", "0", "]"}], "\[Equal]", RowBox[{"\[Theta]dot", "[", "0", "]"}], "\[Equal]", "0"}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"\[Theta]s", ",", "\[Theta]dots"}], "}"}], "=", RowBox[{"NDSolveValue", "[", RowBox[{ RowBox[{"{", RowBox[{"eq", ",", "init"}], "}"}], ",", RowBox[{"{", RowBox[{"\[Theta]", ",", "\[Theta]dot"}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"Method", "->", RowBox[{"{", RowBox[{"\"\\"", "->", "None"}], "}"}]}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[Theta]s", ",", "uff"}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"\[Theta]1b", ",", "u1b"}], "}"}], "=", RowBox[{"TestSwingUp", "[", RowBox[{"\[Tau]", ",", "\[Tau]1", ",", "u1a"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"p1b", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]1b", "[", "t", "]"}], ",", RowBox[{"u1b", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{"None", ",", RowBox[{"{", "\[Pi]", "}"}]}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}]}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"2", "\[Rule]", "Axis"}], "}"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"\[Theta]2b", ",", "u2b"}], "}"}], "=", RowBox[{"TestSwingUp", "[", RowBox[{"\[Tau]", ",", "\[Tau]1", ",", "u2a"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"p2b", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]2b", "[", "t", "]"}], ",", RowBox[{"u2b", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{"None", ",", RowBox[{"{", "\[Pi]", "}"}]}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}]}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"2", "\[Rule]", "Axis"}], "}"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"\[Theta]3b", ",", "u3b"}], "}"}], "=", RowBox[{"TestSwingUp", "[", RowBox[{"\[Tau]", ",", "\[Tau]1", ",", "u3a"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p3b", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]3b", "[", "t", "]"}], ",", RowBox[{"u3b", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{"None", ",", RowBox[{"{", "\[Pi]", "}"}]}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}]}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"2", "\[Rule]", "Axis"}], "}"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.71661866491695*^9, 3.716618916536735*^9}, { 3.716618947498246*^9, 3.716619043623947*^9}, {3.7166190949238377`*^9, 3.716619112538106*^9}, {3.716619181422105*^9, 3.716619200957466*^9}, { 3.716619286508587*^9, 3.716619293931712*^9}, {3.716626533461444*^9, 3.716626533551689*^9}, {3.716626578299551*^9, 3.716626621289028*^9}, { 3.716626671879198*^9, 3.716626695390613*^9}, {3.716626897748212*^9, 3.716626931941341*^9}, {3.7166272175997543`*^9, 3.7166272625830307`*^9}, { 3.7166272944390497`*^9, 3.716627298230723*^9}, 3.7166273424394608`*^9, { 3.716627456205452*^9, 3.716627458563867*^9}, {3.7166300279801693`*^9, 3.716630045430882*^9}, {3.716630112214102*^9, 3.716630123135203*^9}, { 3.71663015934345*^9, 3.716630212072694*^9}, {3.716630406933373*^9, 3.716630427849061*^9}, 3.716633546256823*^9, {3.716633687149859*^9, 3.716633856304482*^9}, 3.7166339896874647`*^9, {3.716634199877594*^9, 3.716634213050828*^9}, {3.71663424959363*^9, 3.716634262173643*^9}, { 3.716634657603953*^9, 3.716634673600719*^9}, {3.716635296416689*^9, 3.716635326171628*^9}, 3.716635391776827*^9, {3.716635549099649*^9, 3.71663555509902*^9}, {3.716638708256002*^9, 3.716638710595378*^9}, 3.716639205884931*^9, 3.716659108495624*^9, {3.8430720116555967`*^9, 3.8430720120835867`*^9}, {3.844255768057225*^9, 3.8442557684649982`*^9}, { 3.8457403469432383`*^9, 3.8457403512704372`*^9}, {3.845740428522872*^9, 3.84574050233951*^9}}, CellLabel->"In[54]:=",ExpressionUUID->"694597bb-8cc9-4634-8d24-5df3c6aba934"], Cell["\<\ Show that linear feedback can stabilize against \[OpenCurlyDoubleQuote]bad\ \[CloseCurlyDoubleQuote] numerics\ \>", "Text", CellChangeTimes->{{3.716613652345023*^9, 3.716613661762876*^9}, { 3.7166171500953703`*^9, 3.716617173133562*^9}, {3.716626783084096*^9, 3.7166267858131742`*^9}, {3.716631401415011*^9, 3.716631413565827*^9}}, FontSize->16, Background->GrayLevel[ 0.85],ExpressionUUID->"4cfc58ae-9d62-4420-870c-d4d4cde97b31"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"TestSwingUpFB", "[", RowBox[{ "\[Tau]_", ",", "\[Tau]1_", ",", "\[Theta]ff0_", ",", "\[Theta]dotff0_", ",", "uff0_"}], "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{ "eq", ",", "init", ",", "\[Theta]", ",", "\[Theta]dot", ",", "\[Theta]ff", ",", "\[Theta]dotff", ",", "uff", ",", "t", ",", "\[Kappa]1", ",", "\[Kappa]2", ",", "ufb", ",", "u", ",", "\[Theta]s", ",", "\[Theta]dots", ",", "us"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Kappa]1", "=", RowBox[{"\[Kappa]2", "=", RowBox[{ SqrtBox["2"], "+", "1"}]}]}], ";", " ", RowBox[{"(*", " ", RowBox[{ RowBox[{"lqr", " ", "for", " ", "q"}], "=", RowBox[{"r", " ", "for", " ", "balancing", " ", "pendulum"}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Theta]ff", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]ff0", "[", "t", "]"}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]"}]}], "}"}], "}"}], ",", "\[Pi]"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Theta]dotff", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]dotff0", "[", "t", "]"}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]"}]}], "}"}], "}"}], ",", "0"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"uff", "[", "t_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"uff0", "[", "t", "]"}], ",", RowBox[{"0", "\[LessEqual]", "t", "\[LessEqual]", "\[Tau]"}]}], "}"}], "}"}], ",", "0"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"ufb", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"\[Kappa]1", RowBox[{"(", RowBox[{ RowBox[{"\[Theta]ff", "[", "t", "]"}], "-", RowBox[{"\[Theta]", "[", "t", "]"}]}], ")"}]}], "+", RowBox[{"\[Kappa]2", " ", RowBox[{"(", RowBox[{ RowBox[{"\[Theta]dotff", "[", "t", "]"}], "-", RowBox[{"\[Theta]dot", "[", "t", "]"}]}], ")"}]}]}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"u", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"uff", "[", "t", "]"}], "+", RowBox[{"ufb", "[", "t", "]"}]}]}], ";", "\[IndentingNewLine]", RowBox[{"eq", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Theta]", "'"}], "[", "t", "]"}], "\[Equal]", RowBox[{"\[Theta]dot", "[", "t", "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Theta]dot", "'"}], "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"-", RowBox[{"Sin", "[", RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], "+", RowBox[{"u", "[", "t", "]"}]}]}]}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{"init", "=", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]", "[", "0", "]"}], "\[Equal]", RowBox[{"\[Theta]dot", "[", "0", "]"}], "\[Equal]", "0"}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"\[Theta]s", ",", "\[Theta]dots"}], "}"}], "=", RowBox[{"NDSolveValue", "[", RowBox[{ RowBox[{"{", RowBox[{"eq", ",", "init"}], "}"}], ",", RowBox[{"{", RowBox[{"\[Theta]", ",", "\[Theta]dot"}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"Method", "->", RowBox[{"{", RowBox[{"\"\\"", "->", "None"}], "}"}]}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"us", "[", "t_", "]"}], ":=", RowBox[{ RowBox[{"uff", "[", "t", "]"}], "+", RowBox[{"\[Kappa]1", RowBox[{"(", RowBox[{ RowBox[{"\[Theta]ff", "[", "t", "]"}], "-", RowBox[{"\[Theta]s", "[", "t", "]"}]}], ")"}]}], "+", RowBox[{"\[Kappa]2", " ", RowBox[{"(", RowBox[{ RowBox[{"\[Theta]dotff", "[", "t", "]"}], "-", RowBox[{"\[Theta]dots", "[", "t", "]"}]}], ")"}]}]}]}], ";", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"\[Theta]s", ",", "us"}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]"}]], "Input", CellChangeTimes->{{3.7166274668845177`*^9, 3.7166274672114887`*^9}, { 3.716627522808957*^9, 3.716627618600381*^9}, {3.7166292435476313`*^9, 3.716629268839957*^9}, {3.7166305528248167`*^9, 3.7166307060782347`*^9}, { 3.716630749158601*^9, 3.716630751588089*^9}, {3.716631469593801*^9, 3.716631525463723*^9}, {3.7166315947994127`*^9, 3.716631609034924*^9}, { 3.716631680270759*^9, 3.7166316936103687`*^9}, {3.7166317304575853`*^9, 3.7166317454886217`*^9}, {3.716632669073279*^9, 3.716632692229643*^9}, { 3.716633423077694*^9, 3.7166334994098253`*^9}, {3.716634426309063*^9, 3.716634529364629*^9}, {3.7166347822172527`*^9, 3.71663487893288*^9}, { 3.71663921834173*^9, 3.716639222878071*^9}, {3.7166591200486517`*^9, 3.716659127513075*^9}, {3.844255783239485*^9, 3.844255788074252*^9}}, CellLabel->"In[61]:=",ExpressionUUID->"a87f29c8-c971-4e70-b4eb-519560d5613b"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"\[Theta]1c", ",", "u1c"}], "}"}], "=", RowBox[{"TestSwingUpFB", "[", RowBox[{ "\[Tau]", ",", "\[Tau]1", ",", "\[Theta]1a", ",", "\[Theta]dot1a", ",", "u1a"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"p1c", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]1c", "[", "t", "]"}], ",", RowBox[{"u1c", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{"None", ",", RowBox[{"{", "\[Pi]", "}"}]}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}]}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"2", "\[Rule]", "Axis"}], "}"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"\[Theta]2c", ",", "u2c"}], "}"}], "=", RowBox[{"TestSwingUpFB", "[", RowBox[{ "\[Tau]", ",", "\[Tau]1", ",", "\[Theta]2a", ",", "\[Theta]dot2a", ",", "u2a"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"p2c", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]2c", "[", "t", "]"}], ",", RowBox[{"u2c", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{"None", ",", RowBox[{"{", "\[Pi]", "}"}]}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}]}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"2", "\[Rule]", "Axis"}], "}"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"\[Theta]3c", ",", "u3c"}], "}"}], "=", RowBox[{"TestSwingUpFB", "[", RowBox[{ "\[Tau]", ",", "\[Tau]1", ",", "\[Theta]3a", ",", "\[Theta]dot3a", ",", "u3a"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p3c", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]3c", "[", "t", "]"}], ",", RowBox[{"u3c", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1"}], "}"}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{"None", ",", RowBox[{"{", "\[Pi]", "}"}]}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}]}], ",", RowBox[{"Filling", "\[Rule]", RowBox[{"{", RowBox[{"2", "\[Rule]", "Axis"}], "}"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.7166307264524517`*^9, 3.716630756566729*^9}, { 3.7166317765533257`*^9, 3.7166318028391857`*^9}, {3.716631835809661*^9, 3.716631878191729*^9}, {3.716634693075864*^9, 3.716634705753868*^9}, { 3.716635472962838*^9, 3.7166355160149307`*^9}, {3.84574052372904*^9, 3.8457405385757933`*^9}}, CellLabel->"In[62]:=",ExpressionUUID->"f1537525-cadf-4359-a24c-6e72fbaad310"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Grid", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"p1a", ",", "p1b", ",", "p1c"}], "}"}], ",", RowBox[{"{", RowBox[{"p2a", ",", "p2b", ",", "p2c"}], "}"}], ",", RowBox[{"{", RowBox[{"p3a", ",", "p3b", ",", "p3c"}], "}"}]}], "}"}], ",", RowBox[{"Spacings", "\[Rule]", RowBox[{"{", RowBox[{"4", ",", "3"}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.716626737927223*^9, 3.716626761662538*^9}, { 3.716626940212812*^9, 3.716626946700778*^9}, {3.716627029078232*^9, 3.716627046049563*^9}, {3.716631188580411*^9, 3.7166312314180803`*^9}, { 3.716631818357041*^9, 3.7166318195502157`*^9}, {3.7166318814734297`*^9, 3.716631886480524*^9}}, CellLabel->"In[68]:=",ExpressionUUID->"51f49d87-cbfc-4c38-ac37-5fcd28423fed"], Cell[BoxData[ TagBox[GridBox[{ { GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxd2Xk8VN//wHFZZ5JtRpJQCpU1Uih5nyyRSiotJCopZYlSSspSIqWskSQl WwulKCqj0mZPtsia7MzMtYd85/P7fc+d7+PjH48XZs65d8695z4fFA4e3+7E y8PD0zmLh+ef76PNX4sUr0Yb8vhHFU0q0A0n6nRjWHVVELSo+YeI+x34YJz2 4Nv9X/DY9pKGRfY7kG3J6zyoNgAfpa//KU2sBklXh4dCxkOg+HC+i7RVO0Rq bXhtuXMctAo9JQJL+uFH3IpCtvg0WC/vM7rzdAiuPvCr4J0/C2WLpJzIdJiA edG/rkTd4UPvVmUVLbnyF4KtNxpWjQqgxc3iSOPwLHRS/57D10AKElWrKbc9 wIdMmH983H/NRqMvsvOyB/lRgMG2AzJ6ImjzrgnZ+JWCaE3mrRcXGGJIj4el vniHEHIdZ/t/EZFAMHywRFKZgiZUxZvVd9KQ384SntyvFGTw6HHSzZt0ZANj zyYWUBGbZrF/13tJJK1uYj2pQEUd1/bvOiEkRfZGpvfG36vnkd3vSDn5wk+a 7A2K83iD388nm1amfP0pU4Zs2ZAsq9WrZcmOU9UXpx+RI7tYZv2qoQh5stfI vg/XrF1Itijffa8DgYvIlg9YaGCjrEA2Vckud/tnbmusm5/lvW8x2SeaaR8s eJaQzRy6tnNjHLfNND/Fb1RXJLtgaO3kWDm33dW0G745KZG9bvBQtQ1VmWxT RektIve5vcw/9Mx73aVkqzjpM5QauO1U4HzphecyshlJ1YfYc5eTPZw+M6b5 ktuOSo+o8VtUyGarRK3OZnH71YPJtpEQVbJtTZagtfJqZC9wC87TKOT23Nmu z7bsVic70S1/ZGZG/X8+z94mdt17UHdt8f55+xwUahozv4o2QZB7Rpbw5Wzw iHhqGn+kG45ljw/a6ZXCN/Xm6wn9LBhwlU68oPATvpdXaauWjsDk43s+Zfu7 wE7ScmDBcypKXbfOtHwFP2qfq+xeJDIHbRIMqcyJE0D2p0ZCS8+JIsHKBfKn SwRR0ZG7Ax9Oi6NP/oyFFz4IIW1agOa5ZxLozMq7Os3+FBTvYg/tIzSkcHKg 68c0BUk5nPM/rcZdv71bd+7tODSX7Ia1Ud9TH3GPr+WN5fHhumw46hjvEZlu Cz8vrjPaN1QHzleilfIvpEN8r+rIKoFOuJGZKfIp+RM4yK3lLQ9kgqinxsWN hvXgJXfL/VbwMHxzay+XLemA7lTvVEKGM47n4VbrEj4UFRjudeuMMBrqzNBO MxVArD1LTg/9EEF0Xym92ABB5LFwNHm9qjiaCoinCIYJoa1B+vX3HCSQUnO4 /Z2dFFS86aVoSAoN3ag6KmHTSUHLBaLDL7fRkThKNTrxz/XUq3apx7gU4ps8 3yuJhkOVm6LlgrltcKbdrXfO2nzYoLfq5t+vvfDzFbskfvU3KI34fDdFTgyF bKnoMJMQQtJPzXU3vBdHs2WeXbo8KoSk7n65bM1HQ2PyGX1JaRTkclXAw2AD HYk62Y+0iFERf95Bj8Pe3PMrMTgvcqLuPlxx0aYxDddA75P8vlSnGjjoHZkR bZIMGrE9pXzVHfB8yFomVKoIDC/4eMXtHoR95e1KVU61UGTie83q9xDEvZvZ wR/6CzQ85vA1l1PQHPXWez03+VD/q49jfBrCaOn1pMaHMgLolUV+n+AVEZSm pJkrt1cQbTin4OcvII6cd6VHBHgIoeaCGLWc1RJon8Hejw6GFNT+2nHU9jwN ncjsWptST0Hae5LiRN/QUaryS4bHQirSChZ+NhD2GURcF2xUYgVBtsAnU/+E FoiqOcq7UzsXGjsIt9K4HjCPFzs6Cyog5qL93LxSUcSbE/ixeVAQDQp70YIS xNGzgOufPJqE0IN6xcYjDRKo8oBw4rdoCgqcfLZbTJ6OpDYwRyOFqCg3MGJu v/EbuLaspD4/yB3KbQrj6AENMOicIbz2WCZkN85emlNGQ255CsfeExQkoJnW +pufe74vKac9InwroaTO6fRN7ZtgvcAm5Kg7Hbkl9i3LlqKi01YP6/jqI+GE T/nh6CZZIIzOFpbIV0PyzvkfF3UlwRm3L6+Ore0AM6GG+e9b3sMTjfgn0+8G QP51w0lR/xpwrXdboBY9BPNtE++p9LdDZfWuZ9/TOZ+HvGmmhS8fkrber59H EUZXdF11yvgFUMKHoNTw/SJo/Uicob+ZIHLc7v4Dfouh1D2BboMHhFBK44da w8USaKOLZaKdNgUNDukfMzlKQ39vXLyx4xsFvQxITdieQUeTQ9uEf8lR0Zsa n89M7Y9Q6XkzfE5iAOTFX5JJ2dkMazMTdOysXoDy6282K3l64DrzpExfbhn4 TC2vNHogipxXXNDb2CSIfuRR/R9cEUfx8qfWxlQKIZeR7UHsjxIofMzy5UQo BV1fGVIyTqWj273avh28nP1moYcRK+wlnIjQoWfNcYKawQtuemt+QPMVM98Y h0dQQG+LT8yjoSv3HGRe9FPQg8awa0bDdHTxp+uP35zPI/L2W7euxHKQvrjh wpnJSNi/Q3Nquy0dLZ+/86ovnYq6n9vqsY0fAyvdPmtiegv8kp6SCnxcCzqJ Wg28pSmQqREfXVxOR4rLW4STF3Hui3oJ8X3dX8FCxre1rDAUTn9o/KWkTUc/ Kswq+4SpqPKEzfCQbyFINrfbWox6we2QgEv587nrw/xXoKR/IB2ts53fFTKf itDcioPS9YGgR81Mrrg2C06H1avYn/sOfZ0Vvw2j70Ji/UsNeeYvqCnYyOww ew8dgioWK7wHIP6AFpMQrQF0v7P9lssQeMhdKGm/0w6LhXxDymMoKKAgQ6PR nQ9l3lNvoI/ORkdSf099neBHov59F3duFkFLeGOmo9cJIksefjOHKjF0ZJe5 6XVbIUTpbXjEJy2BfMrCuozUKGhYTElR34GG7FbJZoWVUZDPzYzE4bt0VHOt WWlclopmnc+u8hAogvd31e09rfzA4PevS7rZTVC2cMr75ZHnsEn5XUXn827I NNl+MnS0FPpf3XgiFC6KXokZSDtXC6Ly8OrVOv7iyLo075Z4sRAq5ztmm/ta Aj0IknQYDqKg6K0ngwZmaEjTUTHYlYeKrN1b9hDaOfB0xViZ6N/9sEe/ua74 Zj2UlO36MtSTAUWapdZRWTT0yHmZbHgPBR1mhV/v6KWjACvj1FzO+a8zGjnj 7FkGnavtNh87HwGHj8vkmlnR0feke+Z5ElQ0ZaXvNBKWBuJxlprzK0zgsOPe AElqLWgGeJmuuvgAPIzv3HT9SEdhHSY0Sc566G/5nuL6+gsUuM9LU7cIAd+W T3dkltFR9pjNx2IqFanqLJ7pSSyAhz1Nsqq8J8Byxq3c6wwdHbfrFl4uTUWb pQbOTxonwPzHcbeyNTVg2DU5/mk2Hb07WKidJ89ZH9941Aa78+Bol3FYl/9R mKzcs1BmknM87xTtiX+eH3RNjOwP0ZH38QJ3xblUdEy4IGjU9ymoVSmJxe+2 hv75sZHL6uloq2NnuTTn76sTpc+urz8BDpEpXSPX2IavtCn705Z/B62NM2Ub fBNhxfWsnrEvvyBmvao8//Q74BnyjPu6bQDMnlS3JtRWg4pQ8ier3UNQ/GvT 7enT7WCRJDq86RoFBT8OGpN35kNnzaNV3vXPRpnqm/caDvMjc/tEQtdIBJ07 vGUwXk8QmdSVTw9+EUMraVraP3cJoTWeh6U6aRLoNIpWUFtOQaN3ZAJW2tJQ p/N+IqWEghoXPbprepuO4h/lnDzPWW8PrCz3PHP/AJLVjyJdjpyHC6H0fP/9 TUA1kvvwbjQbmhtfhRaGdYNqkumYQmwpKMUayfYGiaIWpuoCZoUg2jilT/M9 J44sNtV//fpJCPFcHSmKy5VA/irTYUcvUlBsk3N71x8amu5N51ec4Ty/zJ13 6KTAC/iamfApRNce4ptFRCRN66FI/LGO0soM+Pz23bOwhzS0oD8idriLgr74 RN5Y1UlHGU9rExI459tHKuJvekMpRK4Y01YvDAfnaTG60SY6WhJpEFMlTkWX 76afG9NOgTdH+Oz7mhCkU67m7ntZA+oz2srKbcnwrSwx9m0hHY05xv3+wtkP rz8/rvpE8QtcLpteFk0PBj+3N38kl9DRqc9jytkUKvJotJnt4vkWto3kmg/F esC2MEfV4yc547m8jPeaR0UHnpc8nAmLBVmRk3r7xZRg19iD27My6chelbrQ krPegs7o6R5//QpkhvecdTA8Asbbrl1lj9PRopzFLoOc49n3Uf/uHgc6siqi nreSpCJ7pz4FZmImHE9cbrbo+jbY8iAu6ux3OtL/dHCgiXN9SDVKUMVNrsGe HLe8Sj0xEDh8IyyKSUeeK++vrfzneZ+32HKoOwP45h6rzG4xB7G82zELijnz dWIbOnBen2AQnD7pmwSl+/00Dz3SgdAbMRF1P+nodMWpbjPO6/+9//77+uD5 vy9JtNlb58cop7EnE9vHYsYOtAP2ZKmA18Lhkl7SkwnNNU4mqSzSk4ypixVH VhCkJ/06AyIF1hKkJ80qdk9mfWeRnjwel9PGUBggPakt+lnCxbyL9GRVlByf cUgb6ck9s58rbt/yA7AnhZI+UdXolYA9KbGnLkZN9h1gT4o5aKS7894B0pNz ylOmPHMY2JMVOpS0ccpXBvakd9Xrd8WXaxjYk11e4y+SjVoZ2JM8//3CnsSN PYkbexI39iRu7Enc2JO4sSdxY0/ixp7EjT2JG3sSN/YkbuxJ3NiTuLEncWNP 4saexI09iRt7Ejf2JG7sSdzYk7ixJ3FjT+LGnsSNPYkbexI39iRu7Enc2JO4 sSdxY0/ixp6cPZWsqlbbSXpyiQvTu899kPQkdYf9gGACm/TkJZdumYmDBOnJ rG2/X159xobVTq/XLXr+B4KLY6e8bzBhnBWbde7eDDC+JAcqGvcC9uKC7Cuu 6eWVDOzFxWlWr/OfNTCwF/H8sBdxYy/ixl78nqTrc+hhB+lF6/NK7PoX/aQX A6Mu6y1VZ5NetFl568qWnQTpRXYm77EPswg4VOLvq3tpArx3dvSJWbOg26Tj 5Wqbv/D3dUML/VUfYA+u0BBSOb62jIE9mBIy+FCPWs/AHry9Jeb4rsI2hvuz in136Nz5j9/3M/IJ4M4fe5EaFh2+pb2b9KLcvhqx0DEm6UXmm03C/gQbiNJE 2ap5BBSMr9AetiFA23/O2BvxMXiedGKh9mY2YB++OSCx1fRSEwP7EI/3pjr1 0Pca7vjYi3yVyrMirvwivfiuejeb8qmP9GLhnuKOJ5zPHXvRa/WfZV9MCdKL M0laC+0VCDh34deCD/3j8Fbn0ueYGBa0us82kMyZBkn1g8oJ7v2APaimlkzP lS1hYA/eG3ZPCflQy8Ae9E3rrIr628pY0T6nZaKXO//LtSMTjq7c+WMvqlqe mr2/tYv0Yh/NvuWqPpP0YmHU4n3WxWw4eL5gp24gGx5fFchdf4CAwDSmpJf7 KATY3Jg+FMAG7MPcg7yJZ+f+ZIjMOX5mcBt3/E0UOdm3hdzxsRcnSzIejsYO gIChu5zz6i5gixQNJx5hA2qe/jxrNws2FM1z5XMgQHE0x6p9+QicCBdfd+wn G/B+ht/v2VXvghWTfaB4bMD9siQBF2X9frk+IaDDWXWb6hYC1O+teNLTyx0f +zLPVt8mYLSd9CW/SjDD26KP9KWuvnKIYjGL9GW+R8qdOs5+hn35OPdjYJ8G AYL10X2Ue+NQ0vrsqXQOi3M9yf3ldZwGnbFvMQlf+gH78YRPF/hKFDOwH8OT XS7OV6xlYD/WZB3S+n23lRHu82hhei33+CxZT2vqD3Dnj315ryhg2Ra7LtKX VPMF3bU1g6Qvuwt+zOp5zob4nZbEUV02HD754W4j5/6jsrYteavcKJhuknWT iWcD9mTo3jfOqw82MiJXnfLVBu74tMX1Y1q53PGxL0WUXrgWLx0AK8kt1Io7 ncCMYCrN28SGM7lhh3TmsODAewWJYVsCSq+ktbytH4aPGyjGjUw2YH8Onj84 5rKknTF1YNfD2IN9MLI3xtiEn4D8YVH/u5x56swMM/WsCRjO7wuxb/2f9VNm u3blwCBsuC7z0cqSANlnodNeq4eBN6E00IpGkB49vNtKN8u+jREuKhnopNUL UeWeicta2KCSopHHX8YGyubiQkt7AiiC7qoV91jwofBi0ifO+sYexeMdzomr +hrVD87P9c3XLCFgswlzw5pxAtTUU1tyTQg4HHzqm9cId37YqwYLd7w5+rid 9KroRLBiiHAf6dWnf/OZ+16xSK+6xSibmq8mSK86WudbqK7inL9Lbt9Vz43D O8Eb2peLWGArutThj/40GDSllVuM9AP2qLXtyzU1174ysEfzQ+wfaNfUMLBH 5/kPBsl5tjIKP/0Bv1Lu8Wmfv24cZcedP/bqPI2gHV7zu0iv/gwbGv9xf5D0 qrH8D+El6WzIXX8T8dE4121Qa4GsIwF/+W1d3g5z9jdH3emJFDZgnxa1rBmM oDYyrC3OXKhexR1/NDPHqf8pd3zs1S8P64ozBvvhlJ+BX+C2Tljye2PyRgM2 LDN95HS7jAnMMukq8z0EJO1YlKb6dBhS3X+3To5z1vl/PTt3znRNLpvziFlm umiTVB/8mnpyJmySDbWtu8r11hHQVtNRvXU3AfVmX0elG7njC6b21jlxjvP+ tupSHQsCWD58H9tFhsHuZugTCRmC9O3bWXqdZzTaGLln+calf/eAkvDhtz3V bNgQcVooMY0NQQuz+nj2c+5fRM5ZZ18W9NX9zg/ntP2dS5ftxLnHf21RiPl5 s3747vQzWViWAOcVujHfqwhY5/5bdfFGAiwkd4Am63/uX7tmS5TMGQSqVvPH 2esJuHBU8EGlHRvAtH/XKs51Y1dsKnVbiwW6kec+Ke8jSA9LUR+n0MzbGYmU z1qCIQQ40CJt66wIuDlSnMijxwTp9jA53u0EiOZ1HnPh7Ju2frFnzOwIjo+V m1Z9ZsH0e3X5YM77B/6Jdcz/w50P9vKAv1LGiuB2wF7WfeF4tbOvl/Ty8EoF 9o4sFunluV0HFrmvJEgve8olukvrEaDZaGO2znkcUMeqA4tKWRD//ZHYaaVp 4G/WG70sPADYw4MSS5U6LL4ysIeVhF3D257UMLCHX8bcjS23aWXUuy6uPPaZ e74fGJ/3Ydlw54+97LRSedbgWCfp5bBbrwS7QgZJL/+UoHoo3GdDkW5+19YZ FijcqX4rxVnv3Ueltnq1jkChzra5tY/YgH1sQsQvT2pqYORUn/VT0uKO73zq QcLGTO742Mu7+tVDa75xrudVOmvsVDvhZ4nTH4YOG0y0hp7rpDPhRYSBQecu AkJf/Qxtvz0M1WN1067TbMCe7g9cz99Z38Z4EbiuUZHVC61+ETLSY2zoqPU5 FaRCgFVXKN99zvViIfpK/XQ9d/zFkdrKM76DIP+ibWKBOQENLYz0WxND8Pf4 e688OYL09Sr23DOuUm0Mc83JbKKgB8JWlIw8qWCDdXB8Zm80GwL2bP+Ywlnf 2t0/FuUcZcF4j/WJJs7+zVh6OfiJMPf45Wv9+HYr9IPNHKUvdtIEnFbea7Co kIAIl5AC5U0EvGlYf/raAHd+kUbbHQ51DUBb5TstT0MCrjmobJKzYMOAC29R FGc9His8+rZLngWbH5a7iHDWK/Z43M2ClECDdsbjv731209x7qN3lvUncdZ3 dhtt4BaNCZp61p7LOetfNms27RVnX7hgM225j3O9/BGzuBT4ggW5huXjKpz3 Hy68HD9vnDuf9E0nbuUqsmHH1DbNKc7v59g4zuMdYoLInLVv73GeL7HfUxqL vK/Mbmfo3d6+f1s+Gz7nGNQu5ZwPqamIqgU3WLC79MUTVc5+43GyfericTZE yNf21HLaslrhuKUJC6ISG5yWc/an5iW8q3t+sKBLf8r7n/1bXCdDbd80dz7/ fh769/X+/z+VRLdm/9NVjD+h9/NyGkW491/8/+N/vR73fwDYVQsb "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{419, 486, 484, 243, 244, 432, 385, 347, 319, 299, 287, 245, 433, 386, 348, 320, 300, 288, 442, 395, 357, 329, 309, 246, 434, 387, 349, 321, 455, 408, 370, 301, 449, 402, 474, 364, 466}}]]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJwNz88vF2AcwPFv/golNpskJ+JAycmPDmR9p8Sp6CBGWqxWKieqAxljMiZD E+VU6oCmMYzJyFjogvws+Qt6HV57P88+e55nT2Th3WB5SCAQOEEz22zZbHJs /Y8j/vKHQyLMYkmlgBqGODAL13NcIp9nfGDfLFEvc5uXfOE0OZTSyFdiuEcr k6Rwg6e8Z89dD7WTOYL0sEg5zXwjgT5+UMlPXjNNJuu84TtFrPCCz4Txi7cs U8Ua7cxwhQ26WaCEVV4xxll6WaKCFia4SBfz5PGEQXb96YF2MMtVymhinPPc p40pMijkOcOcIps7NDBKNBe4TjUD7HgnXtO5RR2fOEkWxdQzwhmSucZj3vHb +ThN4ya1fCSUKJLI5RH9/ActflJa "]]]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[{1, 182, 143, 221, 110, 214, 175, 225, 85, 207, 168, 223, 135, 219, 180, 65, 201, 162, 129, 216, 177, 104, 212, 173, 140, 51, 194, 155, 122, 97, 210, 171, 138, 77, 205, 166, 133, 108, 2, 183, 144, 111, 86, 208, 169, 136, 66, 202, 163, 130, 105, 52, 195, 156, 123, 98, 78, 3, 184, 145, 112, 87, 67, 53, 196, 157, 124, 99, 79, 4, 185, 146, 113, 88, 68, 54, 5, 186, 147, 114, 89, 69, 55, 6, 7, 8, 9, 10, 11, 187, 148, 115, 90, 70, 56, 12, 188, 149, 116, 91, 71, 57, 13, 189, 150, 117, 92, 72, 58, 197, 158, 125, 100, 80, 14, 190, 151, 118, 93, 73, 59, 198, 159, 126, 101, 81, 15, 191, 152, 119, 94, 74, 60, 199, 160, 127, 102, 82, 16, 192, 153, 120, 95, 75, 203, 164, 131, 106, 61, 200, 161, 128, 103, 211, 172, 139, 83, 206, 167, 134, 218, 179, 109, 213, 174, 142, 17, 193, 154, 121, 215, 176, 96, 209, 170, 224, 137, 220, 181, 226, 76, 204, 165, 222, 132, 217, 178}], LineBox[{107, 141, 62, 84, 18, 63, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 64, 50}]}, Annotation[#, "Charting`Private`Tag$46589#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV0etPj2EcwOGf/6KoaCOETWKrnLeQDa3fnHLYEjZUKDXmUGFTaqMwpLFy nOS4lbIVMqemkdNUDm8MOVXC665eXPs8z773cz+7d0embwluHhIIBOr5wmUv O1lMHCMJoY4DpJHIRL5aX6O7WEI8o2jiEBtYQCj1FLGGOcTwzfdXdDdLSSCK Zg6zkYUM5TbFpDOXJ1SwjUm0cJQsUnjGabbT7T+1uodlPKeKqTzkOFt5zQVG c5cyOthEO2f5yCJaqeQ9ebzlEp8YRgMHecdaXlDNB+bxlFN0kcsbLhLLA44x eDGvOE+QNs6wg+/OdFXzWc40HnGCbMZwj3IySCaMRkpYRxKT+WGva1pAKtMZ Szg/za5rISuYQTQR/DL7TQ+99PGHz2b9+pcbnveykpmMYzj/zG7qPlYxi/GM 4A6lrGc+U/hv/S3dz2pm85iT5DCB+xyhk0xeco4BfzpjvA== "]], LineBox[{336, 459, 412, 374, 289, 443, 396, 358, 330, 310, 247, 435, 388, 350, 322, 302, 290, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 436, 389, 351, 323, 303, 291, 444, 397, 359, 331, 311, 452, 405, 367, 339, 462, 415, 377, 471, 424, 480, 279}]}, Annotation[#, "Charting`Private`Tag$46589#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{228, 229, 227}], LineBox[{482, 483, 481}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->NCache[{None, {Pi}}, {None, {3.141592653589793}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotLabel->FormBox[ TagBox[ RowBox[{"n", "=", "400"}], HoldForm], TraditionalForm], PlotRange->{{0., 14.999999693877552`}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}], GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxdm3k4lVHXxpXCOeZ5njmGozJlSvaqKFQyZaoQERmipJIyZB4KRSWkECoV RRmK0qhRhoRkyDyeYy7q2673ffR9n3+6flzX2fs8z1r32nutO2mXw5ZuKxkY GDYwMjAs/TvT8faFXPxFAwYG91LpbQYb579qp058/YK4zBSHNDwzUe2W/Nz6 Gz1I8/bK7fIlz5DYj/I+F5VRtCFK1ConqxHxeTvdYt4yibS+5vPLm3ejFLWt lWa759Dl0FNv0t+NoG+XVWtoXIvoBCo69vD+JIrPDfm0UngF2FRlVn1wmkeC F3tiL2QyQtzjjWAY+wdFW5sYfJlZDd+N2zw2uK+Ao7rXnd6Gs8BE7+VHnvsZ wXD8V5BvDxmejuperR5bBWH6FvtFdNih3wTsCjSYQO/ulYdnqjnhRrhXkpoV M3jP0ULfsHPDtO/4AIXCAvNUro41u3lAZouC98e3LKB/+052WhovXFOSnhER IwGNx9TZ5jkfxLwOUpOVIcHPBGebI8wCsKH+RLkaZpPx4ya9WoKwb3bfRkPM I64sRx+GCEGx0EieE+atcoIro58Lw9tDtfciMPN8oJy7Py4CwTYl5x5gFou5 Z66lJQacchp35jBfpupy8R4Uh80rMoLMZUlQJ7Jp/WSyBJjNk3lfYNYTe560 rlkS/j5lU/OVIwEH442A/eFSMPWw7paRPAkkwiT17SnS0GFjl3GWQgKS/N4y y9fSUOPqZqiqSIK1G4XvHd8nA7233z7bqUyCIx08taYMsrBm7JOj1xoSjE8m 7Da5LAuR/SIHndRIsG3dq3STNXJw06Fkd4oWCZ5Obvg9+1EOxraUZmgbkMBX Rb213k0eSOQV639uI8HGsQON9iQKpIAar6INCYzkhHay36CAQaWhgYkHCRRD 404811aAqNfuZ5VCSaDsplst36oABrcs6s1ySOD21CPiob8i3OXs6Wz5RILq 7MYDNH4l0LhTTk7hJsNUwd/ZdY+UIEL5RZ/KITK4yt8mpe9Uhr/+uemcrWSg KV/QKplQBueqxaLsM6zwOPd313QMFWSk5qxazNjAwVAWNkiowGzjgdvrnNhB 1Ce6fG2NCvy9lZ3sMMwBv+JulJe2sQPDf3+yfCqm//5d81/mwu9z6Dvt63N0 eHvTrMb5U6hm3Zbxtxzf0dZUx33skSXIL/m+UfrBAbRVIPMUj857VL+m41zG yARqEpx5tEe6HTV8/KJOfT+NQlIkHnxz7kd7+cxGRR+Q4F7vVqd21VXQzU/x fcHOBgvFupufX14Njsem496f4oCkZLeL4e+Y4MXBa6O1gVzwa/GP+flaZlDn CVt3qpgb2FfYvJgIZYF0L0fUPc0DF/+oxs4ssoCA06nQQBU+SHnvOyaO42to 1+49Pw/wwyb23x1KmAUMRj5RrwlAsE+gqR7mdCXo2NEmCOGPPb+aYxZ+cb5C XFoYVpgklPphvjMn8UbUXgTmDC0OpmO+pOx1eDJFFIQXghwbMLfaB9zP/SgG t7j9LKRxvKrJPpE5uyAOr5lFuaMwh19d4cqtKQnXSrQ9eHD8psWEZVVpSYHE wsqFeswCz53t9jVKgX3wXfpXHM98DRvnmwKl4UXyS1kTBZwvxRXqbjwysFt6 swZViQSf2QV0u+7KgP8n6nAVlQSqg7vYTHfIwur98UNoHQmuJiudeNstC6dS zkW+0cDrc694J3VGDh662nUK6uH1uB4NHRCRh/Pzye0lm0lgk7j9a+ojeXgm xVsQYEaCTbFPkx7spsCBBubf8Y4k0LKs7+4foUBcHNnL4SgJCuldolMxCpC3 o8vGLokEb7jrpUflFeH1L+2V449IkHIva+pLrSL8Pd8kyj+Gn4/cobtJ7koQ t6M11F2PDCoHmxjcVipDAY2nhyWLDMqKklKUaziev9MT2+RZofHgNrZGfSrQ /mhVS/5ghdgAzuTLDVQIjp067/iBDSrsmhY0D6uAjCXV1FWAAy5Xnlz/lHUN 2G73dU/7zAn/9Pw/Pz+qzA5PfS1BSboO4xmJDqj97MbN+ya/oj8dq9wtTxeg 9CHq9PrVfWiycIgWl/MKOYlvWPkxfBx18efdEzFoQQHiV3yvRE8hxbnjByTf /UQDN4/fpIuQYEcY3xHXd4xwITwp4MoJVmjpCB0vNloNE3aygZPf2MHhWszz 3DAm8JOcydlE5YJQ92hfgURm2BWp23LdiRs+VgldKd7NAnXbH3HE5PFAFTls i18fCyitvpgU1cULQbah7y5JY70p/rQvk5cfCtvi3Sg43k67UXh3WQlA3YqV 39ZjPsLWziscKwjpPLYmpphX8r0X8PwsBI+fhn09iPkkh6hbPbsIyDAoy5/H 3Pj7zR+LTaJgcKyt4Tnm3xPJoT7hYuDmeU2fDcfrAYVTwu+KxSE/ssD0EGbK HukdK3sk4ISV471BzA7b/TWGuKRgX8aDjVk4flNcwtydbkvBhRG+zngcv8K3 7qZfMpOGG89SQrqxHvN4xU+1jUhDwdlB+UKsxyF5ggEqUTLw+5Iy+Q/W43rX 4oOmFFmQvyA5uWMtCV5ubnOPfSILOSwStTHqeD/ZPeqlu+VA43Ws2RYdnM9h 80fuTsnBz06ytDOQoLv9acuDc/KQl3FymLwd62dlcknUOgqsfXD1l5oDCevw 1KWg1xSYc2HlyvIhgYeulukeZwV469P+dSwaP58NkX4kBkW4vSJz28YiEiyU na2qTVeEHCvPv3s6SPDe5Rppk4ESpHlf618rTwaumEPBde1KIOEmpaB4lgyv KL18zoHKcM3NiTfwDxlcTHykawWocH1zB5toEStkJ0TqbrtLBUYL14HWeDaI MwuWeLxVBW6UzmeZP8JxcjH0+EyvCiQymG/mdOCE35/tJEV+8y7rsdiQSsTg lveozUH5eBcpCX3xkTMT5e9CxQ9u017oVqCtOuvT/rwdQofaPa39terR++TX 1/LEOcGQ5eC8DTczCN031t76nAuKcitMLs8wg8C1N1HWjDzQ+mgH/+N8FvCK X+2nv5UXVuyQk2TgIsGqchc/9+N8cOvA6UApHB8Hx1rtqGX80L86KGcN5vsC JQkswwKg1k7hQ5hrt+YWhK4Rgg8GrHRbzKoBVo5f/IUhYiRwZxDmH90yVPdc EShUSIq4idnBnr3z4k9RuJtlva0Xc/lzm842EXEwHzVn0sHx9UfiL3XDNgkQ 9+en52DuaOs6KRUpCTJ7r502wPH25WUy6fxeKag4bFRCwvGWLg2mexal4I1t tZ0yjjeOhfe2fNekwW0qTuEx1k/52UG/MW0ZOJPPRHmE9VM6kO9P6lcZoIdF Xo1XIUGS79h9kyOy4C+9LdlIlQT+ncdjSSxyQDMI85daT4LscAnXhJtygBaf DPDok2BzVoCLKMiDQ4y+oIYRPq9sbGk63ikPX0q1mBUs8fOwGfbtPEUBvcYz cvquJFg3WISPWwqw4vdpjqiTOH5vJ44mFCvArdRS96NXsB4PiDV83q4IM3Xn Xh6pxeeFgnKV7hFFSNjIXCH+lwT9fZpWnedwkTL3z7C3IIPxVoj8q6AM5Mov uZMVZDinZE8dea0Mk2Y+cmfMWWFrlPTsTxcqcBlkl9P42ODI3isDg3NU4NZy +/SAlx2GXNa2FV9SATa1wuTeYA7gHhNMmf96Ax3Yt79OjUUPDRVVDN90a0JN K1327dmcg9ZeGnzP2PgTFQakONgLvEAGZ4ICLtuOoSazkuQct2b0wjA4wbx3 Em3OpdJZ4nrQWj82xo6PLNCycNV1Lo0RRh6/nGVcywqh2vdelYmshsemFcNM sezAJ7Cml7qHCbaekg4JXc0FqttmQ5L9mKHjaapKqRY33Jh65X7UgAW6K11n HE7zgPl4y64nLSygbpd9maOKF+5/Uda7KInjrZvtx/wQH3iVK9bKLcXfydqH zmsEoPTk7moNzB2LhWv/OgmCXt0djW2YZzcMveAoEIIrR0YKXTE7C1/RUBkQ hheZlfWxmI/+PL41TEgUVC0kyZWYE6qyByz2ikFabZrRShyPZ5Ra+Q4niMPu G4KUfZjn9IprgiokQPhQblgz5uP2X36vWJCEe6/Pv4zE8fq5JNmnM00K9J25 uD1wvGbwH/Q6oScNCfEdEiVL8frm6G7BVnx+da+/4oX10cb/MvcXfxlQrzKm 5GJ9lJF2STXllYWz73ZwteLzqoOopuPgLVmofDC+n4bPq839je4hm+QgUHxj grs21vcKEe2GLjn4pTBZtxWRoCDixLfNQfKw13Zj2GETnF/Wp7b4iVHAelrT RdaOBM8PR9FrH1Jgj7Caav8hXM/3Ondx7FCAqjfNQXNnSWBp/uOS4KgCmLoX x68twPmvFyilH6UI/b1hBtPNJHi1Qk9bWFkJMmuPyK4TJUO40Hq9xbdKoDiV y+4XSAY+ijHn4n5l8I7pKO4bxvVej+FOBSMV9B5NpfulssKdyzWJWVepIJ3J 7/DRG8fr2133TqqrQEm+c6pnHDtUMERc5mlQgZzDpNJn0pygFs1aPJr4Gv1m EGq+MhCJSla/MgrN+IEGrWfuktTKUNtPus/7y4MoJaGmqtjgE0o968hf/p4D gjIav42MMcEYawBPZAYXhLCTdoR/Z4bcFrm2g63c0Mm18WbfRRYI/11syynB C2e7gzKKmUnAznb4xJgFH3zxtlCRxPGgKCnUGp3ID7e/+D+iYnZV3rVW5KUA OAk05OhjXqtzpNZ9lRB0PNtvaY1ZLsOf7YSJMBw5b+R5DPOr0ez5mjMiwDgS ZZ+NeW5TlcKLSlHo8Tkl347Z9Jybcc2UGKzWlQpUwfEkJO2o8ENaAialVldd xHy/0n/s8l5JqNG1Z1TE8aWZT2rMM5ECV9VnVqOYW/zNLdoHpODPfT8rBhxf yQcjFafjpKH47M5zIVgPpay/1CvJy4BpxpOew0pL66de3VArA1MWDFoyWA87 qdc6TJxkIc39unkNPk8ylX8O9ZyWhVBVb3t/TRJw13FeskmRg+hzCm5cG0ig 8jWVAmvkofypJv/oFqynvcnNTO/loTh81sXQHJ9HJhr/vvWgQOYus64WZxKU ZKKYrL8UoM2mft4fiL/vp0cRkKkA/E5pbz5exPexhcBfHTqK8OSE5s3UJyT4 Tr2T5NCiCORu1lqfGby/yE+hj4OUoPym0qGbRmSoaCZvUedXBhP9yqt6d8jQ rlglH/tAGezm06Se6bEC+/GHYe27qPB6v8rDuHlWOOPRqL+pjwqe38feDY6z wZfvK7yPnlWBTVoubneNOaAsPJl/ZEsV4pkrKGM54os+2tdc5g1rRXbn/A8c 8byLStrICqUfeID10qXwdjoLSJVEx/xh4oPGco8qMfz+Iij5t+nBn5HqoOa3 qTVpyFrUPsbTlxcex/VoNQiQIND81lfGlhT00ERWa/6FMKJvPlnzTqIRFYSP NQv1ZaMTPm8eH9rwE22vN5oX//EcFa1NL1p8NoqKt5rNjoQ0Ie8WH1GVi5Oo 1up1jeJIN/rcaFPcUMACUdldpbuDGUHI2lm3nIUVcuxUh1pXrYaM2sibSc7s EHk0tjB+GxO4Wvp+Q72cQF4bNbqwnxny2mqbDWS4YZekwQNfdRYYm9Q9ZOjJ A+fq5Z5417PAo7CbGZaFvOCt+c5qtQR+v0G3JQua+SBtt9HcUn+AzJgS6Ski AGEFs+XqmC/OcOkf2S4ITy/feWiEmb5r/mrXBSFoU/pyYz/mBomWdPsmYZBx vKMXjfm53a4hoVWiUNr0afMjzNYyBWKGJmKgevGgzyLm+FuxPM9OioOtT8gz Gxz/Xcrzv7RuSoDKg0n1D5hb9ExfCQ1KglS1+4+TOP7HW4Vp2QlS8GrxabEN 1tt922sbPFSloUh15kY6zoeEmf7VpZ+lofLN8cKdWG83f7XrzD0oA3XfQ6JO YL2tC9G7U0eSBaNbrRo3sN7mRnfaX7kuC9ZK2RX5WG/PxX8IPaAtB2EbFdx+ a5HAxJZ6xa1FDp4axU89McD7tWuyJ/vJw42CgK58YxJkSU+w9vJQYPq89T5Z W3y+Mv10zeM2BcS8KxVTPUlwwnf6zsAmBbD44ajCFk6Cpw4Jt7N6FEBIaNvw 4zwSxAUftpw7pQhpv0an9jXg/Vowm62WUgLRrq4wawEyVDqLXEmrUYLY6E4Z 8CNDVd7JhHe2ysAYn3L+Zzc+H5SY+Gv9UobudYENo7GsUCLRoW2aQoVop5uS xfvYoC+q/LiDogpM3RkdvBSAzwdlqwuz36qAbLmFtiUTJ1Q1Bb0eV3+J2Icv HeG6HIbK0yNE8nZ3oJOHqzed3fUQUSrr7TUYBhFHLlxyL/uAghaUPm/O5YC0 jlVttt+Z4Fs5KTQ3lgvIH7odcj8zg9e0ZSTtJTco/OX9yhnPAuc0Yt7NkXih JjGphoER3yfWHwtWR3zw8Ov3eAn8/mMflYloncT3H+X6N8qY9R+K/5UpEQD1 aOuADUv9KdVvn7+NC0JDgGeSJWaJ+6E9puuFwX38FOkoZt3JH85jXiLwqei4 fSZm47IL7/bki0JZf2vZ16X+1JR3cEmXGARXJTVTcDzJ3WCXV+OUAPPko7sT MV+5Xa6421gSLCddRcRxfPVeMtJVAyl42p8a/QPz7JWWxowOKagavjg+jOPN MrMrqTdUGhS/3uY7gPU2K3xr+GtRGaja+UFvJ9bbn/m7D3GU4/t7ThHnOL6/ x8Qdn367Wxb66m0jQ7DemsufDhYekYWRrgvKYlhv63xYijfEyAHlfdRgCr6/ Xz96M+aLrDysOmMeZYb19mj5mM3HZ/LAYuyv6bCLBDeqTN4YOFHA72D4/XtO JJg6HrN+ywwF1m0/cLE1gAS/OneYi1xQgAu3ywcSU0iwl1mOw32dInCEet2s rCDBY5+85wIfFeHA2a3VWnScP00Zl3L9lOD7fTe7OUSGSYmJ6+9YlcFcQEWW O48MZwtGb9gWKoNLK9+ohior+I0vbrXbSgXU42aoNcIKEWO0vpF2Ktyf+rMQ 3MEGW696aVqfVIHXW1c47FjHAR6r5+RU+dfA9ahnfmfGOaFO0m/zROIj1NXf Gt1DO4Caxs746Oh9Q90vLd8z7ruNnvJ2pWeV80DOaf2hTyMskNuWmLB5ihck VtkFs+D3mXL1iU9/1kckxHNsIX4+BTlbrVuwdOCFKzuUyem8JBh44KBD23IH HblytePmxZ2oR2hBIPxOM9I8Zxw3+jYP3V2bfrHuIy84bPQueylFgps6GenD A2/ROomb6EFlHAqsbeuRV+eFIrrSHmY2fL47Yj81GVyDcsfHaUaDAehqTFhE hTAfaHbMWC31n4x7wvlCw3nhcBQ5pVCYBMD/yUWoJRwZn1Hr7c2dNwhMbFF2 PNWAfLQP8vMlXUNZLY/WSoz3oGbLTk37bc/RTyZlU9Xjo0hnRDK3nKMJwY2+ 7itek0jptu2BocxuJMMcHPMxlQXOXmbpH/BlhLvX17TyzpDhQf0anab5Vfi9 Dp/dvYMdRBvsD93YyARmDKu2OX3hhMWUaaEsB2ZgGWq9zSjEDU28ekpWKiww xSkvp+vEA/usG3TzP7BAUFph1tQ1XvjVnx8oKk6Cmle/UMh7PijQcry4pP+z 2+ZHR7kEILRIXHdJ/8eOvHhO3SQIHYe455b6w+PfQpnfxQpB7i3RHOel8/T1 42YT74Sh91zZZORSf45nQ9XPeRE4MunsXopZp+m21hMkBntHpki/l/LTaz/3 IT9xKKQ4p1vhfGyWERfiz5CAIjutzDeYY6lR1NwfknDbz2JFAM7HP2Pf1cOi pYDH2UbWDOejgTuNeT9VGq4wynCfx/pfxy7TwfheGkaHb/caYP3XIZdvO+ci AyNFzCRXrP8S924+Iq+WhWF4VBCF9b/uSZktLUMWPOdq3M9i/T/0/S27rboc 6OWuufoK639Enkbd3QY5iKKcORmE9T/4OaPI2CF5WNfHc84I6/9YtLKfJAcF TBjcZPJssL48OjpTcZMCK3Rq/Mc8cL7PVqc06SvANR2Nm8JhOF9/uKzv7lCA F2qi/uG5uD6Ie3s1BypC9amdylfqScAw72P/W0QJnKeYTSZ4ydCyKtG4p1IJ 6raLzKr7kCHJjeddiaUyaMYJnw7oIEON75hVwLQy9NndvwoRrFDaNcKWnUgF /XOWBvo2bJDtNtZmKqsCixLZFc2e7LAyZWtx/wsVaOo4FPl6jgNWnC754rf6 Beqsei42i0KQfm9PhHbJd7Ryx5ljHgcfoO2UZ5/6HgwgY76IuwvT79HI4/NF zEkcEHXsiuGxRib4mNSopRnKBSOp2WVSdczwkfGQQ1klN1jFThuToljg4q6j kaN/eWC+U7csigHXf9MTZxrX80HNpVf6S/pfwci0gf0wP9w/aGa1pP9K8xEH 8wsE4CU86Fjq36KiBNsLvYJg8+xDicXSfEGPZZcmVRiqxdk7/JfOH8dC+CJd RCCi8XbHVcx+fiGZCpmiQF0xGN2EeeamXxq1RQxWHCvnksPxdMulV7Z1tQRs 0STdi8V8Lue7kYaBJFg9jKgQxPFlkNQzHLhBCmbm6spbMDPdzRA4/U0KpDKc f3bheNN4zPny+ylpEDloHm+D9f/7lVAHAUEZcJ1lldXH+t/aWlo/+0AGjK1C vzdh/W8v72EgW8jCxf2GKU5Y/wP3WAX598uCRIypAl0D60/1KoO1Z+VgYNpZ cDfW//Znd8tFJeXhfNW13QxY/w/IiguWVMkDs1hoW58Z/r4yESonHShwP0xU URzrP3+vSkIqjQJ98gHXhLH+f/EU1GI+pwAalJfl/slYLxN+XSpUVoR9guQi q3IS5HHcaJt6owi6uk+MZSfw8zzNmJPupQSJV++PUTeSgavWxUKIWRkSpd71 xlwng41HVJdBrjIMnw/UWEFlhRu3byilbaLC2WFem5xeVogqZqja3EKFITTI 8bOJDRiCsi8bBqhA5F7JhjcyHBDaqbPmONcaiAxOfTn/gxOsfX/Y0dVLEePq FsHD3c7ITrfja11aC/K0SjFK7y9EL9a9t75wjwcYwpNcbg2ygPtE0rmfQ7yw vcjQr12aBF83T5/w8P+A/MUmnVVPJiP3wyJl28zxfa6+kP0bNwkWzHXdphPz 0aRJwrp8P0Pk7ronjI/UjAwLgoRKQnOR35bMNO+XvLANnF/qYP0f+dGQ5135 Bv1S8cgs2hSDgn+8yhRR5AVrZqPFfhIJqJoyfweznqK0yL6jr+j+yDEzImov Fx9YuTYwL+m/2V+fjwEneOHUGYYuUyES7BAYPf17Swa6w356m6XsGjTlnZN+ v4QX1Ft8rFvw+RrqGVTGBsrRJ4Zv1pmBnug/XUA+iOyMkFy6XzhoG252PIA/ r+lAy2Z+rEesTyNngu8j2+21DgIbrNGI8KUUxRb8PPrufNDDz6MxS+jkppYj 6K+ry+HIjG8Gj9VZnPOVGlCT3nD+n5NZSPXcvcHZNz3oOnjJ+Cw8QwyT/pff WoyiM4aS1XHNjUiZOeeVue0k0vl1PngusBuZZnNMbU9gAQYdpQyqByOcNL6o /GyEDNvcZw/umFoFxo5ZdO3N7MBqHR6cr8MEhl8/Lo694YTIW4bxgzbMoOfv LtDHww1P+vokkBILzGSKhGk48EC7zLTuk3cs0CZ1+5rRVV7IDNzNnCWGz/fe Mp8PveaDE2rvXZbqje+QiowqmwCEv5SbX5pHiqlJRLHoC4L3qlPpS/VmLMvw SXWEELC5a8gt1ZtBl20FG14LA51/n8VSvfkzrppXNyUCg070kw8x37pbVDuv JwYmbx1b5zHv3v4h6amXOLR/vkCyxPn/WeIeZdUlCWj3vG/zCnO3rFzHYKsk JGsdF/Rfyv/5aitahBT4Jtv9NMH5f/coi8x3RWlY5yRlFYvrzSFhZHr7rTR8 f1GVpI3rzQNZz98rnWUgYV2hox2uN29e7X1ya6Us9Ezk/T6B6017y3WbzHRZ EHI9stcf1xs7JmPrz+vk4GjjzME7uN5cf//IxapeDhzVDs7a4XpzbFbkl5OH PKy18HjOh+uNQOW2G1WsFHj9PfyYO643D0dfSh/IpcDF/Lf5V3G9qdqQt3qH ngI8rqs0vh5KgvMyZr/OtivAoMPerQM5+Pn5DB03ClCE7zWygY8/4/v2Dmmn QCEloBgmedXwkKHPZmt2bLkSrMo4wXbPiwxBLx0PUcyVId3lQj6043r0Hox4 J5XhYInXom8YK2htCZg1jaeCdGW0SowlGyw2snDUSqnAm9ISesgBdjj31319 /HMV4DoBtux0Dsg1N7Mr9q1FBXOtLA+cTqMzcbwVoc7fUfJTboOz0yWoo+1x XE3iADp360nIo7T3SP7SZrGhSA5ou643sfiJCUwWdHmCT3FBZ+ndym+vmIEh fvrF5TJumMr9tCXkLAtc+u7R3f+LB7aX1Ttv+ssCpY0nQ+TV+OBQRzj/Ur35 Urjm3ZwnP5BW/BVaqjfZVx9fHcwRAKezHheX6o23V5+IX6cgrFvXZLhUb0T+ vlulRBGGtlOHTZbqzS7tXb6f94nAdFOSzFK9idh5LIr9sihwbg0/0ojZI/SI rEeDGDT3bLkvg+NpbLNFztoVErCynPFHNOaYa4etZXQlgWekiJMfx9ehBPWX wrpScP3jgF3T0vz78Rnt0WYpCBl2GGjH8Zb7kvLD/qQ0vl/ZNOzC9SY4L/PV Ez4ZaNZZe1MD15vdU26R3sUycPzugb1vcb2Jqr/CdMtMFvo7WUp34XoTE2hw UrxXFsJsTEy/43pzcSA8Ij9UDgpvnPfQwvVmfkDdskZMHky7DcK/bcb3ATvN WdkKeTh3zCSzCNcbEZvrjgJ2FHBKdnZvdMT1SjTkkcE4BUJ6vD6UH8X18u5C wel4BZg7svHezyQSrPnUu3e7oiK8bN8xlv0Y56+T1IDrK0VIt12IFR0nwe/P ZQX8nkogk2Zn/2YDGST4xQqfrlKG5g0WHa+vkQHefAktuY7PM3qbarwVWaGS NC2yHlEhvmvwulM3K7DwxtwcbaLCL1Opn1n1bLBvsKKuyl8FjAZnLFPEOIDN zL5YhGMNBOkJTGxp4YR0fsEDR1c/RK1BI8rH2RxRegc7O59RC+r3OsPIq1aI Xj95Vpx4iweebdDo4RxggTdBKefX9/ECS8QflSdYX4MEkv8UtL5He5lSznlW JyGPRU7ezdt54b3qcNI4F37e1wpOzarnoT2b4xsbzgIqYIkv2/eoCe0J9aNS O3NQ/YesS09qeMHyCtfhQUl83nhwmFok9wZVzv/cSeaORiE+Vb/4ZHnhq1ho 4ScWfH5psyd7+T9BIRLBFXbn/FC1QlR0ESsf7OJg7l6qDxaJrtTDR3nBd9db SoogCfY/eHfrb+Il5HxwbxttrRyymc29uuIuLxiIhzzwx/Um8oSO9uHKx0h2 +8ueUPmDaItFQjxtjhdeaBaq8OPP2/dS95qdEy/ErpsL8ucjgaPbsPR41l2k G3Zj0x13C7Qz9/KFkw28kCwCmxjx8xBo4yZxGSag/Vy5dxSG2dBq9/OJF8Z5 4WOaY+I0/vuRlXVmkwOFiLyuVdD2nTHiLL+aKlrHC6Lx8uvDcb3N0I8u+B2c jYafW17c36WBwvRjY3et5INr6nNpS98v7nxq8td2XuA78NTKG38eMe/N6p5N nd3fjQj/zvvVAZJT74aW/TsZHU1uhjcnlv071QtnPx1UpS/7d0L6wlJWb6Av +3e2fbL9fa9hYtm/c/hyaVe19Oiyf0ed4zW3l3H/sn/nywVxxi0xXcv+HTvy AznLnd8Q4d9hzn5FUuH9jAj/Drfd11QVsWeI8O9wOq0t8F2ZiQj/jg7bx7wF /9Jqwr/zSZMlf47lbTXh3zn+pfJZXVRTNeHf6Q+Ye5izubOa8O8Q80PCv0Mw 4d8hmPDvEEz4dwgm/DvL88j/+ncIJvw7BBP+HYIJ/w7BhH+HYMK/QzDh3yGY 8O8QTPh3CCb8OwQT/h2CCf8OwYR/h2DCv0Mw4d8hmPDvEEz4dwgm/DsEE/4d ggn/DsGEf4dgwr9DMOHfIZjw7xBM+HcI5id7F++0XbPM/9e/s/Q+/+PfIS/k UFWa+5b9O7Je48eHfceW/TskK8dRpgzasn8nwmtAZN6FvuzfuWfR+yi+mIa0 3Co3Sj34haLrLi0cPz+O5iYu3Tt1/S+qfpMTLrdlCBH+HNGSWO+Cj5+rCX+O TL55ZUVxazXhzyH2R/hzCG7dcKHh5u1/+yf8Gw3Z2kEHbv1c9m9Yn5antTwc WfZvhF+I0lFYQ1v2b9hrXInduZu+7N+g3V15qHYFHR14FxqsHTGPju/+Ocxp PYEGDH8+0rL/g/5Utv7gfTyMCH+G6lpm5cMbPlQT/oy8mLFbOqSWasKfcXVn 6mGbmq5qwp9B7HfuRsjmoLB/+yfm96TEi0k7uweW5/fi+5o442bHl+f341Xb WUPpNER/nyX2RZCOns6pqk/Z05F6KNtsFdcsepB9RFJ9Bw0R8/qq/dy7jCK+ VxPzemK9qsabBxqa/q1PzHcZP1NWJMf2LM93nzXa0lheDS/Pd2vs6n4W4fdO zHcDtH4pvjGiL893/2arSTpK09GpMz2itSNz6IlmxOvU1AnU6UvW5ytdRHxr XCgZviOImN+qqOTwlom9qybmt9enfPNiapurifltcH7flwt/OquJ+S2x36jm 6XlX73/7J+Z9VLNjZOfO/uV53zCP44943fHleV/NBZl91nU05HL66W7tcBq6 E7+6bNN+OgrPH+cL8J1BYfbnFw+E0RAx3ytzWZl1kr+9mpjvEettZxEXe1Lz b31i/vP7XeGtmUujaLWBr7iHVj+isb+YyjpIQ9Cx+HqF7QTa+kLQm9GJjuRm Ss27labRkSSujYfaaWj1uvzO3lX/Pr84/vhT1d/DSO7QqG8UHx2dFQvp8S6i o58eVAvqTjpac121aHDo3/rEvKjcQdc+bKZ7eV60Sjm6+rjp8PK8SFuXEiNX N7E8L6rwy8v8iusZMS+6U/YyfHgtHTG1XBxmuT6H3nUW3xcqncD5JP5npesi 0pytT814M4KIedCRoH4UzF1XTcyDknK8zgrLNVcT86CmewfUeq91VhPzIGK/ ZhP3m1r2/9s/MT+4/iJMcefe/uX5AclYdKC5aWx5fjDw9NuKwQc0lL7bjO6p TUPuR2uvtWH9Ud7QlbNLfAYZbRfzEUmnIWJeELenykPLpa2amBcQ6/HItMyq lf1bn+gfs8s/9K5TGEXmfDtJnzL70HjyuLzgdho6UZZ4QJNtAu1/Ls095UBH 72PzfzxpmUIvt7JsaRunIaK/PHbaZdZLtrt6Yb/NrUsuw2h6T+oWw1V0VDHF EXoN71Pz79S4jjUdTVUMxzh2/q/4+eCwQWN0DG09J/LS3IyOxIrjFgO0ptDK jPfh5jz05X6zu6259j3HruokDr5wN7UhdOGjf5biDxpSzltbvuoDDbHsqKsx c6QjFiZf6qfrE6i25mz2KxzfRL+ZWM+99PKXtxdGkMcDXWM9WTraYTi+VW+O jlTW3PxRZkhH7tHH6gOm/+2P6EfrS1pVed7pRkQ/mmM+Wi6GdXi5H33/T8X4 vscTy/1on1SKkbEWfbkf7WpdYUpdj59fhE8D9dQcesZ0Xj3qxQRy4FBw+qW7 iPS/5380nR5BRL/Z2uGRXlPC22qi31wR45ir3tRUTfSbBUPHIsX9O6uJfjOx X/XT57Zc2Ptv/0R/UnBtpFWAcP9yf7I9cXLu242x5f7kFolvrLIFNFS2KQ0Y eXDeRnY+FXOloz+rHLyeTOH65qq9OJ9HQ0Q/8sUPvbFkUls10Y8k1pu5W+o2 cv/f+kR/6s2tr3WFYyPoWIh+SLhFH5LtNckx0achRaPbblc/jKPxD0JfjO3o KNtKKp96fwrd9O3t/D2H4/y//St+tsWmMho+Yn4wktouMIx6FopOJP6moeZO m486G+moq+ln4y5bOmrZ9nZGqO3f+kw3h7664e95w6LxvaYpHU0EMb7sZp9C e9PiirhF6Mv9rCcrdPpOrO2qLjvJOCfUO4jkWd2fDDbS0NbkQOasfBqKlLw3 zOCM9YteetIjeAINf+2tSMJM9LOI9RKkYoxPbxtBDW7tOaxidOShqp3a8IWO Nvr2UmVM6MiUzwqtm/hf+mVD5n7HNoZIah0vyZvo6IwnU+7nvTSEjEZs1uO8 2VtnJHBVbQJpp5x6RdlHR4T/TYB0J4/HuLs6i+W1GlMMHTnxpDh8NaejtOm6 LAadcSTUnSi+0pKOOMr7DnnhuukQcunEtr10NCJM+b7+9QRafL5GIhp/fviv S64Vv/7th+iHjYbKF6pGdyOiH6b90DW+b3houR82pSFNs7o3sdwP4+/fL+Wr QV/uh/mLZ/kK6dDRujb7bRs95hD8XL9f6v0ESm+4zRkov4hWdejMRLGOIqLf NcatIP/T9G010e+SZ/VO6ipqqib6XY9Sr136aN9ZTfS7iP3mbjkdNGH/b/9E f8RNg7JibLZvuT+SeOUxU3/M2HJ/pJ2b5Cd9g4ZeaFf07/o7gaQzG58I4Hgf 8BTYFdA5jWo0Lfibb9MQ0Q8xpKcrZX9vrSb6IcR6HsdyM0zu/lufuB/bjKyJ a6rH+bxeU28vtQ+1v3P7Va1JQ4Zqkw80C8bRw2R9/T4bOop73B7XfXUKNc5+ XfRepCHi/jwSvmlVX0tX9cPwjW1yE0OoMyRZRGiWhn42Bx2LVKYj8/44xhs4 X0w5Hq8JbPm3vkyKOuVv8BiSeNg1L2pMR60/qguuzE+iP4efB5SL05fv0+tp /Ce8Bbqqjdf9LqE/HUSJqu+miz7RkHV0+t2hizQUZmf5Mg/Ht/rAN6lSzwk0 N2h95Duu38R9mlhPojmE0VZ6BNmzyb/ZK0RHgZQ9+lI1dJTsFfOUsp2Oqlo3 BSaM/ttfymZLpwP9o6jr8zM1fwM6SnBS3i5uSkOjXitfXMDxeKjG80m/xATa ceujFzuOV+K+fTntaV64fnf1nT9DLZbHsI5mKo5k4/gu6eIZvcIzjtbpWPsr 4fgXu0fmeYzrwhn7RbN9OF9+cZpGhD+cQGUGH+eU8edP1USlC87920/B9iNX yuRoyGrBYt0C/jubvavgyslxxM624cl1fL4k7ud5bS+Ox5K7q3WuWjpbVNDQ 61L9ZgX8PAQWkr+Inp9Atu8fFlFxvfE72r1w9jANJUs0DzZjNmuUPmxmOIEu ZLW6KeH61CG7Umvw2wTq1104vlS/uTQLVfYt/tvP/z8P/f98/89v+YCTfYm/ VDcwjs/Ii/z7/wj/A4t7wGI= "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{762, 138, 49, 586, 587, 775, 728, 690, 662, 642, 630, 588, 776, 729, 691, 663, 643, 631, 785, 738, 700, 672, 652, 589, 777, 730, 692, 664, 798, 751, 713, 644, 792, 745, 817, 707, 809}}]]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJwV0s0v0HEcwPGfx5PkQJZlGMOU9UBupAfF1R/g0B+AolNSnYQDFSfUIVlG Hk49OKBlWowROqkcPIwxWlZG5uXw2vvz+Xyv35TbFaXloUEQhNBCvqVML1Ji LuYWNyniBvd4TCuDfCcyLAiuazWPaGGABSK8XdNGXjLEEjHuVdrFJ9aId3uo X9gi0f5c+5kn3H5Vp9klzd6t+2SZx3SDBHOD/ueceUIv6Y4m6wvN1X+aoR/1 vP7Sk3pX8/RQs3VSc/S3puhrvax7mqmjekFX9ZTW6gFnzeO6yRnzM/1LurlP 5wgzF+oUf0i1v9HPrHPaXq9f2SbJ3qEf+Em0/Y52MsIKcW4P9Clv+Uao2xV9 Qjvv+cEJ90p9xTDLxLrVaDO9zBLiVqB1tPGORaLcK/Q+TfQwc/yp3I8A+S5P gg== "]]]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwl1mWUVVUYgOEZUFJAJaV06A6VRgGRBqVDQAkR6e6WUCSUlEZC6ZBuJRXp 7u7uLp+9/PG4z/vdb7FmvGeLUQ1aVW4ZGRERUSBaREQ4d/nHt+TVsZw5nf84 Czr/8HlG5186v7Oe80PnDudXPovyvMrzF+T2/K8zGtk8b3Y24gN7T50jwjPH dRafb/TckEE6vV7n+UtihD/DbLezCbFZpDMZrvdcn3o6jV7tuTbRw89l9sw5 MjxzQg8mOnt0U+KwWNcnD8/1KPJwUg/hNfbqZsRliW5AXl5nn1lz3mCpbkg+ YhCTWMQmDnHZb68F8VimvyY/b3DALHwZ8VmuG4XvhXgcNGtFAlbobyjICz06 fF+c0kOJzyHdmjdZqRtTiJf6F/JxWv9EAg7rNrzFKv0thXmlx4TvmzP6Z97k iG7L26zWTUjrO1ij6/AaH5mFL2+s5wKclVn1Js9fM0xn0H+G9ye8D563O2OS w/PfzsbhZ7J31NmOhOTy2VbnGvPMnjdE/v/+NgjfnXOns7Czqc/TOdeG39dZ 1/m+c5uzkPN1Z3bnFuc3fGw/Uo8L7zvn9HDe5phuTyLW6mYUCb+e/fHhz+O8 HkFCjusOJGadbk7R8P7ZnxB+Pi7okSTihO5IEv7ULSgW3j/7E8O/Sy7qUSTm pO5EUv7SLfkkvJP2J4XfhUt6NEk4pTuTjPW6FcXDe2p/slkRLutfSMpp3YV3 2KBb82l4p+3/alaUK3oMyTiju5KcjboNJcL7b3+KWTGu6rG8w1ndjRRs0m0p Ge6K/almn3BNjyM553R3UrJZt6NUuFf2p5kV57oeTwrO6x6kYotuT+lwB+1P N/uUG3oCKbmge5Kav3UHyoR7af83sxLc1BNJxUXdi3f5R3ekbLir9n83K8kt PYnUXNK9eY+tuhPlwl21P8OsFLf1ZN7lsu5DFP/qzpQPd9X+TLPS3NG/8h5X 9HekYZvuQoVwV+3PMivDXT2FKK7qvqRlu+7KZ7xlf7ZZWe7pqaThmu5HOnbo bnwe7ob9OWbluK+nhf8OcF33Jz07dXcqhrthf65ZeR7o6eGOckMPIAO7dA8q hbthf55ZBR7q30jPTf09Gdmte1I53A37880+45H+nQzc0j+QiT26F1XC3bC/ wOxzHusZZOS2Hkhm9ureVA13w/5Cs4o80TPJxB39I1nYp/tQLdyN8PemWSWe 6llk5q4eRFb26++oHu6G/UVmlXmmZ5OFe3ow2Tig+1Ij3A37i82q8FzPISv3 9RCyc1D3o2a4G/aXmFXlhZ5LNh7ooeTgkO5PrXA37C81q8ZLPY/sPNQ/kZPD egBfhLthf5lZdV7p+eTgkf6ZXBzR31M73A37y81qEP4HZIEjJ489DyM3R/UP 1Al3w/4Ks5pEstAsF088D+d9jumB1A13w/5Ks1oU8pf/f4mQCJE= "]]}, Annotation[#, "Charting`Private`Tag$46758#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV0ttPjwEYwPG3QtoktnJoocZItBDdRc45dONP8AeokC6IHDYdbETS5rgV ywo5jMKmyCSNOSabQzYpRmXMufm4+Lzf53ne/fa7eRPWZq9ZFxIEwWXSQz3C guCh1rKXzWQzwv2lXuEwu5lPiPsjrWMfW4h2e6c3qCKHSLdX2sARilhAqPtj PUMZBcS4dWsT1eQy0u21NnKUSfZ+baOY8fYP2kINk+1f9T4ZhNmf6Fmmmr/r fuLMn/QOM8x/dCtjzO91ljZrov7UeXpSE/SLpmq7Juugpul6jdI3mqJXdZr+ 0Ll6TON1QOfoPZ2pf7WEWPNHvU2S+beeZor5mz5gIUPsT/UcB5hg/6ytbGOs vUdvcooNjHLr0mscp5RFDHV/pvWUU8hGFjPMuw49z0G2k8cSlrKM5WSygtk+ o5W6inC/fa4XqGAHm1jNcO869SKH2Ek+o93f6nVOsIcsItxf6CUqmWjv07vs Ypy99///6y2drr/0H0D0YYA= "]], LineBox[{679, 802, 755, 717, 632, 786, 739, 701, 673, 653, 590, 778, 731, 693, 665, 645, 633, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 779, 732, 694, 666, 646, 634, 787, 740, 702, 674, 654, 795, 748, 710, 682, 805, 758, 720, 814, 767, 823, 622}]}, Annotation[#, "Charting`Private`Tag$46758#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{825, 826, 824}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->NCache[{None, {Pi}}, {None, {3.141592653589793}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotRange->{{0., 14.999999693877552`}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}], GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJw8W3c4lW8YtsevyDj2XscuqYh4v9fMioOsE5KQhlWoaEgUoqzMCElKCWXm HEopo7Kp7L0yjq3i952u66t/uu7rnOO87/M9876fI+HqY+VOR0NDI8hIQ0P9 f7W/4b30nURAQ5NmzXMYaG90q99f6G5D9khq2j8/nYHU6T3Jbc0ZQRbH176Y l7xFhAcqx12VfiLnd9mIvcnsQHDnjj9j1ltCSNxtrIqEYSR+r+Ebc5t1JO28 c1BC0yzyLUWldpHjDzKfyjKWX7SE3Mm9/pVOgBa2b93eXXV8A+FLHIlMyKCH XDS1/QqRW8jto8agbZURvnW3OaDsQQsvaGQfbwhlgYplzc+JJ+ih/vxmkPfI fzDqTf72yzkGeEPL8oTgQTYYf/wEU8o+JqhZmPr6Ws0ueIbRvFDMmhmeW18M +cTGCW8bfLDgwrPADUWOfmUbLjj8qZ6+tIEFahU8z0pK4oa2TPKTG0KscJHL xMX2HQ6+ajJeWpNghaPRLrbnmXnhWPjZP1RsPH/ReEyNDypP7LdYR/HsSZYL r6/zw2tJl99TsaE0H93tdwJQ7PpOzQ0Uc33G3y2aF4QXfz3LpGLhiJcENTVh +Ohcz28qTlHU4OA+JQIDJL8YbKK4UVDnwFKcKAT1MISKNYXfxe7pEoMaD1tK qJidPsf/RKg4DDjb2U3FojfEtBzwEnDi2eQqFbPKOJZZfZSAhcOK7L9QvFtb 4OVFJ0n4Ove9KBWf7+eqM6GRgnZdDEpUPL8UbWOcIgWPHTQ/QMWH99SnGStL wx00nlpUTF469GvtizS0kIrXoWJvJdXvre4ysH7wsgEVa8+5dTiw4qFbeY0R FRtI8x9hy8HDkwzFJlQsFxJ16Z26LAw6lWdGxQruGjUy32WhbreEORW7kz3D XvvJQc/90hZUXJPV4bbIIw9NFc4RqHg5f3ttT7k8JFZdtKTikzIFrGlHFKDL 5wNWVLyokKBWsqAA3+7r+osrcn8NrUQoQiPL29ZUTNSXgodEleAFf9qjVCzk dbtyd60SrNCU/It5/jtXfMROGT5etvuLM72qVra3laFMwam/2FB6um+x+x3i lcge1nAvGKndozffwN6H6N42sD0cXoL4xhUZpJ2aRH71lGfpHmxGWpX77z6Y XUA+M1aq+0j0Iu1f2lQVm1eQqF/FM99cJhBHnPlPoVesMIPTle2zCgMc5sF7 v2fbCfmIErYlKYzQOWAlqjmYHb5wb3zo18QE3596+LMukAOWij7QvVLHDFW5 buwJLuaEQV82RL6HsMC0s87I8AoXnHWeL/72hwXyHg8OCVTCQQ7tIHGqP05b 2BwbdeOBW5Jc01T/5QWzXxUf8kKv7fW/r6fJw36zH3xwwFItgoqTFc76LMUL wXe93V+p/vndwb8o94sw1E0VlKL6114pkuTN3yLwfOk9NyoOTac9yblfDHIz 49KpOCniRma1mjh81OxTT8W871zsnTrEoZ/LuUkqxrVrb3QGSsC0Ymt6qn2F i6tU3bkkIe0gEx8Vt7DxagwVSsLU1p8yVKwyZbHTxEwKVjEtqFBxepz8pYZh KejMrqJBxaGctE3i16Thx1YNhIp5Ocqn3QRl4OxmhB4V28aYdt8vl4G98scO U7FOJDn2lQ0eilnXG1OxmlXr8MQsHj59lW1KxU8pQ0LLEbLQauHaESr+xNkq 8VNGDp66kfPXX+NfZi631cnBoJcNf/31u/SZwlgPecjjuPnXX5VOddK40ynA jM99f/1VQU5MHP9QAV7ODv/rnx2nDu/s0FKEVuO7//pnpP+uuJR2Rcj3X+tf XGXf+Xu/jxLUfb3rr/+lvLl8gLxDGSYxav/F3w8ltOcVKENzx7N/8UC1uc9y dwlSbmgwZnqXiPTe1NZ1WupGMjP2bjy9mo+kTSuuHGAcR7ym/hRVPKpHjosc ovsSOo9wPI8dUQE9iL9Iqnfq7WWE20j/tWTTKDKZdzGPIsgKNUp59Y420cOE 0Fj/1Es74PX4BuUcA0a4YC8VuPSNDdLb/sIn3mCCvmKrj3QUOeBL+bvb9DHM 0CJcoyf7OCe0lpPe8cCGBTaalrNHPOaCYTcqD9qMs0B5xsTYW0Pc8IJzhq8/ NZ8Uf3XK4OaBD7zs/vrnVXc8t4U1L+TnucNG9cfzO3u5BSL54POfPGepuOPX py1LHSF40bmunOqfvxbiQrxChWHxQS8Oqn+5yQYLNBWLwPWaBBsqxh+TMKMb EYWiWZx3qZho6rdvmkMcWtyYrqbieNcbHscLxGGNuOcgFQs8K0xLNpeAYu7W f6iY6+yd5R+zEvBSEomLau/rj/n8lW5JwmmJ65JU3Hqy+JQJXgoW0N3bTcUf dH94RJKk4HPpI+pU7JY1olpqIw0Fv4xoU/H0jY3zhcvSUIcQp/vX/6eVwqb0 mhG+5Lfayv/FIm1e0uZCPEPIS4KR8U7NKsTw4IGkrYZpRGuSship1oo0x318 +FhkF2T/8TTVgJMZ8hcZqRu+44C8q5MRYavMkPfhp1tH6bkgmWCkmPWEBZ69 w+irZcgNiaG/jId2sUKGSldfj4s42Hy+goFqz1Nz3+0Vy3ig0962Bar9i3hL ollmeOFQ/Q516uv9P4Yui4eLQUI44QnVHm0f4ljvOYrDykseX6k4TQKaHPsj Dj9PTM3/rU+/m+1wDyWg/O15Fur9ZNamfOfUJWEl6w4hKpYIxG3d75aEYI1P nopjveeKjM9LQYEm5X1U7Dd4MZKVRRpeEB/WpOKsUNGT0XnS0CPAD1Kxbqa/ qxCUgTLy1/WpmHOOL36jOwfRWOndNcmiiUy/qJrJc+9EiNyr1bm6j5DdyVPN 9B2jiEaZqVQ473sEXAvyT7GbQ1aeqtRWuXch7/WvRBPGlpCF0m+v2KJGkN2+ O+n7v7BAx9a9hlNJ9HC24sMa/e4d8MxqDv8TQUZYYVI1wxTJBivheT+hY0zQ MFjieggjB+yUzrG67ssM+8n3lUrVOGHB66ajzoAFDr85uUq8ygVlRx9LP+ph gar2WSns1dwwMZx+53kxNL8N7xzYmMZB30MPf1Ltr3K57rWLMi8cLKRj/Gv/ P093bx/ng4n3Vx2p+MLoRcMb/ELQ7qdtAdX/o6uzJi0dheGeZzVMVPtfk/+O 84kWgS9MGo9Q8bpmcW1QlSh8fVrvNhVfdGj7RftbDBrFLJRTcUtJnNdgkjis Et/bS8UPeE6dvaQpAe+3KW7+fZ6fLtjwfZeAnMLXOP7mU78UzjY/SXiwtUCc iiUlXO+bcEtBbl8L5b/1Vmi/89QzKciMJ6hR8d7bO4p/xnxEHLyqpJimwpES xnqDkAcDCHE/DDDZW4b8GKV4NadMIWa/h+uHwVfk/k1nnspmdihHYXrxY44J zu3w5wp/wAH3uXEOevcxw9we6R+nvnPCkV3Nnl8TWWDor2K7XaLccDT+15cE ZlbIttPn0pwlDv7yUeWk2ktOjP/77Rge+CMgb5Zq35MKFrsFP/DCjy/LFKmv F73xm0txFIN0Z02yqffd/4S147GxOBSP/N1IxT1+BMveSXGYFnJolorjToXL rURJwKUFZSbq/cSPtrXKy0jC4TVOASpe17mffqhOEgbQ3pGl4kHFh/3Gx6Wg LYVLlYrLQuN4ZvWqkXlTuYT3572RLw61Kdw3viM2HUWt3acLkZIf/8mWfuaC HglRD2spLFC85HbEFhMOBlc2qlLP+zwkvhdq8cCNWc0p6n0aLSP9tC/zQuKt UV7q62H4JwWUKy2IpPqqmu3uJOSokEPEaW9uqGfGfOQVLyvcdLf17H+Ag40H Wzapn88jZXR/6eeBp4H/KhUHEp510/fEI0bPiAGpHwQQiu7l2ibRDqTpvkzC sfEs5JLXp4ozh0aRFx/rnxoNvENe7E578eftT6QlsCeYIaQTOdfjJaSUuIT0 rBdL754dRlo6bIvb81lgnJBOtuEVesh/1EWjkmUH2o9nGTQxMMIHdeF5sS5s kOfrJcPgw0zwpJX3N2RsF6S93DA2fYIZPv5R1wUkOWFfd16vgyoLnFvSOKN/ mguO+AytWrWywPIbeQ+snnJDB0IIeUQEzSdBBWL5XTg4/0r6bz77jz4+/LQg L0zT5KOl2idxlUPrvCkfrFNktaXid/YW0/wMQrCpjeUxNZ6OSuYL6xsLw/MG 7bTU533nWSTX28si0DOtzZiKhxQ2NtXyRGFR+aebf/1D06Sef0oMbrq5l1Lx /HeBxaxotD+fY/5OxU6mde2eKhJwqzZmnYqjVycYS1skYPgJu11/81m3/WDu KUm49r5KjIqrO4M+zqt+QNK3ou3OptxAKtPCBB/b9CP9GXNPai1eI/g3rQ77 aKaQ42mWZ5LLPiNBv+VbdHPZYdqerSbDPib4rZI1JDeSAw7uUhKNa2GGZ1es whc/cEKW6KaR9SgWeHdfRNM6Kze8V9h3YYQOrX8HAq6oIjjYS3OZn2qPyPIy QbXLPHDiiOwM1X5ar0W2JUt4YdVnPTz19dSCSjkbIzR/2BzIpN5nLNlAYy8U h6fiqz5R8VpqT8eDfnEoxW8/TcVWGUOxYyESELdUx/C3vw41DP0oJAnngtn5 qbhRzFd3IaYcadTdNj1HcUM65655HdT8hoQulZi6OhUgZO6htMxKLmhWbBzw epYF5v6IidZd5ob7SiyiRtHP5/6w0zX04IVlFmJc1PPFp5O8JjK/ILKp5k7D G/GIi/We31ZEbnjnQ2dxEDdav+85npOMwsFKt4Bt6v2YbLX4rzbyQKnrgX/n vclXxIOLes+RyClSg9f9I8gI/2/e0OddyLNB8RfajY+Rwt1piY1fuOGul5bz OeKs8Kuxd6bpNg5GXyj5a6+8gw/SZiYbEF+gc+1AdRQSWPdjREaVGyYEmDJP 7WCFEcOe/s/ccHDO+uF/1PN+unU59Vs2Gs8X78xRP99y3mF56UotEiQyo0qe 8kfSI26EVQngoFaStjz1/UYjobiQUG64ftGZO1IAjVctglvaSxzkDan7G78G MttJ4ks80MTs4wYVo4Hlyt8TitD2EtWcHm+AwJgeBefgdmQ0woU2IfYhktlT vlt0fgS5oKZhfvPwO2SUScFE5eJP5IyblXEreycCc8aHU88uIc8dzdgXMoYR SeYrEV/us8Cnl2D3N296WJit/J179T+oXSyZ8mGDAbKHzNy0MWODaknPd8Vr M0FzGobDx9t2QavcWOloIjNkmf5eQM/PCUu3o/yAEgtc3iUjrXGcC7Zc+y8n 5jMLDEp6mrn8kBuOzZbjN4VZYW39JnK9GQe3enMWqfdZO7zx8ycHL7yqqvH3 +c2df/9OUYcPDn5Kt/o773Adqh7dEIQ3e39kU+P5YGeBGgkRhlz5dtt/5/Gz JzjP+IpA3EbrYap/dkmK8PM8EIWap5lCqThS8ZZi7oAYLFcXfk3FW3N9qjdu i0O9b/M9VEx7taTNl/E98p24ceoBvI5ojY2EqZf0IV3a8bK5p14hpvi3X8df TSKziyQx5dVmZLbi3gvmWHaouKtcz62DCX6J7VDbH8IBSyRfxbE1MsMv9GeI ZW84YdPpzGBKOAtMtLgQ/nObC1be13p0mgbNRyaXrnUcwEG1zhPC1PvJb4Sd epLPC4NgqhQV333UZ7APiMFM9bwH1POB2JGZwEPiUNo06SMVMxU+4L36TRzq GJ2couKj3gP2FNVShF/o+EzPsAtir9Hf3ZjUgzyI3ntkZeIp8n5P89GEl1yw PuigxL0pFuixEHt3dJobNu2PbKyg9mviNc8aHXmhwfyXXdTv79ZdueTp9xkR naj3unE5DvHwESw7TOCGT8KW1is50fyWe9z7fQgO3uuho6O+Xy3nzsGjtTxw eIKfQn1+vwka7isxT5BjewZvq/jpIx4nj93AsXYhPnC0cyskF/HVy0g694Eb mrN0GvOi8TY70P743JtPSMe16FvSuhHIlYH6DEE5brjEfWK2gZUVmqydDTQ7 hoOTw21/54f1tk+VRck8sP1q9N/+SnG/5PZUJhmRuuIvs3fJD3HOCLvlyIGD ON9pZer7zbe9vvhfQvszwzvPFfhR/7G09tDKw8E16fL1v/XRz7x8bZIHvnbi /ovNeH9e/aX3AOmtE6MsSCkjy+cepRWVcEOpo8sXykRZoctux+2WQRwsPv/l b3zDVhqluclKhHJDZwZePI3Q/P2HgwoHwluprxPV9XWd3bihrji3phQPWg+C HM6EJODgudO7/vJPZ3aQw1evFCFjO5XpUg4dRWYFkuPlerhhlP6JN3zUeVFT 4TLdcx64MJAzT33/a9kjrusVOGj8YHmZijsy+S/r9JxHZO+u7Xz64BuoUGVx eSLfjlTvKz4aFJSJqNx9ObX2aQRZm7u/mPT7LUKz5JfSYPkT4ZZuD8zp6kAU mB/VE+yWEOUXVSZbgcOISRb7smk0C9wR1XdX2JMeXjZKVHg7+x/UOyDfqLXM AI2cMynqumyQW1sTn3yQCep3f/kz92kXfPZQLavblhlq+nnwjnNxQtmPiYEK 8ixwNUPwxj4iF/xGV1r5qIkF/hAveGiQzg0XHjzpuYLmA+9pJUmVnbyQyYSw Rb2P8F7RWyxafFAsbIJAfX5b8yqPG5cF4a4pvSxqvD8rfFG3oSkMla/xb1Gx jennWPJZEfjIv8WQGg+5BHP7Yu86hIn3Pw+Cy1XkWhR3VYhLH/JIOZmbvFKC 9P+oiKqNmUTCZM69n0hqRmSSdYWnw9khLX/dyuxXJmj8W4PrSjAHvJ0Gcurr mSHNnZX3KWWc8O3Jb5GeN1lgcp/n8MQmF2S7+OOc9DYLLO24fF1mLw56MnuK Us+blV6RPvWIF6LpSPIvH8PD53aB8TXiqnCX7SCbM5LWz8aGM+hB6NyfE87t fYp8JL0tjnnGBWO/65CXJ1jgp6D4ewfGueGzpbqCVGq811H6d9rzQsq5Anbq 3wvijdvK/96M4EV2bZXXxCKef3Zx65pyw16+jfQWDlb4aPcJH54rOEifZE9P ff+th/nBa6qPEb9Csc/6YRDJZ7lT5lTeiezOv6oZOPgIaf2cmUyq5YYPCkkC H9H55e4rH8UX0p+Qp5sdBVc4byPXvao3cVLcMOX+3qpiFrRfveF1McMWjS/h q3/zhe8Ph//O+pGQhWfNm9V3fZEa2Vu3X+zAQVq+oyrU1y1jTir6XOCGx+uD +M7zof3Gj6OnYrJxUGaV/LeenXjV9Gw7Jhnp4L0U4r9HGrFdy02nLeSGSQfC NizQeAu/dFDd500FYiH/1gOHP4XoWUbfWVznhgcKYgUXqf3YB42H9se5YaEp kcYKxwpFGY+dbb2LgwOh2n/9ydl9RmI+sxBpemf7TPSUJXIkNyXhcjs3pDkr ajOI5h/eH5ysHPrRSL1lX8z9mZ0Io8e9mIR5dP5wdHvXin7+PF2j+dLkU2TA EBe72GSE7KpMvy/UyA2lo+4mHEc//0Drdv6vK1nIqqdz9PLQPuSGVmSkBR1q n4vmB6j3j7p3P667lxvuF9gjYoxijJ/vuP8jde3EMILx8yyc2U46zdP/+Plc Ym6uUN7CP36+i+HwZUMVyj9+vqjrndekJuUfPz+Zd9A1vn3hHz/Pu16lvybx 8x8/H+BMbrxqNPGPn1eLO7M3MGLoHz9f8UWmcO7INwTj5wMGFNMiuFsQjJ9H vCSaB4XfIhg/nxa9/U6EMQPB+PkrUmcq7vmV1mD8/L5Wv8otloYajJ9/e7b5 4PytzhqMn19tqZkg6Q7WYPz8Y89LXFvJSwDj50UvJeSJ0U0BjJ9XMaifsj4/ CDB+/lL6tzMGIx0A4+e/fxUqbSc1Aoyfl15+Hvsh9y3A+PlPfTGtZlfLAMbP Ez6VsurefgEwfj43vfXnqehHAOPnQwSfRR9gSgUYP09YiNmdeDMWYPw8S+6e dLlfYQDj531TRwb0PgcBjJ+vtT3r2FTvBzB+nsbx08z2vtMA4+cXzoo/G1A8 CTB+nqbxovp/Eo4A4+dVTPRv2l4mAoyfD2H84e2TaAswft4zlCHwYIIlwPj5 kJ0MzYcmCQDj51V2ZXPMdhsDjJ/neOC3K/O+HsD4eZqTFNpmbQgwfl68v41k K7wfYPx8S9JFScVAcYDx8zSpnBNncxa0MX6eRgX39kwhhYTx84TFWYfIIT4y xs8z6Jm9ZHgsRsb4eekbJ0lJLP+RMX5+4RnXlmfOLxLGz9MYKd391JFCwvj5 kqN3VK50jf/j59ubE2/Oes/94+c7v0pzj6cv/uPnZbREq9tdKf/4efzCuxNn ihcRNfc32uKvNpHXJZ723vfmkfWF5JfB2dtIm2y0r4beNILx7/fNdrJc/NJS g/HvZuEVzYvF32sw/v0o+1PrlwLrAOPfPzEaOJHM5wHGv0tLkgSLD48CjH/n 3zEnrab2HQi8v1clIiEAt+2MJWrLWsDzddFPQg6CMJPxT2lhxQeA8fP2rb+f OitVA4yfV+IcWT2rUQIwft5xP2W9jykfYPx8bWsT46b+Q4Dx8/Zf+ArSrBIB xs/LHYqsrrCLAhg/b5/QF3ukPgRg/HwR5TDXwtsAgPHzgzeft78M8AIYP79w nb0zV9QDYPx8bPXbjJCp4wDj52NxZ91J74gA4+ehaIes0H0HgPHzKcOrXo4U K4Dx8y4zIc3VBpYA4+dV6jqqpXEWAOPnfZ8VFlvNGwCMn4fPma+ZbusAjJ+H WWPAt0oTYPx8yMoEV+cLRYDx8yGROuz53bsAxs/TjPOeyg5uIWH8PDQu4C4l 7CBj/Dyh4HMcTliMjPHzvOzdB52v85Axfv7GkzxHwW1aMsbPT3oS27wfUUgY Px/yoisv6dnoP37+9jGOY59fz/7j54O/ln6gV178x8/Lp+F/K9hQ/vHzL9uK wh/QUhC3ppAr6mEbSMvWQ/Hf1gvIpP5ouZrDFhKMT7q8o2IGwfh33rs+9kWH Ptdg/LuM8sr8IktPDca/OzYcuJ1YO1SD8e+E3+OVDjcXAca/u5p0SJiGjwOM f7dkGe/ddOwDdLhm3tMt/NCgXvaa1Ms2cJldyL2VTRAuP2nICBf4BDB+vmLt XUvS7RqA8fMdTr8iB8BrgPHz+v91ZY/lPAMYP49T7Gw1Cs4GGD/fI3PwQnFM EsD4+QU9rv3ToTEA4+fXry68+VYXCjB+vmj3f6p/ZC4BjJ9PoVnvvSTsCzB+ XiXsUfqL1FMA4+cHzYH143snAMbP116SOA9VjwGMn1/Qfliybx8RDPeSe17d lYEsD4W92T2Pgpo3cSW39uDhoOjB9WpnSwDeLCcHfcTDlsmWC8qeBOCpoWZy zEUWutC9ttB7dBhcPhTuy0qD+iPZRITzvS74XXazui5NDoofilRdmNYGza4P WXWAPOQoju05NaMCOCLOXGnslYdZWb+/c/3gA/X4MZxLIOqfRdXc3KZkbVdj L4k6XkVY69ZSfjSElpwVHa5xuFARDj4dpLnPK0yOMr8iWmGoBGO9OizVaoXI xMSQi6tjSjAkhr4Pb8FIXs+5rht0Qxka9YdcbilYI2H6Q+iPhY7Hw5P/9Id7 izLm99fm/+kPHj6bU8cpiwilOVO4jY+CmHPMqH5xoCCqITvXqjnWkO2DcXVK ZosIpjc8F5yofhnWV4PpDV79i2f43qwATG9giB3ave/XDMD0Blfeu1v79IZB nWFufogyPzrnjpqbenQDFX9r5zY/AUiWvWchNf4ZDAxLKnrkCsJG74COxIQ6 QHRgG0wcFYIPcHPvOhUrQeU728EfgiJQRc1dSPZUEdgS3VY8dFgUFkXTX1go eAwwPSNF0fDivfV0gOkZ4imMdics4wGmZ7SMnOkevHEbYHpGi2lQOM2vqwDT M7K4GwWJDy4ATM8YjJV++Uv2LMD0C5q+uuDvD50Apl+oBG1NXEghAky/IOCb MsZ97EGjdk/nxUEZ2BKd/+0RmxWos53xHgxG67PCPa03cpZgz9QLtB1C852M oOWds2ZguiDmZ3SxLMxiVRMWeqgPeCeF21tM5WBRnUBu1R4dMDG+33rwrjyE pEe38r7JACNDGL4tqwBrFysSm5PpwF15B8XZj6g/PeZJDhroJRneklgbdVWE Lrel5PIGuMjnHVMnp9YVYf0F39tJmuLkadfdP4qTlaD/e9vezfsc5K7h80vh e5Whu7XohzHTbVJ1R55be6cyDHEWqw27P07C9BhGQcX3zyNH/ukx75IrkjXr Z/7pMfseh/JFoHUY02N6LFMoeQaUf3rMY4E++UMSFCT42ohQ3ew68uPlreYr 9xeQQe//tHClf5Dusvr+Iu9ZBNNbhM+w6FOEm2owvWXd6QwSVtdVg+ktqgkP Od9tDdZgegs/oU5G8RYFYHqL8FO3VKs3EwDTW8jX5C9y4wbA2qHp9+z5/NB7 5OyAxdt24CKQuk9pUgDGtte0vXdtAJge09gXSnf+RS3A9BicxQXrENtSgOkx B5lm4rx3PAeYHpP/A1nzuJIDMD2Gxqm+euZtMsD0mIVmsay5g/cApscUrfPu Leu+CTA9JqTg491s38vgnx6z8hO8mPAFmB4j7lZCuHnCE2B6DEedjvO1k66g a6LD47qONOTQlSoQSjoGOqoE1duHpOFgwz5nS2ciyA+79E03SAZG7NEhE91t wNbRYD1fYTwsqhi8mXDBErzzuUWpe42HLMtSXkIlBPDJ0WWI3UwWDhbxFBYV GAErwkAy308Ulx699kFeDxRpBopr3ZKDCy3F7kxGCKin1VQXUJCHC/G6p1Vu qIJQ/gOafxrkoUvKh+PGusIAhzfa9ecE6p9f3WV8Aga1FTRpnlfRo/VY63By utkm6XlKbUxmuiL0PSaLqAoKks83WLy8rKoE9fXUKERxUXIVTVgKV7sSVEIe FN25yEy+1bWycfKcMiQcztjjW7pBwvQo370LMuWDE//0KK4HTjeyNeb/6VHF 4ZdM9jcuIq5XyTbqoYvIPO5pq9AJChL6ZB7n772KfHzfPGp5YxHB9KeX11e6 Onh6azD9qZGhzvLO8CrA9Cfwp2+JN/UnwPSn0zy3fuaBEbD74Pk6DwZ+yBI9 +ZLpfQ+QfuC385KxAFxv0dnnkvEV1P/M2qi9Jgjxb7vXmB++B+s61bLv3whB nIszv3V2FTC5625UuywMxbVrviiYFAN+CWfZAQlRCN/V6D1szQOYvlXEnzPS Ep8BMH3LpflCMt40AWD6VpFW5o8jwxEA07c46plZksuuA0zfImhr+8rl+QNM 38riYHQe0jkHmCpbQk6voP2fvV9ncL4z4GzclWwbLw1dFlwOx+cTgVL3fTxU RvPd7+CvtrwOIHYsroupWQa6FOSRTH2tAN1Cx3aDJx7au/ZvvdKwBCUZSETm Ntr/FXxqWu49Aky+lofBDFnIIticfU/LAMz/DtzsPygHOabOPLBJ0wGD4V9D KoLQeilAFvYolwNVXf/pqfKg+U47OVirnwX0ylXLRL5C/SlW5/XrE20ktouv b/RaKMIQE+VPbroc5GueHVo644pwvN5o5g+dOLmtj/bchZtKsIhY9tPiBxdZ 3SIQlyOqDB9Lnn7ZUkVDNmURESbVKkNfYQNB3LM5EqbffQyqqqpJ/okwAm8R T7UJRPO509yVU4sI7P/zkdZuAXkJN3cOOFMQ6dVSwrD8CvLt46KeXu8iwrjn yeAYAw7C4V9KKv4bgI/9UULWtgQUv5yhLjsbCPK/JXXdSkPt/TOJPFTvDVTO hPrIt0jBlnnm86avXcCSPWVr+jQav23zC2pzREBj3FMYyYzWk0WGKH6KAxA+ wNgj/UgGqjBzXitIsQYhkvkSGbp46LszzuIDwRJUMZ3U3vsd7a/7InSqmQiA hXfnqyf+aH3JOdtO/8YQHN4XZ2/6Eq0vNPSSkU5aIHPtITl5Hu2nd1w96VzN DS7JhgrWRaH2ZVj3T+Z9R0q3/57UJI/2I2+evlbWZyInhpiMzdei8Zp4tJP7 owg5pz0/ZpWoBAd9HbzXovjJG7JXbb+vK0HXWwGmIjfoyad9WO/EJqH9s32V AclphVR85yJZ5dcMkhzn3OuOoyA3ha+PnHtBQbyCPAqZj1CQYXv5b4yv1hAO 4dtyAlyLiEIaLccrE0mYP4QLevnkPOhlFot/KigNCbWFiXMNjmDPIeU976rQ +nxRPFz8DhHYu1tnrlrJwAW12Jdj6XaAIUm0c3JZBorTdurc+2AJwki0/at3 8TBl+jTPCLsleL5fuH2HjCyspYjU3d1lCqIiTtp++yAL7W1EzGy49QFof1fw zlkO9vBzqURUQ9BVGvCxWROdN5wXPI6LbWpDhVUVi17UXgkZ1Sz/TZI8CM6J 8TuUIEtmeA6zsjiZbpJoslCghP59lyr8ETZyYKBP22l9ZdiiU3jDye0PSTlb 5cXUtDJ0aQjqULrwjYTptfMXiN18a8P/9No/3sxFJ01m/um1HFfZj4k3LvzT a1P3J4PXhyj/9NrM3fuX6nZTEKaexBmW7HXkwmMSw47SBXReEdmiO/kH8Xtn Y3zr0yyC6bEmLHHZ5zkbazA91nf+u7WpdFcNpseeuy1ay5I1WIPpsVblNzbx bEsA02O1tu7axjlOAkyPja/9yS64MQAoFhvpQwn8cLelwqYeoQO0i/akOXQK QFzodgk9eyPA9NrJqxR7B9m3ANNr3XjiHZcmSgGm106uu5r01z8HmF7bXDJx 5wrdI4DptUUTErm/T6QATK91OSkY68ceCzC9NgIXaXXmVBjA9NosFiP6LOEg gOm1sO+3zqOjfqDxuubzRlYpSDCouY40eILc24MOqdkoNt19bOmTK7h753OI mzqaD3tDT2p1HQPGdoqp7j3ovPGAlnTJiwju2Hc6/OeL+pvQfZE3qzYgU2Jh xxgX6m8Bers/37AEDCZfH3oW4GG+WerG6a8EcMl75fmkjiyMLbxBFtQ2BmRi dEHmiCwk3JjkIDvrgagrPlbrwXKwdut87+1xBOhaMpszistDX6m9+fvM94E3 LoKpSbVovaU5dMTiniiofnw5uskO9cdXJyWsHSe175YY+6ltKkDozj2UbbtK KhHtVzeJV4RFj7a+n2MQII/fqrxIlEPnif19TYO/RcnTZYxPsxqU4KflcDO+ Ehay+UJRZ88JZQgPDz6mfbFJwvRslgKNczGOE//07N+28Sc+dM7907OF9TR4 2l8tImk25pTT6otIvSiLUoUrBVE4NPTIQmQVcSG2lqynLiKYfl1QZeNt6vqj BtOvVbNXJASvrAFMv/4max424DsHMP2a2SlG2PvtCBhV+dbybZ4PrpKdC4OD vgHRopARkwMCMKOTc1ZcpwVoLA24zJ0VhOeZnTv+U/gAjMoSmo49EYIsdPcO 8Lq9AVzL566UDAnDfJ3lbs3aYiCdwyazd5co3Mmdqq5z5gnA9HGVYW/9Ns9M gOnjsEc+SuRzAsD0cfjBQYWQFgkwfbwizZVO0CIEYPo4h8DhvZaqAWD0ic0Z 9kpJGKJZ3mPdcw4QZK5eEZiVglkpPQtJOsdBoxdL8aEIaZglarOP8ooIsi/k RbRJof6k2L+HQHQAFyrnbL+8lYGDP+kzBF5YgZxq40/gOB5WBLm7olM9WL4Y cUBvFa23NZqr5BBzsDloRhBMQPu3pc3jbAkGwJFZmt1jD5rPXtew2n7WAU6d D5JzfeVh7cm1ypo9CmBJdCG7aQdab5sb3hka7AQ383/m2D1F/WnL9Y705xaS 7/wfQ3tDRUizXn5zcIKNHDa3OD7bi84bJjcobg/FyIbpZ/cfvawEk7iT9i6J 48iejOvSKjzK8Heb/A0pW1oyl2TP2t4yZbiu3bZPk3ORhO0H7CWo4H/L/kQI uCOsXzPGkahTnCRW00XkUlmM2/6dCwhHQZvjZyIFaY58MkDqWUa+ZPUNNc4v Itj+gMUvLpyL1HBNohafPliVgLGxAS47bl8EiYjdY4dYSagyEUpICvYBQV27 z36rR/ubsBqfZPET4Pnvaf6W46i9mwwTS3ceAwFjkxzCW9T4fiPwnocItllc 7WdT0HoLp/E/N62B+LzwNKcGHtLIuhlL21mC34MF050teFhrsft2liYBVMhm X7txRhaKT0+N2SkeBpIBUVHMj9F6Kxg6HKSgDbqRcJG942h/88a94cg7HiD2 5FVyXAhq31rWsY6CDNJWi5TjYXG0P16xKRbspienMXneSy9XhAuvr1qabAiT eeO4bLsJStCTw6o5VV2QrNC/5eE5rwSdGbjLq50YyCqR7z0Yo5XhYLLKtdZ7 q6TfJ2yfJbvOIAHBt1bwDBSkapk95CEah596WNw5j1KQqFlBz6ETa4jMz/XG tD2LSP6ngFqCDlpvHz7GB4pdAHj/phgHTrS+dre9ntztBCb7ZYyfFKH2wZUv jMYRwWdaN5pIYxlY1HU8ZHWHPZg4HWxTNC0D85/YnE0ctwTSUYF5Z8PxkH/h IIeCiCWYY3cPKRJC7cPWZdxRYQo009YlXr1B+8H/0o9r2emDZ30+NcY2ctBF RTnh5BoEu7aIeI+9qH0GxTtDAre1J57KFoq0ofhUpVPmm2HSua5gAOiUoKGS 0OCCljg58PF7rtZsJVjdtPRqt9wucp7S4vCapjK8xK5jkmu5RVqumolwHkTr LXJWy39siPTlM/HQvp9ziKDD10kFcwoiXBz1x19tGek1X1xT4aL82w8RG/6y t8Z5qEZEv9cszVQa+goJV9YcPwaOi/7XCWfQ/C/kNSFlSgQfioQcgsNkYI+F PNezwaPAOYIp+JcMHh7M8j/N5mkJQu5rG4iRUX/p5wz6do8A+E2beA7YysIQ 0lEDTSkj4JXHG7/7HHq/54/8ana3a+dxPRqh5CrCHgPK63FxIfLWjvHxFC0l SEj983x1pwg5yoQuIqxXCZq/DmaRt2Mi11Rris4HKsPXrVZvX5Stk2LZcaHu e6eRq6VxDewDaD/1eHclw+dFRAaxwSmg/Wu1mXR45ZYUhDX9sZdFnIE9nu+q 3wN0npyKTy19SATlmuHvX6jJwKzo+QvnP9mDF5wHbJEuNP88ZNuyO2QFXKVc 1G3Oo/Pk6s1EnKoluHFXZjRFFD3/SzuxxUeM4MDTqPwqEopZL/efCugiXRou i78/rwg97N6lU/DiZGfxlEfxMUrwvynDdeILTjSfnIBGTcpQ5dC6/bv2aRIL k7fi1+wFBO83xZODzmvY/gy/xo6f7m/WgWbpxiijvzSENCqGvZ1o/X3+0WyN A43Xy9W+/h8dgMaJfDunFzIwxKPoRyG0BoM2+xzkzPCQ492alKSpJbikJBgb PYI+j62qS9wpFqD1CSFjORE9b/74SNdgE+nuptIh/UY0v4XOhP+5Kkr+5PfL wIxOGXKb/ScVUk5HzrExfymUrQyzSlzPp3MskzxKU9oaEmaRDYvjkwJSFMRM f95Qc52C2I59fB6jT0Hi088nbUhJw9gdxCNqvo4gMHk/T997aahyMjMQ3CSC kU+6Wm6OaP9KORK+JmoHxN+9PSqxLQM9vzBc2nhqCUYXonlCU/CQ4F0FPP8Q wAOvWM99+uh5T16U41Ze0U559v5VyDjanw7fZ4oznCO5NMLpcZwS5Bo/3zTI Kk72uB3Q6r+iDGurgg9OizWTsH0iuwtTTwafDyPYPpHeUYVDb3bM/NsnOlmx kG5dsfBvn8hiVSNBXo3yb59I1qBQbMcBND+HebUrBq8jDML0ydffLyBEdtnj mxp/kHajc7ZmK7MIti+Ek+St8Y9uqMH2hQ6tFNtc7OyswfaFtAV3bxzzG6zB 9oX4p0d9eKyWALYvJPb+zcvmwkmA7QvZDp1/x6Q+COa/hTA3RfLDP1fp7XRS O0B09kXzhSYB6Dh8utrOvRFg+0Q00gEgw/0twPaJCA4JcRKqZQDbJ/LUT4z3 wb8A2D5RszIoXjF8BLB9Ivsn+7riXqUAbJ9IPNemIt0oFgCPReYTihJwsnDP xIeiMNDIJtlP3ywBXZ5yjRL9g8DB/yoP33WVhAcPZiayxfgB0Zd55f8xSsEi IZEwjS1P0Egqs1t8IAVpzFth6aYrONPXwGanivrLwIwMsnkMhD3e11jYLg2L 1O02318ggivv6AXnzqDzt9iPJCd9WzB3W8FXjB31786B97goNP+WX1itykPj szST8VgvARDWauI7tdD8S6OkaBFpDJYHXA8M96O4Y0Bz5rIeuCRy7mxXoBwM iXVL5BOAgGbDy+GXoDwsUpqpky7dB3oYYoxG3shDGrNHbP1vxECsO1dTiRXq fwi/ZmfRrHat95y1/wp1PhdETC8tk0qHZndmxShCjkMPuq/785Oz3Od+mEgp wbBX8S62dmJkunjD4on3SlBr4PpylQMrWfXqXb0ER3Qen9nzu1D2Fwnbzzom s1k9LjDxbz/ryENHyYScuX/7WYbzInG78heRMp0kSI/OjSYL9i/W0Tq3xUA8 S1peQT6XXJlve7yIYPtYSwoJKq6sP2qwfaxKraOGro1roIqe6RCbDw/UwL+7 yjowB7D9LPtLTW9FGUYB8iLaLmGMDzLbWpS/6P4GhDVZLPYrCkCPH5fTIoNb ACXgOi7cVRDmcqW6Tvh+AL6+1zNkM4SgvQeSf/vjG7Ca55uk2CMMs76oyHv/ LgbPXMekvjOKwgeiCa3sFU8Atv9lzzQZJ9qVCbD9r4PP85+f3pUIsP2vgx2M +jbrkWBfxa4PfcGov1VmFBlEhYC+1BAiL58kLBJZiHh5OQB8/17auvZKErr4 K78QwXuBwGPWQX4TUrBF7ElaXsJxkFfDAHbfROsXG3ffjyoi6H1bWCkkJgNb RutKv15yAG5SInwl1Wg+ja0rz/liBSiSYUqXiWi+9DRk2NS1BDxjStH3F/HQ l1W7xKfZHLSd5lNjvisLaWxYP/rUGoD46M3kpwpykGa4X//cuA4Qvkr/KO0s Or/sSIoXmFMAHHWulvzM6HziNJ0lxcoObD1vDYFc1H8qmhV2/Wgh5RTkyCfp KELxjJCbhPSd5FvFNNW6PYowhPyOsP+EGJkmKCtF318JPq/6vvWnGUcOGTyo fJFDGXYJpkY159OSVwtL3WeLlOFBwpa4/sAiCduPa146Yts2N4sEXNe6Hmo5 jgzwc1sf0lpE5AwK3NM/zyMVeuEb0vYUJMta/Ili0TIiIMkp0b++iGD7cwid GePy4lBNu7WlcMyiBNpvcanRdF0EUefLd+rdkYSxxkf2yn3zAVk7GU/vfYfG s12Xe6L9CRBhPvH4HVEaDn5ZoESJHgNF+xZ13DekYcgvzwR1GSJYOB/L35Ig Aznk98ryqxwFvjZ25mb7UXuH/rz1lmgJRMwJOnLNKGaailSwIoDYorNu3u7o vFjs7G7tcRjs4r39aOyhHIxNa0gzi9YGyyNrzVeH5CEMiKM70cwLKB5mXZeC qfEZ9l/ws1xtlZhPIFxIEdZ2XfN4nk9HzmgIdFssUYRGrBxfvaKEyS0+h6s+ mirBWVydxB16IbJuJeLzcloJXilTOV7dzkDG8eZ01NxShj3bw2f0xddIEp8N xE15ZxA7/i/u/r8Wka5B2y8HtSmItu41cxU7CuJclrDHQmMNcZzIJLKARWR8 4GXKQy3UX6Vaq3WcLgCzZ9l3inei/Ue9NdLt7gTeq0h2pRag9f3HsUTp+0TA Qji3t00fnYd0jg97IPagp/0pT+KYDDqPMe633LAE/gtF/+WFoPNQQ9otHSlL wH6FtZuOTxa2CJX8+cVhBrik6pizymShrzzXzcdB+mDQ1dA4hiAHCfHnX3/j 1gFKOZ87S5TQ+pmQT7wiRQuqTtfOMnxG7fUsdLeg/yDJJzWKO/GPIhwXW2r4 rS1OVgnbCHz7QAnmBnysPMvFQSYzq84ANWX4SlW1bLJ5i9RzuGGV/4cyJISP ztibjZKY8qa73dG81dr3LoTbhIIsBNF/GGZbRhxqLRd/C1D+7UfCk+6FlbuH ajbv93yLNkTz/3HW9LrLx0DaOS6mqHFpSEjv0ThsQwRlgiYCx6/LwPW3vIKB EjagcA4OHJDAQ3vf2tkbXpYgm2443a8S7T8fqZtmZRPAQvv9XxKWsrCW/uwp Zw8jAD1etvCcQu/Xm3W4suGb9tPO4gqjLEXoO8916+5DQXLFtKBppLoSjL6z n+tFhgg5R0YvtqlbCW698dBQHWUi5xjzRz/1U4bVoexCeuobpLLL9Ov8Y1NI TfrN2PaORcQwLpA588ki8hpKpA0cpyBDoZuhnJtov6nlsKB7whnsv8T9n1sy +nwZ8jmHHxEBJSJmZXUv6v+U4KYXC/YgM/gkr1Qr2k+HzWoOHrUCJZFp6fe8 8HDyT0wet5olyFRNSRgTQM//BZ/jcYgZsJyWmsiuQHHgCXE10Q5S8OMPp2am FSGuidadwitO5t9uZr4ZoQQzYx2v++pwkT2DkUK6evT56NmyGzfNkqQppZc9 rywgzPn4srMulH/7pPE3Dzh3sW0AXuZVv3VvaSgeLxZvPUQE9Ztfr8KdMjB2 8KNTcZ8DUGjq4tPJl4FyX+mA91lroFLtRXI9jIeDxdpSo0csQWoqeby/Hw/F H58wjOiwALmnpn78uIeeN1HrlFPsR1Ic6RBH2gdFuC7Qf/umjCh50EzLPOGP EuQUzktjFaQn3xpWFOlKV4YtJaEvequWSdHiEUZXD88iHi6k3HkhCuKpon6/ vY2CAN3npTTGFKS81SjRUgyd38J6M0vTHYHVlErO1xp03s09VnbiNhGI8pl6 vbBD57dzWny8x+0Al9ICjnFTBqaUJu8SL7cE++0+Xq5OwMOIMKvNBCZLUMlJ zx+CoOftJGZ5p65pnzvjRDk1hMaLZDHtpx0zpJMxFjVaHGg8lHTunBERJ5vg rJE9C8pQ3E3XSXu0nRRo+x9n0845xGr3wtIwpCAlGq1LflroeXTaZ0dfHwPs rFKewn3SsIVjaBfRgwjM35Q+ecaHfv9YEJtVkCUY6VUw5i1C7Ul7v8jhLQFM jg0eGXVEz+O4xAKMRrWV8sO4zygrwf16fGJW90XJ104z5bY4LiIODTk+u9B+ YE5op7RxDGqPoIuWIy+IwEMm0y5STgYSAotx4RoOINSiNmm6XgZGxNKWvoix Ala2u9wY3PBwffGyDaO2JSiaPOrmW4h+3+s7vTQGraQbiiOcyUOKkIGG78Cp LjGyY6MBb/reBURhqGQ/nRMF+dViLyb4ixuaqS+sWBsN17Q8m7vT5yYNF7JP I49+E4Fm8uBAGx2azz6GZ7xlIIKWiOHwbm30fnOG/p3WluDHBebEm514mLX3 5tsQCQIwmxB0eBaOfn/WSRqJuTJSsp5DlUG1IuR3VDeccRUhZ7J83MsUQUGK j7x6+4JAQWjByj1aXjR/cOzdtb7pCHbGyFe/LkXzq73tePJdIljdNrvfPC8D jXaHahM7LUGHlJbu3ig0vr66SbjzWgLc9F0ftW70+6QNIr7ojZFOc3udnmRS gvUnl52OqouTk1YaM2kOziNfn2Vw9lmi8wBloOYJQRq6rC/SLh0+BqRbaHPX 5tH5puX62FeECNglm3nfKuBhC3+qJ/6kJUgbv2p92A/9+yF/DKrUG7X1lYtD 83WUoG/dnXtTXsJk9srxM2cpi8gbSbnbYo4U5EqH4MK1bNR+YhU/5tOJgIsk 0y54EQ8Xrr3heKJsCVynFk+3v0P/niDvcyXXb6QAsXwSsqwI+xvYj/aripNn BfB9Bz4uIGVlzBauqD84n/xjx30ZtQ8N38irJiLYmih3ZktDPw+RbkuGr6Ro dVGPuS+KkOZKVIxuiyg5zeBgxHQDWr9Hd79MvUYEu+0TErUZ0P46jmebOdMS JEZZFR/OQJ9flBkfYYkAnJhVeeIE0HqpQeaIHRIjh24mn6zaVIYhfy7q7Pla Q8L2t69qBOypvT2MYPvbc8GUu30z0//2t3vDWfmOvFz4t7+tddSo9fA+yr/9 7eVXxZ/m1CnInh8Oh7U915GtJ2whLM0LSFp7wa5AmT9I1fgLhQs7fiLYfnbf Wk4Dl2lDDbafndhYrtz7orMG28/+vJ8nvsdhsKbnnGTLmY846PX8vcG0/xLA 9rXVZMZ/WfVMAmxf+0XVE3L80UEwl6lPqgnjh8yFK9aS5A4w5Xo4/9BHAYg3 9QnxjWsE2D43oe5xHi78LcD2ucNI+xyS7coAts9N+LDiXmT7ArSIvsQzJIvC 328Zz987/QgMS0n3T30Xg0YfKSlve1MA00aN9WKYOKRxLR7/4x4LCi+wSPbJ SUBCz0Xurs4wcEYAMSlokIAcBZ6WT7OCwCup07/oXCSh3P6C9LdP/cCnekfS MzopqHJs9TydwGnQ25Ntm5EmBQmaPCRH7pPAnsnoaMsedN4abeo0ZnME2c3l rtataL2q0st4FEgEAWuCm8c90f742beeC+dsAe+bwznVO/DwU6YDZ9RdS/D6 5wcJt1w8pEkNjTo3TADVhx4zmmnKQvhBN9uiyBjckzTfvNkrC42yDQ68uq0H 5rymLxr4y8EUs9raREUIBs0kjgfyo/0yMw9L2eQ+MG5rmBVZKQ8JpDmfr/Li IOiD8xk8AfVXq+s5y5Q57Z5maMC9hPbTV53Sq2KXSGp6/msmd9D8YCCMP6HI T/7TwcJeJ64Ed2qLvX57XYx8d9vjwJ13SrB5X/Jt7SJWcq7e1aAFB7SfWxp3 3nb7RcL26StF3m2yrI//26cfPtE1TxM592+fnn5F5xNTziLyXr1qwmJ7AdGn HYQUNL4mT/Na+A+uIIlW/C/fFiwi2P58UYfc0Z9932uw/XmxrsfrE4troO2p ctP6aR64FHVjoph3HmD79OtPv9xpkhkF586OC/oO8kGHXLHWeqbvQHC7iUEe j873iwNb/6W2AAt1C+8WJ0H4XM33zovEDyDsSMAtthQhONrZvK9+4w3wDDkv 5dkuDPf3dT1oFywBc7qWj3bTikKzN/GMtgNPQMRDn6OSGmKQo3aAjcj2EJyJ Vv0goCEOWeKPHBtTSQTsFdfUf3ah+Er42HfZKJD7AT/gcFkCemqFzCjnh4Ar jzPqSThJqHJjv+arjABgs+wefq5YEmaVKvc+P+IFIgLBZZExKcjR7T7ATz4O EidDw56EoPlHROlrAZkINiZVrWqFZeDCvQ+BmrcdgJP9/jWpKrQ+RdZaHxy0 AoK22c689niYv+fIaWd9S5AndL0czONhrOf+1o8L5gAU/s6/egftbxtV9Yq6 DYDy1zFHUzk5tL8O+jNE0QG/WsryeU6j88BSkUjzEUUgyiP8lMyA1m8c6xDX PDuAn9pCSrJRf1IgX3xPbiG9YV0RPIAowiypF2VvVnaQWbgj8n52ovkw7vqR a4gY2WmqqrHaTwkOH/hw84QMD3mnuUOxILsyjN0V+z2onZbsGZD7wLhQGcLO MdloXQoJ+/1DOW2K8HzrLMJyYL+mo+I4stgUmFG4fxHR37v0an8+On8lmIfU 2FKQqIreqOH0ZWTEr//UkT+LCPb7COWZE+cqe4Zqzh/3jtg/LwF9j/e69P25 CBiiT9WWR0hCQolIvCuDLyiRXTjVVyMFfcHTBg3/EyDwovvsIXt03v32elxW 7hj4TAz4zrqG9gOVCTtPKhHB1JMn6zpxMpC/oT2nwvQoSInwD5nai9YXl6/X ShwtQWFYzrnWBjSeNXInjjkRwO9lQveoqyz0LNvsvBN2GNzyYCw6miEHofe5 /XTV2oBOrVhaekAe0lC8omWt+UBvfUrA7CXUvpMi/KWsr7WNZwRVpAVQexZF ipdx05FFFbfMHxQpwtiBmgfClsJk5YETs4ixErQXYzJ/f1KI/AXvsmQ1qQTP +5/Sq+VgJN/qjd0hEobOtyF7gzI81kivQ7V/SC9MI2nfTgWsri4io11BAeEK FKT+umnVZXSeNRIicDPJrCFJm0N/6A0WkVszzQyHNSVhxPXHfx5duQCcP0RH Of2H9gezV777hzqBEocsYe6naD/Wq3j5UxIRyFxcaAjUpfLBLY709vagleXt CuMI2p+bt0Qa0luBB1JftPSu4WHKkZuCnHi0Py85Rvcch85fKUdoV7XNwLVT +UG8r2WhfbbKCilaHwQ/3su+x1wO5n9LZeiV0AGay7eUHRRQf9xlP4fvpQW5 DTujLzWi9ro45lfT1k9a2OTcAr8U4fOsevUuLXFyzBL3U400JXimu3MjwpqD bBJg5TO8Txk2Sg+7zu7YJpmwVygH9qD+WDJ5LcF/jCQZr4rfvjKHHLp60Hjp MAX5PlCTn7qxhHQ5x4nHi1D+/R6m+Yob8zHeoZpJsq04kz46n69r6T66fQyU JyRl7h5F7XEwfOunAxG8tDix0XIFtcfaESkGPRvQJeHM2S6K+kfSMGegryVQ 1dj/UbAc7feFgQfTMwJw5A/2TjGXhTQWX9trI4yAQv0vn0g39H5txNZC4z5t BXWNR0sZihAG+io6OQmSeYgHrtIeQJ//xTPDNYMi5N0JJ3E+nUpovbuqwanM TMZxMNcx+ShD4Xv7HqcHbpCM9vwqoZCnELaU1ax7XxeRo7fTCqcTF5GMuzfw Ieg8s5wxdoO0JgXFY1bpfMOcgWR2HKEvURr6GuB7ZfOIYFcR5930PTKw5UyX WDu9A0guClpN/ILO11/Une1drcD36vLPSmfxkF/fpHJO3RI8D7OcucOH1psy 76nTO1gA5ZPPLZ4yqp71id9AqZ30m+mIVdKkIsy/Qxr3ZxMnB3hPaPwKV4JK Ae6Oj2O4yN91do8dr0Pnr85e++eknyTVyW/ipacXkF9CLtcq0HkR+z3Ry9eS XgHqG4BBxb/C7xyaL7drft6fIIIRiaO8Y6zo+biu7xWddABSNHNrJY/ReYYx fvrNDWtgPx81v62Pntc2r8PCwhIotHBwRfTiIaR9ouyzaAHufjwQbBGDnnen hoT1+nsSl1jdpn6dIrzESAxjWhMhn6tybFP7pQQdw/cWbpvRk9fzBY/uS0Xr 40jDhX1sKyTRruv0dhKzCNf/XZx7OJRZGMAlt2zSI5daYtRQmUFbbmHO9xEZ amPGohmSpAvrQZmmssvKnUR0o5VIymU1JTHk+2a6kGjlMqtFKZMUGcYkZAd7 5tm0z9P733m+855zvu+87/u8v/N877kSmGCzUoKwjX3tCXwJsrZXs14K+b55 ZPPZWT2i7F6M4BOVfgDV4LynYtC/fJ60bU9lAjvwTJHuZYTKnYlzG4z2Ad/t Vf7EnjJCSwSVwaY4DfilDZQzsmA+Od6q16VKA0376sONKXC9qat4lO5pindz aVZvnyyecMqL4oewgdGu0ndqZDSpazZYy5iA1/c4sNNFpujrqs2nHKu6sGxH +p6gdyLk+E1+Mg1IkIJAd9sPW+D6sj9qUhp8AXnjDbn7PZBvOVuNFEOYgD3a 0e2iZYwGqDstm4qmAdaKaBavArbnWzhJTR6gw9lU5MOUnSf5Sk3dBimpOlec hSZkNKFf1HS/WR9P32OyfbXbOBJi8v1YGMwHXjilhTxIg/Z2jUFuv8UECTvW iE2NjVD+W+dzlm4MEJXwnO33yAi1CbtoaXiZDqJSyRcK90L/ib/pfh5AXqAW Lh4oh/MFqWVsmGjD5E+HSB1ekdCcbhD57J4BHsIPxt7pi5FsZe7hIV/J13qx 2rhDnU/shTy8M7TDOxDyiY1qz1EFX7ALDzp+TA7ay4SFOVuNCabvzdew7GD8 skWUWV40EFrG4JE7of2MRzKczDyAlcvB6dXxMv46qZUydBNbWfz6mriWhC5n CLmNZqvxP+aG/6YflSBtnsTcWLoE0WS8zqhYQUQ91K01sjV3g5m7N+TN7hBl /Ch0OMMEoxZBR4EI7vfdA1ZNL2lA6s1gtSZDnojKdupbRQNzrr3LygSy+cwr WqbeYMOsCc+zCmQ0w61urNqWgFf2a4hyNcaQt4zKJmXIe2a6/kqGO2G8Ivo5 nvP0BY5TifZ5Ihiv5GfiCp2ZwMpriOq/Htq/UZhl6n4aSNjWLKkLg+Ov+WBn pdlGKcxrqSIgZFSgi/JRnh6ux1HV4L4aR8I6ou9vgTwbMptjNZ0P89+HnziP L0N+FTsqclmQFxu5OSPmNLDDFSxx4cPxsAv88O7n2GSsecnwOAm1cHxZFmpK wGfU3RLiqsSI+1VfsSK0hx3pv+Sns6E/OKQpFbQxwXsXhbnYi1DfRjuDnfMn ppZb7JH7lIQGKNQEDt/Qx1PCqlv3PYbvl0LVmotlgnWny1icRcYodeMbWm8R DdRj4W8GLsH8u/hwfdS0B+g7VDtvpwP992HJtrF/DPAJftIlnWmYjwx6f5bX bsQOxHB+UO2C9nidyKmJYIKtk52lHUZkVBzSlFJLMsBLth/JrSaOI5bnMyO6 4Hq5F5KmqhJhfypR4FrDBKEqto4t12W8uDSzsK0NU/Q40X6xh4TGunLTzU4a 4EsZ+3TkP44hReiBVTEMydf6wiusrEmuqpCnoixnrRgj499IunbfEUrT8KZ1 I+4SJD7KdSDfS4KMWi/eMDRPQjdNqbQrAQJu8zs9gFY3jrgW5AnkYHzUX/Lc xewe1K+25z+y+gub2QqiUREJFaet/3zEgIBrS7M6dDPFSLpXmFRprwRZ33eM 9NthIlpw6o5raC8T1Clftj+UDfV/SkMW9T3BgviVvt4PIK9Hnjron8gEQlKT IEuDjJbdvspN1CTgEZFCaXz4OOJZ8U/4XTheY4pKg/QW1HerWLqM147tFBiG 73QSIxHL6/sX+0uQwOTWWqsU+HyXuDW1C8Pe334bQ1lCRqujX2ANkMePpxY3 72mAz8u1krXUe7EJjNB5bpKEKi3a/8nRmoD3rZW3GuoWI35ugqIa+P01U37m 5ebB/lTh0xUabdiL4jKTQV0ySg2g/Jr7yABfblFK3j1risrl+ziNrbuDffs/ 5rfnMQv12j/2Z6oZUjt4/HI6+2GvGir3Rf6/T/E/WdBfaI8EjlX6y/bviyzM t9D+Wt/2Rf4Fn8XU6g== "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[{ PolygonBox[{{1018, 1303, 1301, 392, 393, 1059, 843, 676, 557, 478, 436, 394, 1060, 844, 677, 558, 479, 437, 1099, 883, 716, 597, 518, 395, 1061, 845, 678, 559, 1173, 957, 790, 480, 1135, 919, 1275, 752, 1234}}], PolygonBox[CompressedData[" 1:eJwV0rlPVFEYhvGDAhKVjGAwBhNlVBrR0qUFpEIw8U8wUQEXcClxaVwT2SqV RQvZlFJBrRRksVIQl0KhcgEDiRoiJsj4O8WT733e79y5c+9M8nDtoVMrQghp GEOfkJ8RwkYsWXxIDyG1MoTV/DJ/xD/xdL7bnON5SPBx1x6Rb+oXza/Ovzb/ 8Cz7Wt7Lx3ngO8wZnoO1vMC+Qe7XJzAlZ+KW/rn5XVeMbvcp5tXyoF05lnT1 uvu6f/wKJnRHdQ26b7wOSfToS/Q1+iF+AO18mG+O19uf553yst1HOeCq/Nj8 rN+DeXkD3jp/zGzU/Y3f07k35iI/LT+QJ+Q0z1hkzvJcZPOt9o3yQLyXuc6c Nldhjf1t+xfyjD6Tl5i/eH48y3vdu1Q+rl8wXzr/yvzJK+QOeUTegi/xnlh2 zQWzS5dy5homdVW6pvib8DN4GJ+N78Q23sSfyDm4E5/LNft1J/gwr8RdPsoL 4mfbX+Td8ffGdft+PiXvxTv7at4c34ndWWxHs+6pLhet8Xs4V6Y7yUf4Qdzj YzwZP5tf4j3xHeMGH+DT8j68d30Nb5F/2J1DH5/ku1DIW/gzeT3a+CCflUvx W94U/6fe93/uq26+ "]]}]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJwV0L1PU2EUgPG3lzbI0kXKxGdJRMG46wy0MCn6F7iqRUlEEvyiVRmQqdWE ARWc1KAIi0Y3BmiZHIjfSVlYCpo4mEhC5NfhyTnPc+5Nc9t1cXQkF4UQYpjD pKUlEUIK0/YHuI97KCCPVfzESS8+x3BDCOl4CFPaCn6gT1/EkFuX211tlsf5 KxS0BL+ATYxpw9pbz03w33is5bTvWsr+ESXe67aALO/kd9zP2Lfxnj90i5lf 0aAdmC/NvBl3S5o76Nb+mxVz0Tzv1ui7//BKvfO/5jU+ZC77naT7UXsNp/SI b5lL/Ibnm/g//on/4vvmI37F/Ob9I2YVzdoHFO0nPFezr9mf2TP2Dvttz5+2 V/GOz7hF9heYqn8bT9vLWOAjvIyrPMvfeH+c76GkXa7/J9px/hSDWrt2S4v4 OWxgVM/or/XrfBdF7ZL2RevhTzCgtWk3tRg/i3Xk9EF9Sf+MY9o8+vVW/RDS R03W "]], PolygonBox[CompressedData[" 1:eJwl1XXQFVUcxvErIR0qCgjqOKOERXfaMUp3N9hFdzdYdDeodCndoaTSYfDy EiqdEjp+fuMf3znP8z3n7t69u3vu480+rPZBikQicQ9yCp2QM3UikQN3UyUS 01MmEl2MdyzIaEzGI9xmTJDfsP6SvF3eILeRK8qzrK8on8E6fbS5zPIyDNMf 0/PLezFHjy9xCkP1Fvpen++r38E0rjN3m3tdX4/WXAVuJveo/j6SMYRvzu/h b+E1bh1a8eX5Gdxu9OFuYyrfif+be1Vfi5Zcubh2bpSeSV+KoXHt+ns4icFc M26XdTfxCrcGLfiy/DRupJ5RX4IhXG79XSRhENeU22ldb/0WpnAduRtcbnkT xusvm1uN5noZfar5EXoGfTEGc7n0d3ACA7km3A7risrH4jvovcz9Kx+Ma5Yn yx3k69blkjdinP6SuYvyNnmV3EwuLU+xLqfxMipwp7FW/sqa1MZfkJ5bhEHy w3xW41nk4/Zgtvw2f0PeLf8uD5Abyz86fhH5aFyX3tPcP/IB+aY8SW4vX7Mu g/FknIPbgLHyi9ZckLfKK+Wmcil5svU5jJdQnjuFNfKX1qQyHkc6biEGpvr/ Xcgb3w+z9Db6dXmX/JvcX24k/+C4heUjcc16j7guTNTb6Vfj95LXY4z+grkV aKKX1CeZLycnY7X+hbm08gIM0HPoeeK8mKm31q/JO+Vf5X5yQ3m74xSSD8c1 6N3N3ZX3x72VJ8ht5SvWpTcmxbHj3cRo+Xlrzstb5O/jHMbGegnjRJ/JbryI slxqe8NJ4yr9c2tTGo8hDTcf/eXsfBbjGTwZ3xcz5Fb8VXlHPCvyTWNfvYFx m/NkM55DQS6l8xyK30LvFnuBvC/uvTxe/jSeQ59JZzwR54xnEaPkitaci31K /k5uJBeXJ1hfRk7CSv0zcymMR3EvNw/95If4J+J7YrreUj+OPnp9favjdI1r wTjuk3i2uAr6cjTkinHjuS24iPL8MjQwV9TcOO7B2C9wDL35evxmvot+BWO5 j7kL8ZzoS1GfK8KN5YbHe6fPRV8uW+wROIpeXF1uk3Wd9csYw33EnefK6ktQ jyvMjeEeiHcdR9CTr8Nv5M/F78YtRl2+UOzp3P3xjuEwevC143+A/wuluUWo wxfkR3H3xbOPQ+jO1+LX83+iFLcQtfkC/Eguq94YB9GNr8mv4/9ASW4BavHP 8SO4LHGvcQBd+Rr8Wv4sSnDzUZN/NvYsLnPcK+xHF746v4Y/g+LcPNTgn4m9 gssU9w/70Jmvxq/mT6MYNxfV+afjXY7/zLhf+Bmd+Kqxn/KnYl/mvkU1/ql4 l2JPi/uBn9CRrxL7GJ8c+yL3Dary+ePZjXc57gf2ogNfmV/Bn4x9ifsaVfh8 /PB4V+J+YA/a85XifeeTYv/g5qAyn5cfxqWN+4HdaMe/Fe8TfwIFudmoxOfh h3Jp4n5gF9ryb/LL+QLxnxP7g/4fA8gjmg== "]]}]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwl03e8zWUcB/Brj3CFa1zCtXdGNrkXDUm49nVvRhKSWzYNe5QWKVQqo0GD Qhkt0lIps22ksilKS+n9ffnjfT6f53vO63fOeX7PL2VgdvqIHAkJCRO9RKZ6 uSBHyy1yuGzMeB6wHihrMpYz1iNlK7L0DFmRo3pctBnr9SGyPn/rjeiql+Ab /Xlu1utwTp9AP70qp/S3yUla/DjeEw9yk16Ls/qN9NVTOKZv4ArSrZP4Vn8h /iO5aBv/la36Q/F9NKabWUm+01dwJ7lpZ5aT9/WH6U8T8tDePBcf6HMZQFPy ko/8FKAgl3CVz+bmQ31e7CfNKMTV5nn4SH8k/iPNKcw15nn5WJ/PIFrQ3awU 3+sruYsiXGuWj236o7HHtKSHWWn26S9yN4l0MMvPJ/pjDKYVPc3KsF9/iXso ynVmBfhUX8AtZFpX4ri+kdb0sk7mgP5yXFevyx/6pNhLvRqn9dtlC97Rh8mG nNcvpaNekM/022QTFsY+yNqM4zfrUbJ1jovneYh1lqzMGE5YZ8vmTGCT9VDZ gH/0K+mtl+Wg/kr8L70ef+qT4/7q1flFv0O25F39VtmIf/U2sljcb7k9zoNc JH+P7+PN+Aw/sIrLvf9XfL+cImvIX+XmOMf6f7I41+uF+Fx/PPYozr51FU7q b5FKH+tyHNJXM5USdDIrzBf6E/GbSSOJkpTiBu8XYYf+JMPjeaE0nc0T2akv jvsQzwZl6GJelF36U4yIZ4PkuH/mu+XTsf/xDHCZ2Y/yVaZRlmJme+QzcRbi eaC82U/yNaZTLvbCbK9cEvcgng0qmP0s1zAjrs+XLGVkPA8cZi0z47p8xbI4 M3H+OcI6ZsX1+JrljI7zzuvMpiLPMibOJW9wLyk8x9i4V9xHJcbF3jOHyoyP feZ+qsS+UjX2kGp0pTrpcRboRk26U4se1KYndehFXXpTL+5/nCkyqE9fGpBJ Q/4HPlCfeQ== "]]}, Annotation[#, "Charting`Private`Tag$46956#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV0bdP1WEUgOHvFiwLC+KEBRCwATPOSJVEUP8BV+ReSxASAaVa0AnQyQIi CRrsJhpkYlCQRROjYMPFBVHCYAKG6HOHN+e87/l9uSFkH03WJSIhhHGcsWTF QyiNhXA9GkI+PmhjKNMT+ivtICJo0bfo+/UbvAAftXqtT/vJG3FfK9eS2mte iyha9a16mX6T78Ssdkzr1xb5aTzQKrTj2hSvwyCf4jmI8XY+ao+ilz/n8/YS tHm/jZfbb7lN2hfsu+x99nH7JszbN2DO9w3mgLZq/vLdW3OFb0wLoYmP8fep 3+NF5gLPQDp/6H2l/YT+x5z2/bS5zNe7H+JDqc7/mbnmj9RbxN06zLvamhkz Z80ILru9ML9r+3DW72znFfZBt93o5y95Jj65J/hV+2+3ZjzSqrST2ht+GGno 1O5pcVzh53yXrVXyIb4Hn7XHaEeOW5XbbX0vvmhP0IFOdKEbPTiPTH/3BfMi cr2t9nbYu0J81Z7iEna4HXC7oxfhm/YM1fopfUY7gnXo1fP0Gn2EF2OAT/DN qf+ne5Jfs/81l9zfmav8P3pxYC8= "]], LineBox[CompressedData[" 1:eJwl1XccllMchvE37aVBUQkRGRnt0o5sRbT3nmaFdqIo7amhUBpKe2gvDdp7 Eg3tjXb5/j7+uD7nvq9z3ucdz3nOm6vBu5XeSZJIJH6/LZFoh6nJEomdSROJ pzDXxKt6G3mDuSpIid78w3wFfoL+NP7k5uE1vi2/kauKVOjD5+Er8hP1fDjI /YQK/If8Jq4aUqMv/wj/Oj9Jz49D3HxU5D/iN3PVkQb9+Ef5N/gf9AI4zC3A 6/zH/BauBtKiP/8YX4mfrBfEEW4h3uDb8Vu5mkiHAfzj/Jv8FL0Q/uIWoRLf nt/G1UJ6DOTz8m/xP+qFcZRbjDf5Dvx2rjZuxyD+Cb4yP1UvgmPcErzFd+R3 cHWQAYP5J/kq/DS9KI5zS1GZ78Tv5OoiI4bwT/FV+el6MZzglqEK35nfxdVD Jgzln+ar8TP0Z3CSW46qfBd+N1cfmTGMz8dX52fqxXGKW4FqfFd+D9cAd+Ar Pj9fg5+ll8Bp7j3uK+683h4ruercJ9xevSHuxGfcFC45+urDrSvA1dRn6yVx hnufG85d0DvgZ64G143bpzdCFozgC/K1+Dl6KZzlVmEkCpmrHc8DXxrnuA+4 EdxFvSNWczW5T7n9emOM1dfpuZFV767/KKeI7yPfhn78AuNBrjhGuU5hvY48 Lz6zfEouE/dFXiLfhT/l1DhvfWvjSO5va7bJ1+RO8jR5l5w0uftpPKXfiTVe U8v4GXfJ+Ju164wX9SbyOHm9/BCOyhlwF9/DOJVLGb+fnBT9+YXGQ3E/vE8J 49lYj6+9TxFj3fhsxp+sXWU8rZeNfSMvle/GQTkNLnhNG+Mo7h9rtsvX5c7y dHm3nA9rrautd0/6/9m1Xv5bbip/L2+QH45r65/r0+RUGKAv0g/LJTHadYrq 9eT55srF/tSX6dni/ppvG99F/tdcF8zQ9+j58Yv5OnoP+YC5DfI/cjN5vLxR zhPX0r/Qp8upY4/IyTCQX2w8wpXCOflujHHdYsb63ILYX/IZ+dnY7/JyOTsO yWnju1v/oXF03FNrdsg35K7yTHmvXAC/WldX/1z+w9xG+V+5uTxB3iQ/gmNy RmTnexpncGnwm5wcg/glxr+40vHMytnwjes/Y2zALbRmjXxWfi6eM3mFnCPu rXUfxfeUL5vbKd+UP5FnyfvkglhnXT39i9jz5logB3pxM7m0GKx/a11xrqG+ SC+PkfpK/Z64d+Y/js8nXzHXLfYMV5/rGftPb4l78CU3i0uHIfp31pXgGumL 9edxiduABnyvuA9cK+REb242lx5D4xywriTXWF+iv4DLXDvuW+6q/mncC24c SvFN+KXci7jCbUJD/kv+MPc27o29zpfmm/LL9JdwlWvPfcddi/MSm7lGXG/u iP4OJuqb9Udxn95HnyPfjmH6Uv1onD0Y7/Vl9GbycnNr5XPyy/Io+Wc5Z3w2 OV2cQdZ3MI7lrseedjZct3aXfCv2kt5dn63v15PphYyn9Sxx5uhbXKOx3Cf2 SOw16zcZL8WzbP5dfZK+RU/ojxmP65niM+j3m+8rz+UzxDkhp4j/GH6Z8Vic Q5jgfcrqzeUV5l7Bda4jN467EWcftnJNuL5xLurvIVf8jnw5vgW/Un8VX+ur 9Hvj9eY76d/LN83tlhPxDMpz4vzlC+OMnBXbrG8a/w2xV+Nzxv0zXtbfl3+Q t8pJfMfHjSf0zEivP2C+nzwv3iue4TiXjCnjnDA/3Pxy+TifQi9nvBDPeazV J3nvZ+WW8YzGfbX+F+N5/TV5tLw69kvso3jPeG69prNxPHcrzrk4t7lm8f8Q 90T/AJPju+l58aDeP/4T5EwYEd/La57jWumr9AoYo6/R749rm++iT4j7jZ7m 5+q/y0Www3xzfUD8JuZaIzcGcPO5zBgZn8O68tzb+mq9Ir7R1+q54tp6V31i /Mbopc/TD8hFsdPrW8TZLZ801wZT9O36E3hIH6gvkO/AKH2FfiLOb1yUc8Q+ 9XtPca3/AA7PkEM= "]]}, Annotation[#, "Charting`Private`Tag$46956#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{1299, 1300, 1298}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->NCache[{None, {Pi}}, {None, {3.141592653589793}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotRange->{{0., 14.999999693877552`}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}]}, { GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxlmnk41O//78k2o4gZIWSrKGskUup1hxAfW6nQQpEoayKR7NEmS2Ur+1Kp JCn7iIr62PelLEPIOjP2Qmd+55z3zPd8z/zB9XBd437N/X7dy/NxjdR5t6MX 1rGwsAjQf/zP74W+r5+23X14kIUltfpCnOHB5U6NR5TOFuiVaZW+vZYM1To5 mc3pQ+BuQwm73vQRxPqLR84rTIGGzpLwmdg2EHC2ecGlMwvhlWFN13XIEKOi V2pyfAkuzqqGtuZOQnf8rkoq3ypwdQ90HkuahbuZAY3rNrOiKqHrzzX0l0Ho 4dDt2KdsqONF0rDVlTUItzhysGWBA+3a5/5R4RQr8tRMs/kajENy+jz7nazY kO7Mb1/XIW5U3sF6SnOMHQVpmZ8T2cuDzG8tLAUqcaJ9rxPe3SRtRF1pJnrN ZlzIeYkaWMvDj9A5qy87tuHQsjxfn+JxAkrbcOeDXy0OaeW+TH38mIiq7wil FYrgEZVgaHuiSgAJK+pa/JHCo+F7tieucAky+MjMtSM/1YUYPGmH83wXIMxg vW1C68KrNjOYUC8T+WZGhMFiEXlm6upiDI6X1+QjXtzC4G8ih/bMRoszeJ9Y VZRyhwSDednSr54LlmSweJCElpWMFIPx20+/P1rDZKUDm/OunZFm8JU+QrUh y1YGz8zeO34knsn6yl8SjyhuY3DF7P4/iw1MdlVQ7Wm+sJ3BB6bt26zwMgw+ vE3YmCedyTsC7/hUacgyWO6CJml7D5MvVDiGvvPYwWBSaps9ddNOBs89+7uo /IHJdttz8YnGcgymysWqv6UwuSjzz+B8hDyDrXW3ov3iCgwWdQkvVqpk8iZu 53zjk4oMTnYpmf/7V/E/nuf4D2pnFQQeDzthpxEAlco6M195f8CqpEUn9++3 4B795nDixTFoM3xpXC9XB82KfZFPJinwr+ePukjCd2htaFGVr5uHS4fCCTFG o7CqN99Qr8WFiEshZ77ar0OnBUymRAvwKKWd/beQHDsib5Jx/cSzAdmafMts jeFAZ73m79T58SJV/63nQ2s40aeLKVPV3nwoYF91ZORHLqRKCFL2y+dHGwW8 z7MH4FDi5bNAnieg13omPC2rOCRo4xforcDs53HT46eG7TcxuGd/bGt2LvPz 9peZuM11vgXjD9IpQvaO8D3kgPaZ2U7wiBrxlKx/Bonj8vN7OEbA9nr9jNa3 L2CzZf+6huAZmI5PmP+p2QVXtyS4JoTPgbJa6yvRt8NQZZzC2ZTAiahxUtU7 hlnRWPa1bBp9nXXYzkW1VLGh2OCoqwk+65HOuhC+NOBAFMut3rPdPGiQy/dW gz8ncpdYyDgkz4fU7pyiLN3mQqZhml1pNvzoEE8H6aIFDn0z+sAbkUVAv+oG mpuGcWgnx8OoW4NEtMVca8ugBH29jSuE/tKpg9qXWS6fvKKhxWWbieimQTA7 Knxgj2cJ6O3d83jt6zi8uSTWL6DdDHXRNSlZWzaiy3JifZk8XEj4jYGGXhUf ygr5xac5x4UEU2pvWbARkNMtQlVlNg5dvsvhrqVHRGdk1qVI8+IRe/F5d4dr zPnmnxaKWe5MB7UdK7ri9pYw/qpkIvtCO0zzPwtWlckEpbhfdWxtw5DJ11c5 t/kTHLzpezX+5DQQpw3C0xw64JPujXtmP2eh7hp0BvoOwTbzq9LmBpzI+Nux g5MprEjJfQNbXwMOWVhdH22MZEOTRZ8X2ZTWo0Dnqj1TRA5UZFgywXmbPp9y Z/tKTnAiPT+pgEAOPhQ3/1co3YUL9VU8UihUp8/nByEdAy0cIpfaLVj7ExAX n5yaWRcOqVqmxvOWERFlaqeN0RY8Uglfnz91vwZ2rNPXeapzG95yfDkc+KQf lCoSldId30PvMM2lLv4X4D/jPzsbNcKjkLObiut4UeH0uhe8k5xoev1VQtgT PkSw6Wgc6uFCmV3bei/28CNzsW8bMmNxKPhP/smN4kQ0oRtdq8iJR++DozdN 6pTBoVdDPHxGV6DBqjKeGNQDj7lEWUYF84DjoOsWR/VRECGXiYf5foW3vdyy hfUE9O/tODdzKg5xKOcM/GRnPo9QmZxc2o0mWO7ikPNzegzfui5cXzhFhscR N7YJcJPAQtQqwsmViBq5PL2EBPHI2+xFJ1tXDOC486Lk7Q2Apn298l/xNshr wd0pbUkDH5faokv7h6HBtfxyCbkKXiklvlr9OAVZ8ZJmf2+0g3OXi6jCw1mQ e0I+ttpHho6Ws2+iJTgRrCMH3PNnRU1tJ/Jbn+FQTHtpTMNVNiRsYatZjFuP kqXOGxDX2NGT6rDsKFselGD5YuKpNieyO+raDT83oiPyLbneNlwoq7e646A0 /fndKwrduwuHpmc1L+k6EdCuSZc/VU049CEo+8nR50RkXSYZyCKGR2XtvjUz qp/Bq0P3Wo5bKBQnhopkHe+DR26LwSfy34FMabPVbpZfMKB1xYA3rx58V3Y2 aWfyovAenm5qNyfqLsYHZt7mQ1/r/lHWbOBCl+ePhlE/86NdwqkaFrdxKHJ3 xL9LeCLa3WZ5Zvc6+nkm4a5Nuf8BRnBeP0T9XaF9+qbL3n3dcOFS2zPTZ7lg JmCMb3w6AhWKh7nOSddCBXEwMbmYgKzlyyT5J3Aos/f+Pe05InoXfHhFnv78 YpLKXUaTGyCjKvsYqT8WTLZ+HoooGgRPl29vMivKwPaY8spRayISjNvHvYWA R2MF1nupOi/h3YUmW6LReRgSXhEMftkBu8z1/Z5fz4aOkPvBHtEE5OPKERLV h0OvlRIffmsgonCJ3Qcfi+NR9t4niRNjX6FX8cjGWKFI8K7uHdquSkSZhV93 7+DGo6YrVnOzNypBeC2w4toDL8jOUCv4d5CAtMauVEQv4lBSRFBoyWZm/x0M cEv1eNEMYwHOMuveJYLBULBAYDARaRaadx/djEdoU+N54a5gSK0X2KFnvxe8 73fJnfVrhY27i3lYnqdCctcHJfGZIZAc7VhKsKqCYU45w13XpmDK5Z6aEq4d UPoIOeHyLFgqqcXsjybDa6LFosp6TqQh/jz1tDMrkua6EdHwCIfOdDezXbzI hl6nKfYQF7iR0kq+ucwsO+INnAg5/g8P8nIzu/JgLycyYWHXt2nZiKT1Sudt LbkQbrwnl02YH1UuRGTtksOhuY3bt2na0PfDFT+rlDoc8n38PHkuhYgebH3C d0oUj1j937a4c3yCpEqd6JccwaD1cyhU4+0PMKjd/upNewEYyXxsHCkYg68+ Mtz9A3UwWfTgFVcUL/qRG7+ltIkTNUS1qasF8qFMNlz/UA0XamC7ZP2+lB9J CK43VgjFoYemnmFTfwmoI6lMVp0Fjyxc+y1pqoUgMmBUkeB+GSw1+zq/Pe4C /l3qlN6F5+AVoBUQbD4CD47d/mPiXQOflOssYvMISPqGyTJlFIccKFGRw+NE NPar8t4tSTzq1J73cfSoh0KN7IGPL2IgqnZOuMVhEMg21IXJ+FJwcBN5r29G RCVnk9sk+PBoxUzzwvz9HGi4bhIi7X8WHOxOBQngOyAyf3FtyjQLvqf4aDmE ExCQ4k659+KQu87Tx86fiaj01usGCn1/nexvzXIurQU2YYOd8a/uwo3+L09F dhCRgb/imhwOj+TVpP/+Sq6AnEM+W8ybPeElScKlspOA2DU54jzmcGjw6HqZ t8RmcFfQfFYRGQ8mf10arvoQkQLamCsgTF8PnSZvTD0JaLHX5ulIGw6hZhaF 6bFi6BE2XWv45A5HMyXYsn90w9+iaxZJNq/gT5OlhMgfIlL12t+aSe9f47mw 8w51jRBlnPOlTOARWGvoap+1JyLPxg4QEcAj24YnL2dMO6GF8njRPiMH7v4r 9evKi49QtzPkjoudL6SGH1numCAgr7iBn/m/cUi7Js767j0iWktRO8BOvxe0 JQtfP9R1BQYsBk742e+AIlWcbc7OVgC7aFNpgVTYFZn3a7F2CPQz7Ej4TVXA MusR/9V8CmIsq7I/17eBHFfGF7OTs+C+eDrf+hIZRN41iKxj5US7X27I/2TH igxTeeeM7uGQTpSbhKMtG7pu8FDu4yQ38vpl1ZE3xY4MzibTNLR50JBvxp6I 3ZxIt7Nhdbp2Izrk+UiqzIIL7fNwEBwh8CMWBWqhgiwOLTwVCdptTUBh7CER 97/hUK9kbsrhJCLa2dltiaP3f6aZiWW+azXk7dERz2sKhJt3iCWBtj8gfU6r 6sfFAujrLbpTeX8MpjTuHOsIrIPtcdpi42G8KEKgjyRRx4mOrGgSbvjxIf6U n+rFn7gQy935T/Hv+ZHQo8qT8UE4FPfDkTz6m4CeBUzf0/hLv/9tErL35HgH 74w+vLYcd4LEPh4egcNdcMiWV3Xt3HPA7VHbd1p+BHwccucPS9ZATfnH/Psv 6PVnxv20HcGhWt+YB3tGiCjk6Vrbbnr/+wpGrz3rqQOgbZfV4YsBlaR7BQsH BmFzN7sIP2cpOK5uJGobEdE97SZNqY14dCvlmd+iahawmG+3T3U/Bc9wd9+f +dAOFYONiK80E/oVXRNsgwkoY3RAf6Abh5rrk+PKK4noxL5JwWR6/0cWuMm/ 2lYLAvf13yf63IEAl7LfAluJSOScjZ0CFx6591pxX/YoB8/FV4928XpCnvGm byUtBOR4ziRkkIZDb7W6HY/WNkFBsMQvsRtxYH7fTt7Nk95fWw/xCQrh0cQF XR5DVwIiDjvUtbXgUJjPXg230iLIaQj1fs3qDg+PmO6dudsNBfzZN+dDXoKO +b271CUi2tzI9e4mvf8pNVJj2XsaQQQny3PQ9yGc+ayZYmlDRIcLcFmiRDxK 96wb3LvWAeuk3DTDeXNAKaXctYD4EeaIwZlXlq9BxiY40TxCQN2knS1Syzh0 +Pj9D2HhRPRETuduLn3/j/7ov2OWnYjYi+5UqbHikeDD1+lBY10gWL2u9Xnd C+BweHA/doaITNRDdLvpz2fk3visYx0Jeu5qZ3k8vApGHj4evv5E1Am2sr/p 6/3nEatjx30I6NJeT8nKDhw6zuc1HaPSBJyxsoH78x7B0+VjT75TCIjfLW75 0Mr/f1/67/XP8r9fAmh7M4nYRGfMH9jwHaTtOkYGzB8UAE/JXN44wx9kKd1U ckigMPxB3ubjtNodNIY/kCja466lRmP4A677HJw6XRSGP7BOWfMW3jvF8AdB Wyr2LTqMMvyBc6poZnrOIMMffEFRF8nh3YD5gyzyvnFurSbA/EHL4UP848c/ AuYPxCs7F4o4kwHzB1KF7qfTzheSMH8gwLInniLxlYT5g81qp08YpLeTMH9Q 0/D44ajVAAnzByz/94X5A4wxf4Ax5g8wxvwBxpg/wBjzBxhj/gBjzB9gjPkD jDF/gDHmDzDG/AHGmD/AGPMHGGP+AGPMH2CM+QOMMX+AMeYPMMb8AcaYP8AY 8wcYY/4AY8wfYIz5A4wxf4Ax5g8wxvwBxpg/wBjzBxhj/gBjzB9gjPmD0u3z /VsrRxj+YEmiLTrIdJrhD658FHt++SGV4Q/8gnWev7KmMfyBYfBqBnceFdQv lB6QLPgNVa0fBQwzZmCJEpfnl/YXagpalV+cGQfMB7Qdta5jGW4iYT4AP1fP 0ljfQ8J8AFYf5gMwxnwAxpgPKFbpYo+JGmb4gGnV3D8uqZMMH0AZLDS2FKcy fIC3pG7LbUMawwdYpuOsF9hoYP9v4A2N0GW47Wr6ZYclBcZ0hz+oW60B3wp3 glPTBGD5nsdz4bmsRT0Jy/fa8k3OPApdJCzf279QTf3QM0hyzW8885TIrH8p PUDbN4hZP5b/LQmbPTfUjjHyP2su99Th/hlG/neXXuD3HKYCrS5ZrEWIBifb tB6es6CBauCGxTK+RUgaGd5nZ0wFLO8rnhurFXz7g4TlfWy8srZs+9Z25vhY /t8gdddv0GOIkf/NNb9bqzybYOR/5SvrUk2GKMz8//Sf8881aYz8vyEnJ81S jAZ+N4dEqyeXYLP9PknZJAoMuHJrCRSuQmE9O+5Q6CRgeT6ueJPUhn3/krA8 36fXnK7Q20HC8nxsmX2iqcggaRd5Q//yOLP+Wx3zy3bOzPqxvM8tFr5T+NMo I+//NfxWIyM9w8j7NxfVHfQrqHDev+K4RjAVnOQrk8NP0iA4Z0bgqusC6NIW ax+GUgHL9zedabxOB7+TeDa4+UybM8c3wm0RK69kjo/l+3xzpz/nrKiA+lZr WE9SoCdjv/alUzTYtlBoRt45D+YEtoDAbipg5xf2/vy71yp2/ZmAc8aF5cnc NAgRCxhyfkXvyx2Cdtr0/iRb7uzmKFiEZk0vyVYCFRTTdr36Nc4cH8v/hfHD 6rfJZEb+Dy67yk1UmGDk/6JIvzXOjxRG/j/XayanqUJj5P/HedMRhvTzjrPr 4QQubQkG+5SNs8so9PW0ZW2d3SpEvA8iKfRNApbnO05nnV5T+EbC8nxg/YMF Ua0OEpbnX332jxMtGSBF+eZKPOtgfl4Typv2rnPM+rG8T5asYBfXHmXkfb89 jQptRdOMvM95/mSUSi4VEo+b0Jw06OuggzVTxIoGcvsHM0y3LIB+ie/7xgQq YPle7sqiSkxoLylmj9cNVWCOT5DuWlR5zxwfy/dNCQ+2/dhPBZ/39+3VNlBg Bxm4fx+lQd3tnP7yrjk43hPmXDpNBSzvG6VtzpjYRyatnDvxIu78BPz60D4a sUiFkjnewJTzNGjc8Seygf7+O5MijoPnFkGd75Wi6C4qzJVMRJwdYI4/XMk9 +MT5J2yU++7dykKFhnrr/bunpuHTWYPEzdo0EMu/s3pVfQ6Ck21LHPhogOX/ mwVGT0N8B0lyWUrF7PVUGAi4mTB3nAY9xLWweNIC/C0TM8i9RK/n4gMV1sZR iMbrtIx4UwHH6SrfmEYBdqWw1+g0DbD8j9XjUBjf8jV2EnrID2PfbaHBP7oz evuWaGBIyXKiX7LBIdyr+eo8s37MB9yxiBb4kUhm+ADRNURmmx5n+IDXfTce q7+iMHxAxO+jvKyKNIYP6Nkdc0NHiT7foS6t8n5L0PvRRyLhGwWseWVtfmuu AlUOJUmvnwIs37squfhey/5KwvJ9E4u3jOpMOwnL91qG3I9Z7wyQKr/8hoA6 5udT9Y/UiT3NrB/L/yYZVjRJ1lFG/i9+Yd4vFzrNyP9H4i5mZadR4f2hx4iN vg7fv0yXGab33xq79eXyuXk4Iq6l6JJJBSzvs85fr86W7SVZGPrcbNvDHH/h deGFyTfM8bG8P1AuXSyiSIUdh3MvJNXPgCmr9vRHExqkHpPMkX8zBycO6g9Z LlMBy//t27PTmrnJJKn6w5JGghOgMPVzZXWKCh0DJxr2HqBB7FoSf/wxGpx9 H6tsqrkIjn8M1EgHqdCl/3VBuJc5Pl7h9wkzyZ8gYeK2np9GAc7s8c4L6dMw 6W94c5D+fyi+bJ/JPHNQI83+2kaQBpgPwO/tSnIyHCTpRXtzJedQIeu4hFjF CXp//vA25oxbANVnRSam1+l92XIz513wKKQpdjhsc6TCNlrhdccbFKhlk1Hh PkOv72nordN8zPm5Jxlh4K8/CeLCWc92CtDAcZfGo9YWGthsODtSqUvvQ4Fj oEz5j/6TL2Mb+bIE/lKF70dyKcBiRh4K+OcXVCno+5W9o8IJD8fvg4cX4PCJ YlB9QIXT3w4LJqlQgLX6gIwqff/H8gM/z21V3rNkUseCg9rw6wnICv7cQmSl QTKuRoUzgga3dRv6q01pYDDKr85lMwcHRMq/uND360crKaXGomMQ9DPvwPMw Kkxulvmxp4YCYDksf42+/x8yfH5acGASpE62avpto583v+PsSn4z68d8wtW3 F9m4rpEZPmFUXNZkpWGc4RNe3PI/b5JBYfgEUW4Llp9yNIZPWJ23WwD6fq7c a6V/wHEJPGRJBNdmCiS25m703r4K2y9I3H4qNQWYHzgkZI5Xs/tKwvyAh4jT wfLadhLmB4LvmT2a8xggdTlLN12qYT6fTB1/X4oVs37MH4TZyzqlD4ww/IHl z5i9HU7TDH9wSbm1ry6JCp80SkZN/1IgQWh21IB+fxxzEjS9OkC/PzY9GSt9 TgXMFzir79+gstxDKmy7HrBdhTm+o1fmkyOvmeNjvmDM1DmkeDsVdFVmC9Se zcAQn85A1j/0/bfo+x1y0hycpOQk56xRAfMHEo6TqZ9og6R3wQd6t1HGoYHL NXzvLyoMd/h6hdHn1ctpsmWFvn4MRM2InNsXgZX6WINfjwqGvEWK3l3M8Z8M Uvnlfg+D7EBRe944BaRjVGX+3piGgPtG7p/30/fjftKzhOVZ+DXcLnt6Mw0w n2DiK550WnWQZBGe+Hqcfq8Or3T7IU3vx3jt3SrlwQugg+J49AKocCXC+3zk 6VF4TpJQqbalgupYt2ShEwVeuHrTXOnrhyR7K/zVeub8iHcEsJ2UmoRKVcXd 9htp4C1zSkuykgZOIiWZQfo0KOs55H1vill/RtCza4sFS6AcSAvSe0eBWI6e ZCuZX2Cv38ixSL/Po45tlfEqC6CHE/kTSK/zUqVT+ag4BR61HBQWpJ83mH/g sGnNWDpKJjm9PDtTHjEB+k+Nz5isUOHl2njXUS8aTJa/qHein4eq/zRsrjCc A9vvkegSDw12vI3zlp0fhdvXlrkMblLh90bD0GB6HVLValO99PXT9jdViFI8 Cb1eMWcspGkwV3krUWiJWb+TUpCNSOQS6J5WVfhUTYEi968CPD1jkHOjX8Q5 m8rwEVFDNul90mRS7biq7CR9HefHGpntpj/fTz4lTqa5C5Dw9pLRqgcVBFei W0QfUGAkvt0ti34+Ll+Kup/hMgk3VsXEZ4RpYNIm5WaiSwHXAi01E/r+H0XI uFOcSIMA9StSbMb0/Sz4+FEzzzkQtZz4x4OLvh8+zE/T4pwCx70CgukyNOBT e65wZvU/7o//dR/87/3o//xVAD3m/R9uIW16q2diMsDDPE8Y34/4f9+P8f8C qZA4iA== "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{455, 532, 530, 274, 275, 470, 418, 378, 350, 330, 318, 276, 471, 419, 379, 351, 331, 319, 480, 428, 388, 360, 340, 277, 472, 420, 380, 352, 494, 442, 402, 332, 486, 434, 517, 394, 507}}]]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJwV0d1PT3EcwPHfTx7Sg6i/wF+hB66KuIpcILqp1AX1YwhXhQsZFiNjerIu hAsZrVplLDWFKeVKchFLU1OWRUNe34vX3uecnc933/M9G4ti+RUrIpFIlBZW uUjzIJUNrteTwjqSSWILOyjkNHd4TyKb2c4B+ljkFHHWa9YxEjjKZdqZZjfX WeO9Hp2jjH5+c44HfCKLci7wiC/khr2ZHdJ/XKWLWfZzkiZGWcstnvOTI2Hv Zgf1L5dY7f6JfiWfa3TznVLOcp8JMnkdDtDMDY3Xp/qDw+F73Q/oEjW08Zlt XKGTGQqopJF3YZ1w5mbfaFRvhr3rM10gxkv+cJHHTLGLg7zgF2dYae6efiSD VyxTRy/zHOI8D5lkK7V08I19nKCBkfCv2EkJ1bQyTjo57OU49QyHMyWPYqq4 ywc2kc0ejnGbt/wHxYJYSQ== "]]]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwl0sVSkAEAhdEfuzAegWewc2EHFurYhV2AYqIoYnc7FoqNYotYGKjY3d3d hViox2Fx5tvexQ2LjI6ICgmC4Db/e5olxNKa56Qzi5rcZwuT+EQm/XhLBrks IIcTlOUG60mgO6/Zxzya8oSdTOcrx4K8MTHynoMsIh9nWMpg2vCC3czmG8ep xQO28ovJfOYI/SnHTVIYSw+a8ZQ0ZjCQ/JxlGUNoS20eso0pDKA8t9hAIj1p TgHOkcRQ2lGHChTkPMsZRnvqUpFCFKYIRSnGBVYwnA7UoxLFuUgyI+hIfSpT gkusJI5ONKAKoVxmFSPpTEOqBnlf2Mg4ehFBSa6wmlF0oRHVuEMq4+lNC0px lTXE05VwqnOXTUygDy0pzTXWMpqPHOYvkbxkD3NozCO2M5Uo3nGAhXznJCE+ VEPvsZmfTKQvb9jPfFrxjF3MJJssBvGBQ/xhMT84RRmus44xdOMVe5lLEx6z g99M4wtH+Qf+X3uT "]], LineBox[{111, 151, 63, 86, 18, 64, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 65, 50}]}, Annotation[#, "Charting`Private`Tag$46640#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV0flPiHEcwPEnREhU/AH+ilzVD44kG9LmCDUVthBTCJtzczbJMSZybeXY 3ENojCTH3MdG2HI1lWNMRLyeH157P9/t+TzP9/k+/acXpM+NCIKglkgX99jN AiYwlAReUMlychhDV+5TTiETGcYAXlLFCnIZSzcesIciJvGJc2xmOI0cZy35 fOUy2/nHbQbSwGG6dAqCldrGdfIYxwdOs5E/3KSA71yhu7mdGqF3tZdG6UP2 spDJNHOeUkbwlhOs4zc36GF2tn6jhijrHeGh6h0dxCuOsIoZfOYiW0nnI2fC MzWzSf9ST0/refqDq+wK984jKlhEJi1cYAsd3CLabIq+4yTrmcNgXnOU1fyi lpl84VL4r8xu0/E0cZYS5offy2P20dl9i/Un15jCSIaEe+cJ+ylmKqkkhnsL z5wYetOHWOI8L07jecoBljCNUSTRl2ccZClZpJHMG46xhllk0I/nHGIZ2bRS TRmjec8pIr1/g7ZTx38WZmoP "]], LineBox[{366, 499, 447, 407, 320, 481, 429, 389, 361, 341, 278, 473, 421, 381, 353, 333, 321, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 474, 422, 382, 354, 334, 322, 482, 430, 390, 362, 342, 490, 438, 398, 370, 502, 450, 410, 514, 462, 526, 310}]}, Annotation[#, "Charting`Private`Tag$46640#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{259, 260, 258}], LineBox[{528, 529, 527}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->NCache[{None, {Pi}}, {None, {3.141592653589793}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotLabel->FormBox[ TagBox[ RowBox[{"n", "=", "40"}], HoldForm], TraditionalForm], PlotRange->{{0., 14.999999693877552`}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}], GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxdmnk4VdHb/pXp7GN2zPOsjKEIZT0hSkUDhZSSigyhkiJThEKUjIXKFEUp QukoDZJkTkSmIuM5xxSVfvt7fd99vL/XH3XduZz12Hs993rW507e5eTuoytZ WFju4n/85++53vevla4kmbCwvIgZ0DLZuPDZ4Abtcwuyfhr3tWzrLVRrlp/T fGcQSe0WTo7KfomkvlX+cNGYQFc2JLinX2lDQp7OhZxm02iPglVyCQygazoW z6ztfqFt5i/k5crH0ZfUNTV0/r9oLKatmCdnGl3JCfm0UnwFdCaxH4vavYBE kwZjrt9ihe4wul1v0BKKst1q0jLHDm9NDa0XDq2AU4a3nd+Hk2Cd8NVriQdY wXxq8bz3IBmS1pnOnh5ng7ANuw5LrOeBwYLWWJIeBxgVpz0JpvLBu3dG/hG2 nOD5ix5axyMAZ3NkOH1Wk2BBnb9X004QXr6EJLdPJNhQdD87OZkCLAvaXXpK GNAFrQ7tfSUE60b9a4Y0MBiKPbTXj1ME6hJekrvXYLB16uzW7/qiQNetPTyy DoPxI6RTT0LEoD+/pOTIRgwslERXRr0Sh7KDAudDLTEQ/KgS/3BKAorCLJu2 22IgFV2yU19fCpRyRfU0jmOQqm7ITzkuDZZ9ozTlEAzqJTatm06UAcvjTU5l mRgYSb1K0O6QhRUmDb+VP2LAy3rn9OFwOQjnnF0/y0kGmTDZDQ4q8vB1ceNI yUEyYMpO5bvfyYPxGb2MkFYyaG0ULzl7QAFcHkbsazjGBX69grVWLIpwXtQv SQBxw9R0rN3WVEWwk52f77DhAUvtt+lbNZVgs7kO77dSXhAutbC27uMBlv/5 Wt4v//363WQvK/Gbwvx+plfV7L9/mv+j+fHnMdpD//wKtclo7EnxCUQ12mZT 73l7kLMG+cqUbynySXy4Of34CArt1N6+KNWAmjV742+O09DdQjbbs6SvqLWx RVe9YRatl2GzM7QeRk5C1hOSjzFo19I58kaTDQaEVbxf83CD97wH69YUdjh4 ZvZyQyAvdNbmn/r8gQNeH8+aqPXnB6MCTY/ON5ygKximHfhIAFZHKMfvjyRB usdBNDArCDEtE+V1bBiIOAeG+msIwYWfZ7rPqGMwamO3f8hVGBKrpF+Ua+Hf Nxn/pJ4lAlKXgk119DBIXw2927tF4WSCRZ29IQbir69WScuLw+nVlDEuUwzu /5Kpk3SQAP64HmXvHRikqHmcnL4mCQJ5B7T+OGHQ5XD6YU6jFKxzVaCZ+2Gg o1itcPGPNFjk/Q18F4dBeMaKIwJrZaF91QEzsScYJEeHZT7XlwMdk6w1R0bw el4dsj/QJgdr9nvF9WiTQah140K7vzys8Zx/HpVEBqlHVbpHBRWA8jYmo0GU C5p4RAz7ixWA72qW7rl6Lljz04bbarsiyNz6+zijmhsyElcHvB9QBNtTame4 Z3kgXGDFB7lgJehYCV/cs/ng23PrkzOfS9EL7tnQXz6O6OvFjaYHpj8j+9UO 6eFHClD6qPrsOvYfiMJjbesR9xY5SxuvbAyfQkXaiT+1V3Wi09Jp3mlRMygp wOcyd9UQGsk7m8eQwGCjrpLV6DtWuB6ecDotgAus3o9ONZqxA81e0X/6Cw8Y YNmrg8M4wEd27u4mdX7QUOq2HoznBJtIw87bzgIg+renLcaBBPXbnvJG5wrC WhLn05xxEqxmT0q41E+BPcLBgzvUMPB+9OnALYowbBfbYfJaE4MLR1UoNntE YPGg3s9FHQz8uL9SxGNEoefxj7fxBhisFGoQcW8Sg33FqbrZCINzvJJHm3kk IOaPgut+Kwzaftct7dokCd01R6UC7DH4TUsM9QqXgopyyquLnhi4qgaKf3gk DVUr79jqXsJAZb/89pWDMmBs4V+6WICB4zZfvVF+Odgas6vVrAuDay5hx5yL 5GCu8tsRaUkyiBcWp6dYy8P9e67a8QFkEPS4MtM9Lg83XbJY3GbIEJIrelrj kgLwxzz+9CCZC5qPPDpupaII6b2cnFxB3PDGtPtYTDXe3xOrJuKzeMA1e1C3 zE4JWv/8qdmizAdSoxoRP80aUGH7NstW2lXU4qVkLSncj5Tduu+tkq1CFuvX JS+9H0XDz5XBRKUZNSS+y8qV5oOzBgt5qwU5QezhFgOLV/zAETAqd2iBE0Sy 6i7ZsgqCy7tnZRX3SeBxhd1ngwUFzvTtnz8ligFbpYvPsbNCIKJta6eC++vx yS579XJhOGt0+0O1NgYPRUpjSWMi8Dd+sjFkLQa1FjkFoZpi4EzZuH+rMQZr Tu852OIrDj1rjW8UmmPwbUBB/ViOBKznLVKo3ok/TweevqQhSRgezVPtO4xB 5au9fd0S0iCWMKQcEIDBksw/dWNLGTj9tPvw1A0Merv7z8lFysKapEoXuRoM Wt4kYled5MD97+7VKfN4f8uD1f6/clDxa8utfRZk4P3TsE8oSx5e52rX15WS QXn+p8+kgQJUOnmZ9WzkAnl/oaUbnxVgOt6dNXglNyR4Tz7c6qcIu6JvnxZl 4wHfvrMxGEkJuKnPrB7u5AWBSdFrC5/voNI7rfzfJg3R6IOqsbyj7Yh+yk9t UvMu0kr52cDaNoRQ5PyTyJWvkUnw+dOp+ybR2+3ip7V2daDX5kGxO79Po/Z1 iFF7bhBp+XCz9jaSoDfSwN7mOiuMV7yZZ9XiglBzxXtZYuxQYVU1xhHDA8m/ wt3rHDnAIlA+JJSdH8YfS4rK+3FC74sbGmX6ArD0EcpYTUkw8OzInOMFQVh/ X0kyp5cEuvbZqbzPKTD2Zcb3tyr+Pga4vy2MCoGNZtW63Xg/rTlX++SQpgiM tnSaueH91Pv3ntY/Z1Fo3Zq5/ak+BvPGo695C8TAccDXPMgEg0PiaXoaI+Lw KT5Hf3gLBqeGzlqEiUlC4bnChn17MYh9nj2yy0kKvnltsvjgjkHw6i6hk7HS YD8Sn58RjsEvo0c156tk4NPCXvKLuxicdWj5veKPLHif2TR4oxWDptJEr75k OZDS8ztsL0CGm8LHPQKM5GFgYzY66IG/z7pTdqJd8iC1Ko6cj88Ve31TBVp8 FaA+zjbHPJgLFORdblhRFGFnH8OP5QA3OEquPfizUBH2HXokz3KWBzqG246F bFICC/cDaexjvKATxfVoIu4dMizuUbrXFIlK2d9uDr35Da0zr5K2lihH3UMM r4bUn8jDZFR4Se4TunHxoHBlAy9snr1sFTrFAZNcpwUjb/IDLSYpgNzHCTmd St3HuwSgt7L+R0YaCcJ/P9rHJ0MB4UX59W28GPBwnwyY3CUEKZVF7g34ebVK VqwrKk4YfJ9sTjPA++mImo2WxBsR6D+2+Wg7fl5prferPcYmBn1xTdzbjTBQ uunLHbBVHBrMJLNtzTB4O5G9UBMsATPB3e08Nvjz3fRc9fUzSeBIWXp42BkD q/ijW2pmpKD+4d+XNmcwEJM/qPpNXgZ+KVz2rEvE+/eZ72SqkyyATkjr30oM 1uZjbblb5eDaKpU9X6Yw6PTduevriBwcWtu2tt+IDInHI1fNXpYH5F5wyeku GeRsW5pXKytA8/2He4PUuPD1b2QY1ypAvkvU2qnvXNCnntW71VkRZHXU6vX7 uIGjsinUfVYRen0fH6Yo4P1Uz5ey95oSJE59vH2inw/KwxOFx82eo/iTDQc7 bLxRo0NNKiWsCw3k3LJ9trUYlXaTVcs+CsI27mhf5wUSyJVGRS9xCIHMbc44 Bfx5RqjkFzGCmpAs/1fhEeFkZCvpEO3uTYEjL59gaTIY+O8s/MzaeQ2Fvl84 8/mBOGKYnqv5INOG4pKDjkm0ZaMAr7qKE8ZDaJ1k5/vjDa/QA630B39fTqCM Ra5ZLc925NnpJamRNI2eZA+Hb/s6gJra9j5qLcDn0t4WjhsBrCBme8iwksQF kit9Zu+tZIebtZF5CYd4oAvtn8YsOeDIbu8v6DsfUH3ui3sf4YTc7toOEwUB +L4zclf3OhJMThueMHcXhDEPOWHNzyR4GpZ3c/c9CvgIsNhtVsEg4XyRbEGH ENws8RqTwPuXzHot0l1CBAI0e/7I4f2bNMe/wW+bKJwzKq23xvuXYbOQ0X9d DPK1lZIn8Xm3VaYz3aFdHDZXJ+jo4v37yt5mVIxNEtzbpx7Z2GFgq1AgZb5V ClZL5twKcMPgSmGM4Mtz0vD9jsjLr6EY9KstLOrnyYDwQfY9erfx/WFk9Vbs pyxgDBbbvU0YTHWJ07Nj5cA5Wr0xnZsMB7bVtrqtkYfKnaqa865kiJ0bZi9r kgfd9vSzod1kMP1s35dzXAEU2y9Pn/DjgvoQo/v1mCIcSt6k+WMHN+RE9Tmk 3VaEOFGVBHSEB+KvfAx1NVCCC3pZTSWNvPC8/fy7Kd03yF7p2MaKiDBUmR4h kWvXi1ZaCyrfNnqCVJ41O+ix/ESHxE5/WJn+EZ3/s7rJNIcXPMzTpj/0cMCX Siw0J4YfTojP/ORu5QSP2d2R9DcCUM96+mXWVRLE60V/+IXh/undxfEbw8/7 dWeCdJEQGM3UVmTj+y3mabmE/jlh4FEmRczh8+aGJ9L/FEpFYM/DgvhwvH+H 1nxp+jIlit+PHmo34/OmzMPQQat14nDifVBeMT5vGk5/OzTpIQEn5BQpG6wx 2FJ+/cP+fEnoe79mQP0gfh+Z8Qwq7ZeC/Rebnr49hff/HR5lHT4ZKPqtv632 KgZpRZWr7LbIAmo2TWR9isH3lM2GOiAHnG8VA4THcf9O62y72SsHNDsj613r yLD7Vn/C91B5yK7Vi/2WQYbMcIvwd5IKYMTbXMYrzwVD+XYneCsVYC3HUq1A JxdEXz47+95OEfw5ycYvG7lhp/KFIPFxRSDZ900f4OKFei/SI+NoJUgNF+HP quGDelkfU1rcU+TRlDdS2OWK2ieDvdYbfUHCewbzbKAIvaD0p2dWCoLM68uX 1KdJkNMdF2s6QwGpK2rbfuDz3rWMaq/hzEZU0XpOYnjoGjq0R/vPbkd8Honj q9eXxGDkseN6utl9JNheMy3ivwMNiv0RCb/fgV4IRm0cLM1FxVrpSfWNFPil 9sXCdjUGeetvpo+NvEfKKxdHr2ZeRv613YPKuhRIzU8K3E3Bzxs/h5npoBpU 9HtyoqH5NMqIDouoEhcC4e3Cjdvw97tlMFwoNJwC5yrsqKnyGIDwJxexznD0 9Hg/6FxdMPGP61Q7GNiKmprsVVy8s1Bm51MtmalB9ODACo41616hIQ41qzVn J9Ce4ArHvb/bENz5MZDmMY2qXcrYNsUPIAXOoOjGGyTg4rQ/K+XBCsW3Nbso c2SYvdJ8NGWeDXhDxy7abeeB3t0jOQIbOcCahc3SuYUP6DArxeLECaTRriJW MQHwf1u7olibBDN8ykqGzoIwoJvia9tKgvPJ9zJnsihQbd43ZKmMQc3bRRTS IASLAc6l//B5bt5yYWKCXwTunkj+8he/L0/6vX6lvkkULi/W7ZHE/WPqSyjn hxgxWHrTUV+A+0fs7bPWtA/icJyTY6ITvy+PCho/H1qQgOJbZRkf8fvy+vYi /WokBRJe++404/dlQY/DAid8pGGf8n17Ftw/OhSkxYRvyoDfYlYtIwvvH/VL 6jnfZOFGQ/nm5434vDfZoxsWhZ//Fv/Im8lkMDlG5zysLg/ONaHpnw6ToZ5H oZe1QR7eLVgeCPxMhvXkSst4FwXY4phmm+TJBTIleU/J7IrwpXTE5JQFN9RX l++j31SEXK7G/aEOPHCi5z3PPl0lEFLOppXX8MKKC6UtPuyvkc/TGEk/6RC0 4ftghEFpD7oVfMLMY89jtE3l5acfj0fQm/OVwqirAY1XXH3AmcALs61Kz7+0 cUBjQpv+2lB+6BFSunSugRMaWU84lj8TAO+WnJuXLpMgyeZU5MQ/QWhTF/7h yYn7q1VAcNs6IRimDWlfwfdXFSuHMc9JYRBSTTjbgfvH6oWI4/kFIsBeWPnU AfcP9CB23/XvoiDylL84CfcPKSOSzVp1cXB7JT3ghPsH40yIUKSLBIiLTt5p w++rPj4ht1RvSULjG1bL6wcwmMvzSVbvlIKjn95PsOH+UejyXbGLXQb275g3 fh2PQfzdns16JrJAkgrijy3DwCRhcMzfWA4mGkVUjUYx4Ci+KXLhixwkR6TT r+uSQa+C701PID5ke7iQtVPJ0JMW6igiqgAiOgbmblJc0NVV1jz/WAE47hXO bGjmgq+VgyzkXYoQmMUTq/SWG/z37znvO4y/D4Obn1ax8EIelc1E66IS5HEd afB9yAe23t/sGbplaPbi2YKpT4eQvWHv5/rkTqTe1xW+v+Eeeq3dYHu9RBAm z61yZUyR4BgtIX5olAKPgrsP5OH+8dl0NsDN9yMS2caJ1I4lomMnJcotd1Ig TezfnsPiGPzZaXh0Ni4fecZU7pd2MkfHjuwPE8I6kH/+7/rfJ3KQj9mtZM83 FMDyRXMer8Jg/FtrruezOiS4qUraQDUaBX17e0tiFQWUNn1qkxHAQH2twr+f mS/Q1rnDnMm9vujgrYhLTvxC0ETaKGSAv1/rf16NpwMoQNa336ssh8F2kYkL v81uIpMSbQUukiaa8byb/rAUn09MPk2o4/M5NLNoTI5Uosx1m66qOLqj/3IZ Ieg6QJ8VxD/P0cDc9KArBbyjnCVnpDA4wfUici7oIXpsot9brGyLxsVTrq3q pEBz/IBkD+5/bZli5zZ1+iGPFVfc7kd9ManQJR3KX92KVnLPh7k7ZKI18SU/ 5+sGUfOqopGY0ZeIZdo39f2uCfTBwbvYtrYNqXHefbtz3zSa3pjI7X58AFll 885siyXBvh12Ox1cWeHcliS1l+NkKIu+oUZisMGWg5kMA1MeqMgd1OVbzwHm nxv/TtbxgdPQ7yUze04w8j0m8kNQADw/9IklapBg7pZEmJ6jIAi8/D58qJkE 3XJFWZszKLBfRrqkRgmfLzwVmk68E4J/AYlrGLhfeY9qKKzhFgE1hcLj47hf SenIXCJtEIUdrqh+Be5Xk5nm1dQIMfD12q96Cferny6WBcbvxMFl4Ezafdyv lqbW5NbPSMDz61+543C/Kix+ULtgJAVeh70qg3G/stv2MeGFhzSYLbJ9vxaC nw8yJSpsKTLgEJtdtAf3qwFFpd6fXfh5W/ehgPYR748F6h56hBy843juKoWR ofgUSaFnlTwwvoe/NTlExucKZFX0Xh7Y9GJ3B7WT4bGi+++VhxTg7H1SRLE7 F9S9daouXKkI1COXzWpMueFr5+29t9IVobmphFFgywP2HFtsm7SVwHBibvBt JS/k7LS2f+RdiyTGd+qpoQso+DKlKvRQD7r+UPfUXH8p6u2uuFwTN4L+rKyJ 3h7YgJRTTKVGI3lBb/5mumMTB2z9YygYFMgPb99vLVF7zwksV2Zfp5YLQOKu pZ3TUSRI6XEbGF4UBLeq6lhpDgzK2s6FKOsIQXKVSkgovv9a7ml++OUuDHK6 FxPe4n6VnVGR8fOuCHxSnfHZjPuVp8cPCZ8+UVgbWJ/vj/uVxL8PbKtVxMHy Hf+Otbhf2RjYeDcdkADXN0oWt3G/ithx5hJPqiSU92RetsT9yi3UT9GtVQoO ry8uy/HD36fprrtaK2SgTe7Qtc24X0VnnbRVMJSF8WjeJ81P8P0fq/tG3FAO rl+Vkbf+iQFvRbDBRIcczNyN7DfQIUPOG5VvDufkwfjmJRPHZDIE5d56Wy2k ANFR1mLiElxgN3M00vORArAb58x0fuSCS81pHIXWirAh/Ut+z0tuiPY3OSf9 XRG4HbbEpizyQNJIeER+qBLsmJPXdC/gg3RhUddT7E9QQ8BlifdjB1B6Lw+P 0OZOZNVnmhorcg+9q375KK5QELgs5aWsJ0lQd/7a1XU/KHA3cZfWBdyvzosk LhXg58pchm25xoME5PaXj2K6jQLJ755meolhcCmrIHBeNxfpFSyIXDgFqIB0 pfzA03a0ta25XeLDXdT8MTOluoYCYlpS5xxxv4p/fFL9gVIdPud+yOiev4RC vJ4vCilSQH9r1OE/fPj50O1A9vCtRrKDJSVVgT6Iqnop6gGXECzx29Vr4O93 V9wR9ZOnKJAebLDFRRaDw48/FP6LS0ESHLXhPlJKaO98TsaKYgpYWqiGPsPv I5EB6w1OPqtA99t6dldyHUdmu2Kv0H9RgNqn/OsP/vsdeGOYZe9Mgdoi/UAx 3K8OHh2Tn8osRjcDrK0DbHehHTmp18+1UuBaEm9JBu5XIt0CGL95LFoTWk8v b+ZG7Meuxl2fokBYm/yJ9/jn+a2st54euYfEmnhS+Eu3IL7KjBuS9RSQkd4w xoH//M0NUQW/g7JR/puOPUcb9VDYhpgYm5VCoF5l4SSG/36Xr95I/PyVApUC +yPF8M8j+LgzvwljzZ4BROQpjxFP1UzJKDNPydUK1jqWRmPmKSXidoy6VQxm niJbsc5nw1oGM0/hjGPnMOukMfMUx6wlf7H1E8w8JUz6hdH8sWFmnuKZLZlz J79/OU+BhOMDUV8QkafkDhiNkjc0ISJPadm8SWDU7iUi8hSZms9zFRyZiMhT 5Mt8nG67lFGJPEWIZV0qTfY9lchTxNc67d1yp51K5CnvGpOThh36qESeQuQD RJ5CaCJPITSRpxCayFMITeQphCbyFEITeQqhiTyF0ESeQmgiTyE0kacQmshT CE3kKYQm8hRCE3kKoYk8hdAvpo1/zzcua28N3a7mo8pMvXHStc0BU2HqzUpi O3juLOtVoZcDXhmoMrXaUUOqcteyPvrCLeKJ7yqmpma3udKFVzP1TMG/ee2n y/qIchGWvkONqelq1/VLacu6Iud3/2y0OlM7miuCsYwGU0t6RVVq1SxrYbLn ox37NJn6/8+D/vM+/5sHPVOe/aZY84OZB/2SbUsMs5lk5kF+L6XueSTRmXlQ YLjZvQeODGYeZBX+9y65hI70jz7bKPd4Eb1qfSlkdXcK/aKllATe/ofePW7V Ljwwioi8p223YwPLUBOVyHuwmY8snz52UYm8h6iPyHsI3WV8vTWvaLl+Iv+o 1Olku5YwxMw/JnWLfntljzPzD1p/2Q57GToz//CXM2+JsWIw8w/7OyTHOVYG cv0QGmQQsYBivG3errKnoRHzoaf6DkuI/w85zb1pDBH5Bs+puXuqth+pRL5h qt7kyaPRSSXyDddC3eynXf1UIt8g6v11J8T0fNhy/QTvtxcUP8VdN8Lk/SuK yBObv00xeb+PwpzAqSE6YjRkSrWIMtC+tg1Jh20ZSDeUe/45/zzK+DFkdGQH HRF8X/PwSJ1IaQ+V4PvEes/b8lxb25fXJ3g3t/yVwH7fQSbv3mX41VGnYIzJ u7X9VmZbD9KYvJtya7vLPUMGk3dz5+fftpdioMDgQcna8V9I3NVITjWDhvq8 yRuEyv6iso9spE0R44jg2SmVwvLcRh+oBM/utWi+o9HdQSV49vXnruk2Ev1U gmcT9V7qmF044rlcP8F3yVJRq8VeDzP57j+r+ncqClNMvhs8r3/M8gUduVx4 YWcQTkfu6jWZUfsYKDx/Sui09xwyZ8zXJUXQEcFzgz0ZvO4mX6kEzyXW20aS lqquWV6f3cRb2k1/GD3a5f77sAMdQe/fdyv20VDXXWPTE/sZSGmubOfA6lm0 S5A1JPQLHbFr5/d9Z1v+vEdXzr5Y83sMHd5RVp1JZqCLUiGDng/wfblK5Igp vj8H7Fd/YX88j5oNz8i1CtKR5u01D36OLq9P8M6y1CH9mIEBJu8Mf36aTNEY Y/LOivjAJY6XNCbvPNy9U81Qh8Hkncklk9FW+HnH0Zk0Rrr9C/X3au/Ie07D +0l6aeWRvyi6PIyq0TuOCJ7Z4ZTrtKRRTyV4ZujHq3OSGzqoBM988OZCimRV H5XgmUS91rSH7Z2Hl+sn+N6A3As2GdNhJt8LXPdJo61iksn3OFz2JegU0VG6 nTXD3QDvg44VORIODKRm3H/XRnoOWVadL/+URkcEz1Pzm9e5FtFNJXgesZ6g Que8Tvny+juFdmCfbv1ATWlXlXqM6SigPM51LTcNrRpA5MXdDNQQk/+tunMG 2XVFej6bpCOCZ227LX53zGiA+ufw3sIUlzH082n7cPQ8HVXN8IZmuTDQp1W/ 4xvxn788LuHWf3ge6fM/0JRcQ0czVWPRB/uW1x+qIfff9PyO+NS++rey0FHj R0djvYlJ9PrglnRxUwaSenT572n9GRSeeajqGD+Dyb+CH2+7dfF8P1UtV6uS 7SMd9YUEp83YMVAXZSkylTqH/j2X2lJ0Aq/n+FWdFZ+GUSJm1vLDn45IHN7q n27TEJtWZDE4MZg8jKjnWFlqy/vr46hrIOn6E2kG2m4+ZWH0i4GsaLnuCDHQ sagzzadnl+sneNll20ShnvQBRPAyySUYYJ0cZfKy4t6gZP0HNCYvi17czbtC k8HkZV1614LMtPDnHeHVqh74C3W/DJBNq6chR15V50XDv4iuBhkKXBOI4GHe Wl7nz+a9pxI8rInFX0V3qp1K8LANVuTkFZf7qAQPI+rVvRBvdt1puX6CD1nf dWDIrRhm8qHKwl3f1CImmXxoa8rx3LzbdFS+KRlY8T4sv39HZQjff0tsjh7V M7Noq8wGTa8cOiJ40IrZc7V5qt1UggcR680Vlx0df7i8/pmQDSHhu36gvmqF SglNOlq1uehoxscpZLPCdPKlNQNl75HLV384g/aaWA7aL9ARwUPalfNuN5MH qPIfN8ttExlDGhPf//ydoKOOvr2N6zcy0PWlDIHUPQx0sPy6to3hPHL7vWUt 1YSOOi3fz4l1L6+PaSzu3Sn3Hclan+QSYNAQR97o56N3JtH4BavgfvxzaOdZ 3wzwzKB3CmzFziKMZX6yvjPD3aqfapHoz5mZT0e5drJSL/bi+7PHfwdHyhzS LaiwtjmH78uW4Pwn4cPotmbHMSU3OlJilJ1zC6KhOlYVHfIBBpOnEPXEykVv uWA5jmTEcgtWCzGQ2xqDG60tDOTMffBHjTm+D4X2IG3a/9p/6s9Zf7z9hS7I l5X/KKIhlp0DgyHbf6JXGpaBz5/Q0V5ft6/9m+fQ5r2VSPcqHTnVbxbJ0KGh FbUbVXRx/yf+v4wAT4wu78EBasfcsbVDxWMoN/xNC2UFA2WS3ulwRDNQjHnj t1obBtoyLKDP6TyDNkpUv/XC/frGn6xnOyRHUNj3ko33IuloXFylZ907GkL2 Q+pncf/fZHXPSaRvHMnvazUMVMLPm8WUI1WLy/UT/OZ06XFWzrMDiOA3wzKq 1n8aR5n8pvDSBRfruzQmv5Ek27J8V2Mw+c3f2SNzCPdz7W4Hy41uv5CvKlXQ u5mG0luL+PyV/yLlo7Ixt+QnEMFnNonuwtYeeU8l+IyvhLtJdV07leAz4bE7 b8z49lEJPkPUm2N24TzNYbl+gldEuqq63+n7weQV9t+vre9wn2TyihParb0N GXT02qBq2OYfDaWJTg9vwefHEXcRm9N9+PzYdHPk2T06IviEp74xt85CF5Xg E8R6bmdybm4tXl6ftG6tkZP6DzRi43mxUpmOzHWmH68tmEKD/GZ9udtx/634 enkgYwbto+Vn5i/REXE/l3Ubz37N6Kc+Cd/YrUQbRY2c3lHrf9LRUMf5M5H4 cz3jPt7yB++fLZI7KRzK82gFPdlAwIKOrHgrNP07l9e/2U8XUFscQqp9Fe0l ozSkcE1X5V/QJAqJ2+bzxhj342/UgrSFafRzqF3VSZzBvM9bn5fJcNLtp9pG pReP4nN1VM3JHgV8P6aa6ulUh88hM0jhsQihI79of5d4p2F0jyqrU3uIjnRH vsiVudNQobc/wxvvH+J+T9Qj0xHCuk9+HNXoauq58jGQv8r+DXI1DOQuUZUT ZslAz7s2+cdOLNd/N6zg7PzjX0g7lBFm8YSGrrN3ZTqo/ESulp/Y5/F5HjqU alJ15pAFSeJ3KF7niRr36mEZGrrRYiImgp83BA9gd269+2v3ANX9/sGp6ugx ZHlrxwHrP3R0f2m0c/cZBhqvLvzojp+HutsbxV9YzaBDX+PhBA8DrSpN8Ved HUYxZxc4twTT0SKfVUQ4Xod87dqJbrx/2v5li9Iqx1H3mWsHbBUYaKbmUrro r+X63bXCnCXifyFzJ12N17U0VOHzXoinawTlB32T8MyjM/lCwqDznV6FAWrd qK7qON7Hj65v26mHv9/XAVXuNkVzKK30xLa/vnQk8iexRfIqDf1IbT+Zi5+P CycS4u56jaOgv1IyU2IMZN0mf9LanIa8H29Ya437f4Lg3cuV6QwUou8nz7oD 97Nwu907T80gSfux7b6cuB8mPbq9gWMCua0XErmjwkD8a+9pHPj7v+bH/zMP /l8/+u+/CgG/wH90C9XmSVNFeAZxX+WH/wcnbeW7 "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{600, 37, 35, 419, 420, 615, 563, 523, 495, 475, 463, 421, 616, 564, 524, 496, 476, 464, 625, 573, 533, 505, 485, 422, 617, 565, 525, 497, 639, 587, 547, 477, 631, 579, 662, 539, 652}}]]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJwV0d0v11EcB/DfzyrVVeGiLNYPsZoeuCq5qIbRlGVolVrp4Qo/FzKZmodl xehhPSJ6+GeEuirhqnBRKVeSC1mvc/Ha+7zPZ9/vzs6J1cUrGxMikUiUdzyz yJKZvLV+w2tGGeEVH5llia0+zucGw/oHZvhNlb17bOEJeVxnyCxBplNCGwv2 9sgXnKKTVXs1spcUCmli0v46qdYnaGE6nE1e4AEZnOQOv8w2y0NcY1DfJyvp IRrOznkGSOM5xdxiPtyJLKeDv3qyPEqcCf2ifEQOL6mgm39mQ/IsfezkODf5 YhaTZdxmUU+UB7ka/hPuXF7iMXvD2TnD3fBonKOfXRTRypzvVqi2vk8STykg PPa4Wa18SDan6WLN/g55jGam9N2ylHZ+6pvkAerCW+nf+MN2/QgNvNc/84ON +n6uhDvVv7LMNv0w9Yzpn/jOBj2Xy/wHjmNN/g== "]]]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwl1He41gMcBfDb3nvvbkZ7771tUplJCJEQIsoIFUlp27uismcI2VtGhRRl Z2ZWMvI5jz8+93vOeW/P7b6/97mFo8cPO7NIQUHBfF9yB/nypzvHfcyd4fZm AZP0S93OzOMXfbY7gEHyZLct38sz3b48IE93e7BdbsoJck3el69lqtyN3/Ma l8gd2SY/QlEG67vcx/NzuEzvwq95jQvldvwgP0gzRuu1WCtfl04x9rH95a7M v0unOSfaa7NOvj6d4uxr+9t9govSaUEJ9vPaP+6TXJxOS0pSitKUoSzl2N/3 /+s+ld8znVaU5wCv7XZXMSWd1lTgwDwcns4zSKcNJ9nqsF6+IZ2KHJTnyTN5 r9Jpy8m2unwg35hOJQ62FeVZ+fJ02jHGVo8P5ZvSqcwhtmKszvNLz3ujt+dH +SHac4pen4/km5kmd+ePvJbfU+7Ez/Istz+Pyle6vdgpV2GIXJzn5KvcPkzL /9XtWuT/z+9v+jXuQBYxJM/E7cBcftKvdvuxkIf1K9ye7JA7cKrcgA3yLelU 5VBbCZ7P5zmdjoy1NeRj+dZ0qjHUVpIX8jPS6cRptkZslG9LpzrDbKV4Mb97 Op0ZZ2vMJvn2dGow3Faal+QZ6XThdFshn8h3pFOTw2xleDnvXzpdOcPWhE/l O9OpxeG2srwiz0ynG/ljsQeb5cXp1OYIWzlezXucTnfG2/Zki7wknTocaSvP a3nu6fTgLNtefCYvTacuR9kq8Lo8O52enG3bm8/lu9Kpx9G2iryRz0Q6vTjH 1pQv5LvTqc8IWyXelOek05sJtmZ8KS9LpwHH2Crzljw3nT6ca2vOV/LydBoy 0laFt+V56fTlPFsLvpZXpNOIY21VWSPPT6cfE20t+Ua+J53GjLJV4x15QTr9 Od/Wiq3yvekUcpytOu/KC9MZwAW21nwr35dOE4631eA9eVE6A5lka8N38v35 TPhj/R8Ztq4X "]]}, Annotation[#, "Charting`Private`Tag$46824#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV0ftPzXEAx+FvTchlc2vLdZIYEyU2oi0qc800lyJGhDYVm9xGUmO5X0aF ikj/ic2dH5REW25bibC5bjLP+eHZ+/v6fM45O2cnJq84qygsCIK7VHnYHB4E 0+hDp37OPXbpOQzhu+6gmi06ngi6dDP3KdRzGcoP/YYa8vR0+vJRH7aLGU+L 3mtTieavLreZTOICuTxwXmSTucIwTrKGn+7ecsBzOmM4Sw4Bx1nFNaZwiU3U c9X7ttoZ9KNbH7FLiOGFLrELGMlp1nGdXncVdmXoc5jMRTby0F2xncdwfuky u5yJvNMHbQbVjOUc66kljBNkMTX03b1+m02gP590qV3KBM6zgTpa3e2zCxnF P/2I3Z7nM4JTrOW382N2BTXE8d7ZIbuIcYSHfq+zfJvIZSKpZDWf3b3kMbVs dzaTAfToNp5QRz03uEkDt4j1N922jezwniQG8kW/4il32OlsFoP4ql/zjD06 hSj+6A80UaBnM5hv+qhdRizter9No4rRnCGb/8FZX5w= "]], LineBox[{511, 644, 592, 552, 465, 626, 574, 534, 506, 486, 423, 618, 566, 526, 498, 478, 466, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 619, 567, 527, 499, 479, 467, 627, 575, 535, 507, 487, 635, 583, 543, 515, 647, 595, 555, 659, 607, 671, 455}]}, Annotation[#, "Charting`Private`Tag$46824#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{673, 674, 672}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->NCache[{None, {Pi}}, {None, {3.141592653589793}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotRange->{{0., 14.999999693877552`}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}], GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxd3Hk4VV/YN/BT5kLmeZ7HklSU1lqGiIQUUUKKkESEkA6lKEQpMiVUmoRK JTpCZSpCEsocmY95SJ69f++zvNf1+Kfre5Gz9173vu+1z/mUtPMpK5fVFApl iZFCIf+c+VVVIXc1AVAorZH268GO+e9bb45/b4CnX0x+1PdPg+UGD7K/ZvZA BkX2zOd576FYx5vfzmojUGfmwv6Sm02Qz9PxEYvBJBTa++kqu2E3vL7R6K25 9Ry0fd7F9vjFMPyRpFFK51qCf0LufDiQMQmvZp+vWy28Cl0/pCf5fvc8FEzo ibqRxoB83XLPD/n+g5f3m4CGGSbkfOoodezQKuSrc9exKpwVMUn73jO1ZUCG YwtBXj1rEGNnvJ5MPyMK0917RESbA90p3D2ao86MtuXefhFKW4cKAmdv9puz IM85OrWSgxuxDSWrGcqyonlVrl/q1jzI1WDekLOSFek+fpJx6xYvevn6w45m ETZE5zF1sinjQyG5N0teSLGh3mgnm9MsAqhz/In5GyKbjAWY9G0RRNLL74+1 EHn4KKvvi/NCSDnO6imjNBsykhNcfblMGIlxHl21kcg8nxVi88ZE0NizwFYb IotFPrPcskUMnYvvAEFETlLV4eI9Lo6axSqe3iRytYje5sl4CbRTpP3eYyJv EyuL29AsiZSyR++/IzInQ6bfkXApNLRL+3otkSXCJHXtFKSRz7U1Ri1EZpO3 L7T6JI06t+xl7SLy+h3CzwIOy6Cql+0m/UQ+/Yun3JQiixzmzXyHiTw2GW1t kiSLmsw5BceJbLzhY7KJuhxi/mdcN0Hkd5PbF2e/yCHLtfGs00T2UtNs/eoi jw76V92aIfKO0WNNdmwKSPRewI9ZIu+UE9rDkamAgnrm38wRWYl6JbBsqyI6 ZZjtOE9kFRcdmnyrIvJ68r2PzC7v3C6+8FFCAWoa+gtEpmU0HaPzK6Mzx2Wi yTyVszy74ZUyKtx25j2Zj8o/Zkveo4KeRZn+JjNd5caWgnEVBL36GBaJ/Dp7 sWs6UhU50UyEyHzQUBZtl1BDhhK2imQWPXn5zfpSNeQl6L6JzPxrPPP3HFBH /Peebydz+smi6eVldZSpFqy/+N96Dv6kfy+Dlb9epi5mBcPSDQZjVZw/oZLG s7ylywXQOz5vZ/LxASgp/ib7mEYt/Kr+KzZ1eByeh+ZSGdztsPFLg6Zq7TSM l1z7/bxFP7TnMx8Rfc6Goi6Es/grMaJufgWvCg521OjsfH0ingk5nJm+UhvM iYTYL2g6f2RGFcfvjJT7c6FKl+2Cq0pZkCZP2IbgfG70w0+u+FkoK0o+4QC7 p3lQAVfQ9+i/rEjAMZjqr8aHAgdjd3wg6nPQwvpQ7zF+VO12/nE+kQXAcJ3q HQG0fo1Q50ciJyujX2ZtgujEoNT4CJETVU6cmrwuipI49fe7E+ffaueXl/1F DN1zfJYRSeSNsiUyF/6Ko7qhDTvuEjk8ZdVRbi1J9PlLZtFLIt+KDEsv3iKF btwTY/lIZIEyJ9vDTVIoJHm2voHIfI075r/5S6OTHwMm28n7Ib9I04VHBsGb fId7iVzPIaDTlSuDrLMonINE1vhjwW5qJotSt3UeGyVySrxyYFW3LNL1fnCF Tr4+96oaqVA59FRpjjJFvh7Xq8FjIvJIseT8T7JebWJ2f7/5Sh6drTpiSNan XtS7uOfWCkhBP3MvWZ9brL529w8roJ3ncnnIenw40SU6FamIGKL6HpC5kvur 9Ii8EmqXOSZI1tv1Z+lTDeVKSO4ptweZW+U8cuNcldHzp99yyKx2/BvFZbUK en1n0zcyqyhJSincUUGtqvozZG46bszepKuKyn80cZL1FeW3Lj6pURWFVlpL kbnI9ttfrVNqyJzark7mpLdnN79bq47K8n5uJXPr9huN9x+rowLWQ5DMHcXm p6a+F8AEp5hqq/SDsP3CDv3Dk9/hUsWtuZcXc2DyoOr0ZqbfEMRzevnc+Qgd xbev/hI+BtfWrbu3WrMF+onf9rp9eQqeEZ/d71fcCwfuB9yfIPqgsryve3oZ A7oRHud3O3AtWu688jYIMKFxW1n/yR8cKCjxRiB/CDPylpzJ0lMl6tPP00Mt igVZROi03HXkRuKX9vTK7GNF1btfcUbe40FxvWNBXb2sSJkpIe5SFy9asy9F xIKoN6/8usNpvPwoxflyElmf51wUeC32CSBdO72zNCKfZm/nFY4SRNkZraPd RG5arPy3V08UNXok73Iizn9xPJ56MlwMnXgrnhJG5GOKwcI1+eJouupySgqR FQ5Jm63ukUD3i/4255H9YLfPpkEuKXSe9+/pMnI9ncNcHR9Lob6qnbV1RBZ+ lJucaC6NGhzX5LeS/fvE1am2YWnUpRla2k3k8/cE/dQuyaCcxJuvB4j89Wj+ cVMFWbT1XpTfCJE/6Le5RpXIor9XJL6T/fRYRo/mS2s5xNLz+eQkkQfD5k/n TskhE8l3/mR9dre/a3keK48Ob/45TvZT2tv4gksbFFC8eI4gWZ/g7VRi0CcF 1HGiv5/MbjpbTA85KaImqnQEWZ9nt0d4s1GUUC5LzDKZ/xZeKC5PVkJJoYM2 ZL3VOt9h0wPKSPcJcwqZuSI9QqrblZG1eH4NmT8q9PE5+augU563RsnsbHJS ulxAFSWuimMj6ysjOkLHOFcVjWv4ipH5inmIxGsjNWTNW6zyX39NoAbM9Kkh xaevNpN5LvO8flCYOtoZmLyDzGKDahf/GNRCc0o5twlvHGw4KWcuyt8Fo4Ph nYJtRdBIe/Otf1WDcO5nm5CVxldYG//pzj3xdWhb08FDWewsSChv11ajMi7k s+/JDudJFiRwp/LSfgYeVN0o+/rtPVZ04iqTt64RL4rhPZyZx8mGGN84e7sG 8KEneYc43xL1cny01Va1kB8175l0Jed5nkBBNOuQALpPZ9KrI/Kvtq6zUhGS SHSNzP4i4ngbPsSzXbOXQsfsKK5VRE6WRqaHlqQQWgWzvpHz92/tAb470ujJ hZp1HUSWn/3jPbpVBnkdeNXRR2Rpf75/N7/LIOGDRbuHiBznNZpncloWIXB0 5xiRfToDothY5dDW04Ga5HzNCJc4Gn1fDmX/uRNF9i/9dD9nUSSPBG2dd5D1 UL2j5VtApzwKafgUT/avcpshr85gBdRy7NFlsh42/HlKbGcU0TqFiG3k+g8+ jhmJzldEA5X8lWQWGBBrrN+thHhlrqmT66uU80ate1gJ2T+sCCZz/2+tfZ2x yqi99M5LMu8yQhHLiioocjf7LzLHKtupDn9SQfsabZfIbHRJerbXWRUlCb3l Jdf3tP3tgT9zqqgqdFaWzIPO69vyE9VQzMI7DTI3d5+ejNiojvYcb9Mhc3HT /WON39TR5qp5RGbuUcHr898zId9RFuv8Ndvg4NOiofsu3+CmwdYId5MsuD7x Ty1DUy+ky382e8FbAUFokF/SgVFIEc6z0TrUDCsMQ6It+yahZfLTjCchPXC9 NzvDry+s6PVDnmSmWAY0/PrDLMP6tchshsHRjJcJvTYtGmKO4kDsFmmZx6yZ kVGw9HkqExfiEJUfC/BkQb/e3VR7uYUb+bYolr/dzoq63x6dOXiOB72wby0Q +M6KNG0zkjiLedFPX0dGSwliPnWzd8wP8qFDs05FBUQ9aZwtf+GkLoDYHypr F5P1tfRw/bKjIAK9TYk/iezbG2AUJiSKCn8Wph0izj+6OGNgr70Ykt3za/Yc kUOVW/lORYujLRV7c5PI+2lbfmlQkQRafGy5K5fIAXYNi6v+SiKvWxIJpeS8 LIg/2XlLCo2fEdnyhcip/MdPBG6TRgbeFdQfZL1W+loLtkojMDfdT+4HbXyS uBt8ZJCL2XlGsn/JSDvfNOWVRcmTwjPkfvCgqJbDn0eyyLjhRSDZv5r7m1zP 68mhiWgGKbJ/NRWJbG3skkNvJtMQ2b9yLgb+0A+SR2b2uRVkvf7bH2zgLaaA lo+IzZP1Wnbq0kT5CwXk+932K1mvlfZOXZxmiqjfsfg0WZ9Wlh2JgiOKqEd2 fILMedv8pXQvKSHOh+/N/utPq7ZtFVZRRte3vr5B5nChzduWqpSRqtrjj2Tm U9i1bumICtLQiBj8b95uozwpYlBFKUOfmMn6epJUGpOeoopWlRwX+a9eqyye ndVUQ/I9PMr/zVvKxSSeRjWUlXFTi8yXmqfnj3qqo00ST3TJvPHy2vyRmE9Q yaIm9clMBCxg+riTmtoB1Q9vq9i4qRC29U6crE36A5f9jhu2a9XBmxcc+N/U ciKOMrm/qweZ0ehaP56IVC6UaDXVLdXKgrJb5NqOt3Kj44trOyqvs6LwxfwD 6yR4Ud/iFboNMxviYD8VOLqXD2meWLxDzj8lSaHWyzH86EH7s2Kyvo6qWKwX +SCAMq7NTVWT/eytz2iSvSSCCd5cr4nj1XrA1nTPRAr1dLGXfCJyi4/l3vYB KfT7uQ5qInL88Qil6SvSSGRoB/MvIkvtb/iqLC+DAu9HS5P9a07vZsr2chnk zvT2Gbn/6lS988vEURZxzrN/J/dfzG/qqe7TskhibLGD3H9xV69LtLkuh9Y+ jzUi+5fa95sKSF0eCY8acpL1ENcX38xcK49+TDWcIOth9XjTcpWbAmpakjpJ 1kNBGoxMX1ZA389NKZDrb1r36iJKU0SoZs9rMo/99V/4pa2ERF2fyJDr+1P1 SdzBFiXkXyboS+bOiDrq6yBl9N7i4DMyFzWvMdDkV0Hffj7/QeZ2pWL5qOcq 6JdPxzyZOQJehLVbqCJD+33c5PqGujXp6v1WRRevr5chc8PPVZ6+F9TQKRnr DWTeauHPlymhjnZ7dWmTuTA8nn/YoBj6HOmoNrzqBb/YlSbxhrVCHU/FHlfv XFjQtkbx5WceJJ5axORMZ0VSBZcj/zHzoS88zEs1xHo9oV5vR7r8qMNwvSG5 36neG+Wz46wASrF1Yysn8kWFB48nQuqhsr5+coHOLbhf1C7S3YuXuCTw8BV+ NrTgYuP2K5UPLdwt9H1F/Pz9krTvX37xo0u7NqQWEtnf8tF3hpbr0Gn6rodK iTCc0D9bWiPRBNNvTyv3DWfAwJOVrz2298KNLrmNIj/L4NP1yU+X3o/ASidg aOT/DXq2nBRVSyCe0682Snp3dMP6Jpv8xhxWpP6xLMbMlwEJ7XfSecO6Fs2/ Prpss8SIUssj7sc5caAXVSJOOXrM6KiV1w/Ytw61ZbpvrjnMgu61lTcDGW5k 1OtRdXcDKxqd1PEwdOdBtgeOXH5Tx4pehd1PtXrIixK4Us++FyPqJeixZE4z H7ph4pH+nDifNQzXI9xFBJDx7ZFXRUROmOHSPb1bEJ0P9ZhvJXKZrcWgEKMo KusWgXbE+uyXyREzNBFDGmuFJEKIfPVRFM/7s+JoX/tZjUQid6nML2y5L4HC uG/NPyHvj22mH4X+SCJXG5s7NLLeWoXpGdFS6GPvb5fPRD68u7zRTUManZos 6iWfr6Nn+ple1kujmltrzpL9VP+7bWf2cRn0fjNDDvl8XX1+25NqNqKfWuq9 JPtp9uVOu9t3ZZHmW9NdZD+NvfqZemyrHDokyzRHzn+TA6q3XVrkEP/mZjmy n161/Wa3xlseZdRPPiXvn3Tp8bV9PMT+r+fkH/L+YTStu+P2WAFFfCv/QN4/ gV7TTwb0FNH+v0bu5P3y7mD04/QeReSf6DtM5ishp6zmgpXQpR2XjMn619/L Ys4kpYxSD81cI/NbJ5Hbt0qV0dIegQoyF987G11zQAWZS50c+G/+F5j4bFlQ QV/XHWQi679A4tdW0+uqKFnskPB/8/xb0KcxzQ/w2XHqM83sMPgm+aLIPetf MISnRFPY6gVUePvVbhPlDzy92Oz29OlnGPRXuV4/mxMV7XCvsGphRj/esFGz o7jQuVztZ2qfWdCJaasI+gdu5L3g9a4zkhXFboqsmWPjRbdLXnalryL265vP hGhCPjSVNra7jFj/qFeFIlvO8iNZlzlJsj/qvhBflikQQFS4vaeSyLcfv1Gy 3iWJ/pxq6i8kjrcvcafORiSF4s++6SGfT2dvtzSl/pJCt8UVrjSS8yitK66P Ko3GM5hDf5LXP9wo/JOoDLJTES8ln097H1h7cL6RQRdNkxzJ/hh5JWC6yloW XbT3TSf7o6X8uRDhYVlkP/f0Jdkfq0+y5m+PlEOqn/nlyP541/d+ZIOsPLos KjRDrrfvm1GbL+/lUU+TqS25vpnFJpXAUQGZlVAdyfWdCojcbDCjgAoTBsTI 9VzoNLMUuaGIopfU88hszyLH6bpBCTEp8IuT6/X65L0ygS9K6JxohheZD39L Tcz2VkYXmKSekHlSYvxuzVoVxNYa+J3MF3JGMg88VEERR/jnyOw9tmRka6SK alYJcpHre3GU/nu4XRXtlTGUJnO1pLf+eMwrmLZ01X92lQv8Nhp6UnvbD7i+ b+fRPccew3e8Xcnpb3jQmEJs9e4hVpTdFhOtP8WLlDIurCb3QxzCG8XHFPlR T1ulNdn/stsO6Bu5CqBvtotb3xP5ekrJyf70L1D/ac+qzYw3oNO+DX+tDvKi fcKnnMx5iOeva/aeMlf40OjQIVny/ThmG12hc9X8qPgBh89LIg88P6hNN3gC 23W92N5k7IE9Qn8Fwp80w7Vr9/Nqfb0Hc9cnJ1R/4UUhOiWt5yXZUJ2JV/ru ZT60TzuLk6yf+9qpyUMDVdD1lhUPU+0V6F/e1iOvyYseirX9LFhDrHe3m9+j Y3xI8RNlawnx85WXzt7+cZcf7RVIPE/2q/rTdlOTIaXwZOzHJYcFP5gSGXax SJgPCR65G0DW4+6ByZTrlvzICIQeIc9/V084HzWcF31QkF90FiL6t67lseRn fKjRQXOJPJ+d8su3pCaJ89t/9zfZ7xF/nbNQSzj0Olv26uWteeAf06LiENwI Zf9qM7in3YHpLa/WS4z1wJvt3tkZO8tgL7OKqUbACIyPv6fjx/QNoszf3bdP TMIG1lX64fHdUIYlJPLLTVaUrni8qMmFAeXeVW/lnVmDph+8v244wYg4qUMX rM040FBUAF/+VmZkTmE0dmxYhxyi/iInGxbEOtj6mEGIG7mfanENVmZFU+vk 5XQcedCTps8pIzWsKOjWw/SpO7xIhsXO8rsoGyr9uADP1/KhF5ZeCuTz2Kzx /MgIlwByUj9IIfv76OmKMlU9QST74uvTH+T7Vzzbi3vnRRBvQBSHLVF/2t8e bymBYihhu8qGYGny+fwIt4e3ONqu8vbULXK/KiMuxJ8qgbZ/s7Mk+3uU6iXV 7A5J1C6UKEv293+jPzXDLkuhnXXn/5LvnwJXOssRVWnEsOP1TbK/V3PI/GKo lUan+QYQ2d+117wxjnWWQQdey58l+7vEs/uv1jDJovPNHglkf68uKTxAT5VF FwY+biD7u8fPKo4DmnLIIOhdD9nfL97bVJ3bKIesfcoFyPs9pIxBZNRDHjGX eWaS/X30soq3JKcCutUU3EXe/3KvfGeK7isglsg+Gnn/W87Srn/TVUTG+4OP kff7VIfz5u5fiujITeU/ZA4U9zzR7K+EPON/GZL3L2X+pN2iiDLKzuGMJXML Y8yunrfKyNz8UxmZ41x4agqsVNBtpcP9ZF51rqDBm6kCLlFGawNszkPdvp6L Wwt+Qj2JJ+nqHs/hboX3db+fD8Cdj3xgzUgtHH597SlLHCeqPJ8f7VzHjL7E NW3RonIhtcLCmrSPLOgLg8fBwrfcyJOJxfzrBVaUYOEbMbLMg4y1y2elllnR ftPA0KbNfKhl/Odbcr9TxMC8neMUP8oPj+sk7wfl+YvHH+QIIOboqo5PRI7N +rlzE5BEL2Tq9pL9G8T1DPlvl0LPOpvOkP2bOTdV4NwPKaQ3PaFO9u9Nr9d9 +BksjY5XrNEh+/fP29SDAoIyaMGhNpbs362tL7/OPpdBTAGLW8j+3f6mh7Jm ryxSUawKI/u3/6F9QT79ssiiTS+D7N/3aYxg/QU5dLAqhYfs3+3vc9+ISsqj uLAff8j1PCYrLlhQLI/Erzibk+s3IXNR7exBBXTM+rYtuX78fWrRN+kKaLf9 V0FyvRrcBbewxCqic12cT8h8PXoh8aGKEhrohiLketzjzGybqlRC8xWHPMks do4hK/mEMnLuCHn03/s35c57hVhU0K64A81ktnG71AWyVZDYqNosmfd7ddhO aL6E5+pd54+OOkFbnV/fq2+1wDLj777zow9hxYba/Tee8aCm+zac0gOsyHU8 LrZ3kOhvm6On4onrDVyoOz6K86P9azu9yfWIk6I9qrYXQFVDW2xKifxdfzrQ zecz9Cz16th2IR66nhIpNLbkRec2JqZf5SL2F9mOXhVU4v7uN+Mm7+ctmVe1 95fyIy25in7yfv9rqeMyHfMAJmm6ruLxN4SuRw+F8bE1w0rba+d+Xc6G3gZp tzw/8KIdm3/0ThLP15RbJe9kpvnQXtb7h8n+PNzReM/zbSVk/JK3qdkyEoZ0 fEwTUeJFSyeexcSxEs8Psyf8zQ7xoQtbTY6+I35+rqHyTV4iP2LzPCtM9mdV LZnlP+nv4J6mLUUvVp2GDmkXL9lz8SHe0CIN8nkqRMug2N2IHwVFiO0hz998 +eQXv0BexCRquZFBkOgHe/e56t7nQ59nfPP/22/7mL+aHeBHw7m3d5D92Uxg 5NyiQSqscxZ+8UxKHU55ZiXnFfCiwTMTZxLE2ZDTevvl+k4+JP5pvTx5PLYn ji84XOBHW3tPuZPnh75S1EYH3kC/sAnjDVfdIeW/Lz7U3piyVEt8v72266+g Jj9yzFkwIo/v4FZDfYdjvOhILzV/jpfYjwXZeVBv8KG2WD3D18T3Pda+i5gJ yYPh76Q0qnbuh8PCideVWniRrbPDo0li/qUvSYT6sfGjTA7mz+TvE0nNDn57 kB/ZGbCHkfmF4h7nudd8KPbxIxtyHjWlC53VazkNM0ZPeY1E/QCvNVmdHig3 Qhpj0aDG5XSoEfvsz2xlDzykH+zXsvAeUiZ9kqr2jsD5Us6dZz43QRWWrI+W ByYh3VPG4LVHNzTN4JzaHc2KmLd7zHM7MqCzuxJU3g+vQYGbwo+/HGZEuxzS J7bqc6Dd4qnizzSZkeH3L0ujleuQsade5j0rFrTNx1XgNw83Uu5L6jmiwIpm 0kTCNh3kQS0lqvaUalbUJvX4zs4UXnT8XeMdO2L+tHjK1Ht84kPZ/YLeZD16 DarJaLALoHPL5ffJ/YTYRolLrLqCyFlzlpWcP//GNO5VT4mgT20afgeI++tR 7tPy+W1i6O4ljVfk53fWuz/HvTshjnaV/OYk50+9xDMFxkQJxKlvsEh+ftct K/frT6sk4hZ16iM/v2Oep+2jX5RCQCvwEzl/cn1ZZX4qSaOplpmT5PzxEIam j6ukURV4LEfOn+ey7ournWTQkcLYI+T8qfxoX/JotSxi/dF7gZw/7S13bdKS ZZGLto8sOX9smXftr98gh7RB1A9y/tytfeW876sc4t2au47sV2dmRRYc3eSR e056Kjl/BN4aZxavJZ4vGEJ+kv3rxcgH6WPZCmifM72Y7F/F2+8xmW1TRNRt 3M5kv7omY75woV0RvUoP6yfz6MnBgJ1+Sohxa6TBf8/jZtKO/kLKyEZEOIbM 2Zbmtvle5ZCd99DaA2fOwdArvEVUp5/w4S3/QIe5Avir7fWV0pgB+Dh3p1Nl bC2UT9QXG4zgROsys4/1VjMjk786PCHBXKjfiEN1bzkLolydrkgq5Ea9lY2f 9MNYUeJPt+7+BR6U2lj78McSK3rZdPa8/EY+tComMKiCWL+Gh+o1c+78aPTh 6wqynjNSXqf8yRJAiQP+juR8ibxzar+MjiTinDrMTM4Xj2jND8I6Uujn7huA nC+cr0O3jjRLoQyX2GXy86vsDwoddmelkdeO/QLkfAm5l/axhE8GebgsnSHn i/WUS4RnvgyK+BElQ86XS19vMz8yl0WJV+19yfkS6Q/OivfJEv0g6CY5XxIG wi8+oMqh05vq2Mj5Mj+gaVUqJo+k2fJ6yPU6bKs1K1skj7bqupiQ6yNic9dB wFYBLZZJWpPrc1/0/CswRjwvHNXjJ9cD5P7NOXdVEc2fW3xIZvW6PvvdSkpI v7FB6L954ig1cPSjEtI4vfUEmZP5BY/5Mr2AeX9uW2dJOcDkXxwcfDtboNge C0d/7YfwU8n7/JhHPOhf37n2C79ZUWXQ9Wubf/OiRJ3qNF/i+tmszfmcL8SP ABS/QF5f5vKJX+y2AuiqvFQ/+f5VkED8v5zWWhjo51gjUxUH3ZbW8erv5kUt jY5yd9exoaz1R07xh/ChTMnhGHJemO96Xgnf8hPzyOQ+eX9eupMTPKt5Dz7u PjLZdgnBHNarhYdffYN+L8Oqd/Vnwa+f0xNLSnnRyGrN0WxiXgjp9plzjvOh jnqjK2Q/jX1+SvWpXCV0C3byuid5GZ4/WbzAJ8uLXgnNZPuzsKEnYScD0mz4 0GLrtWVyXnCdHTdJvc6PDJ///kP+fe82uzUnfErgFtlV2dKp3pCmeOny07V8 6BKXHx/5fk5Cq4eZtR4/crugaUye/96Yo6qnfHnRA0uTPhMB4vmzbf/xmLt8 iP9VPRc5H2IF/Y17evgRv+vIEDk/jjyvebQckwhvrtGa5FGVgzaz2SmrcnnR RXn/LnViXgQ2XbhW3MaHuuXmHcl54c197YppKD/6nuVvQB5fRKD21lNvX8PA 17StNVuPQ4O90Vfpc7xIVWHkCVnfU6fZYhjU+ZEz/08z8vgOf9C5Y+vIi2bs ziQrEPNCgunQia+xfMjffi6fnBcOLkPSY+m5UAy25/z02gv3ZCfdONvIi3J7 mGqKiXlRmGXE6cTIj4yd1IbJ36epX7v2gTU/YlLpPUVm/gLzoyYv+FD42+05 5LwQaONm4zKMhtTD94JKfrHDzMO/Hkn78aNEjn//yJ9ncr0Wc2OMFxlw7BR6 RGQFmu3TVhlivnV9/O/56PTqavPJgYewofd5cHnjLrjuTcpN0WpetHOutVOX OJ6BsZvrty7wIT8DXy3yehyLFVUL3c2Pklx6/nu+TNW9nLMYkgHjx3pMznZt gmG6UVEWq/kQX1TIIDlPKxSKPNW28qPDz4T+ez/uyrWb8d/beVGhxA8fObL+ DsyORHLyo4GDivnk91fPhAzVOfKjiuyRBDJjP9Nx47Twxn3dEPsZq4+HNbs+ Dq74mYTtPRx6N8ZX/IwE4xuXGKGJFT/zPYx3UV52YsXPZP244hfcOL7iZxbT UhmkdEdW/ExpVCv7J5/+FT/Dv2Zuae5T14qfORFpGXT1+Q+I/QzP/YWCMZ96 iP2Mywir7rG09xD7GWv+rL1Xte9A7Gfah18vJvx9QcN+Ju8pl7+5bBUN+xlG hqC+oqffaNjPWGZox1x17aRhP+Pm+1nh1aHDEPsZprM7eLhLrCD2M6HvG4dv 3dsFsZ+JPdMl67oHQuxntB023+tZowWxn2F9W3B9wUcFYj+TtCimlNYiBbGf CfzTUhgoLgCxn2F9WalYtJMDYj+T5L5WKO/Faoj9DLV61TLMnAPYz2jQaOEP rMYA9jNCDLI9cry9APuZen5PD8mIVoD9DKVxs/6OwXqA/QyXes3yZd2PAPsZ J+rpzp7AEoD9TN76+BaZXwUA+xlqY+8nna4cgP1M6bpbZfSndwD2M9QGbufG 5wkA+xlKBDASV70KsJ/J8DbnHxMJA9jPlPr4O+03DgDYzzi1nSst5/cG2M+g rihTljWuAPsZauWffZcL7QH2M2jbl+gDty0B9jMUFmMrfR0jgP0MJe95GoOh HsB+hurZ2nExazvAfoYirzdhu1ETYD9D/cf53q1dDmA/oxYQ4Xq94feKn/HJ Fzqi6jC64me6zoge/HSBvuJntgdx6sWYTqz4GWZm7W30O3S4xeXtDqnnC/DA OWfr9rwxODee+Cz47jLU3qMdZmU/CLGPCbFSb0fT9TTsY55nBdWsL2ylYR/z 8Msr6XWczhD7GCPBzh8+fgcg9jHDr/yWPY+ZQ+xj/vw03jeXZQCFK64ViUsL I1O3bUWq7DrwyZxEpaidCLoieL401FgDYj/zhLJhj5OoPMR+RgP9eytsJgqx n/l7vFfuwRI3xH4m0O959FlXFoj9DFpv1HPz0D+A/UzOJoOvW7InAfYz9X63 Qzbz/gHYz4z3RcV8suwE2M90rosw3bz+G8B+xpKL+931kzUA+5nOZ3UC/CJl APsZSqZo3eqbrwD2M6VMN7j87+UC7GcyMkS8Zn9kAexn0C0qxSL7NsB+htJi 6nGnIg5gP9PpMLxAuxIBsJ9Bz3d9XvwbDLCfoZ7yqS/Y7Quwn6G+ElvsqPAA 2M9QHZ8V32V3BtjPUHUfhiZVWgPsZyhSVcq57aYA+xlKC4MlRckAYD9DUbCn vDWAAPsZasawWPviFoD9DKXb5VqVlSrAfmZ/7E3J1x97V/zMHNN7s+03hlf8 zIkP/FRGYfqKn9noMU2d0J1Y8TOClQebN/2lw2M11JCtF+dhmLP714Xd43DA sPfVFrt/8Peu6bDg70MQ+xgRkW1KoeAzDfuY6EDOfedNW2jYx3AtwBMPB7po 2Mc8uh4q8WbHQYh9TNDjS3p9HZYQ+5jhrn/iJylGcDVfrYB7vRBCl3j2K1J0 4VlOUZevHCLonaT2Y3kuTYj9DPsklXFHhiLEfqY+a9Xp7H0SEPsZ+yUdTc8J Xoj9zK5A/gK66hqI/Qz7RrpByQ8KxH7G8uUWZaHlaYD9TCnTQwFr5mGA/YxU PO+DHqFugP2M9192lsDn3wH2MxpdfKf4/L8A7GdKL9fms3JVAOxnnPo8G43t iwD2MyjijtA7Sj7Afoaq8YXvmc59gP0MdVMYV0J4KsB+hpobeOLz3esA+xkK UJUU04oE2M+U6oj6+LWFAuxnqOvyXQ+onAHYz5Tehb/dHE8C7GeoWZBVdNUx gP0M9cOt8AluO4D9DPX8CQX36j0A+xlq0JhE6gVDgP0M1XFaUvQUAtjPUMdX 06tCdAD2M5QvZYnrbm0A2M/0xF9K0eodWPEzPfFBXuINYyt+pgc6vm1spcOJ 2nSxBsEJKBDOsdrdaAJqUtlni7lmodmn0KNjiA5Zl6f/sXYvwoHQHBW+o6MQ e5pWVuHIKLVGGvY0QiNdklLtP2nY08jtUHXIMHaC2NNkwqc5/TP7IfY0jCcL Xp9z2A3LjbJzqOpCqF169Q27SD2o4bfPocFHGPFsYO6pP74FdnTLqLpmi6BI zZ8XfhxQhwftODoTekXRC6CQYdMmA9+U2XS2iYgjsZlr5+riheA/iWXV7cYS iE9EwEtqGxfEXmdOgCbBMswIsdehflVUvWa7CLDX8V70VBa5QgfY69SzH6dX nfoNsNfpvLXL6rPHT4C9TuftC+1uIw0Aex3vGYFjygWVAHsdqdmuBxzWpQB7 HfR4lvmd0EuAvU4pg3RFTepjgL2OU4Mos8jbuwB7nYzc6zrP1yYC7HUou750 mWyIBdjrUNZSxy6pXwDY65RStnOznjsLsNehMmluD0r3AdjnlIavNvqj5ASw z6Hs2LH0Z9QKYJ9Dod28YmC7C2CfQ3FoOhwnqQ+wz6HuqZPaeX0HwD6H2tb8 m/+SFsA+h4oSH/S+VATY5zQNW9rUEPtY7HNk19wecHs/tOJzOJsaxFKaxld8 Dq9xIOOy6sSKzwm+NfzxNMcEDA7tES0fnoNrvtHr42+Ow06vNbp8L5egi0gZ HAgahtjfyCTOxnib1dCwv1n3+aN8XW0zDfubgsyCk5VbumjY3yzGPOmPfH8I Yn8jEFppv6NyL8T+JvaMdrqLiTGc3T5YwZkjhPKe3GxdSt4BnYRvb1IbEEYv 1hSp0pk3QexzhB5OMs/8U4LY55hl1atxzUpC7HMoDnLmTRR+iH1O5Br7VYVP 10LsczKYSh0p71dB7HOSeG72qhjPAuxz0GoZkfcZIwD7HFYHiwS3dT0A+xxv 8x+fpHh+AOxz4uYi6ubY6wH2ORnf9sgJSn4A2OcgDzWKecdbgH0Ol/bzYIU/ +QD7HOrJz3aNFx4A7HOoSSwHf3KkA+xz0PVCqaGsGwD7HLS1aLLuXhTAPgfN +XOc1qUC7HOoPt3cuhr+APscikPK0bZ3XgD7HMp0WtaT1S4A+xzqLqPbYq0H AfY51LPa+X/dLQD2OdRNd7UmrXYC7HOo1ILY498RwD6H0hNeO566DWCfU3qs pTh8RgNgn1NpN37zyFj/is/Zz+396ZvA2IrPqWXjoRkX0KHzuXfWW8PpcA3/ +1PvjSdg+IMxPj+vGcgcdrFK4TwdShbYpieYLkJ3gzfXX/0dhdjrXE3oMHVi bKBhr3N47aW1Y4fbadjrDFNHNGfljkDsdQZNB4xpajYQex3xO/xc+7+bwfXa p8tdGYWQ+dFDzKGx+lAu1Yc90EQYlTVbHLuetxV+HMmYLw0VQU00q/T3A+vh nF6xYsVbUWQ/uySAJmWhaazLrtIpMbS/QvtGWZ8wFJJ2UOyQlkCpSm3f1gpw Q+yBOp8Ea3hJMUPsgSy3OcvP1/0F2APFaX2ZuXxtAmAP5KRff1HhdT/AHojS G68Qt/gLYA8Ud/hN1lOmJoA9UOfv+xEPmKsB9kBcecKbXm18D7AHQqEKYYrm hQB7ICr8Emol+BRgD9RZLvfhdVkmwB6I8iKmNtkiCWAPhN6+YKmtvwawB5Ja XazxyuoiwB4I6azxEXweBLAHQt9mPr86dRpg/0O9O/L5otARgP1Pqf/6zxfN 9gPsfyic+loxMSYA+x/qppsS9cn6APsfqsQTJ0NvALD/odz1fhdashnsZhUX Kykl+uOFzI9FJ5UB9kDCe5fCj5X1rXigh2Mli7JhI5AJeIm7bemHB/0sdk9Y 0SH6tfRp1YFxWDl2skbGbALKzby07FaehnaKhbnBVXS4R0ji52PRBRh1EBzf yjm+4on2JH3ld0/8QWPa8KCzj5EPBZ6PZLzHfRSyCrA/f+CniKh2Yle+frsE MhRUTRZ5iPnxPPQVOnwOBCqGi5RfIeZDtKdIotMBkGLbeqtGmTh/kf1I1sgM JFBN+8ZKibzm4ctP1QbA/RTb1bhbxPlxxY54H1EH+VcD3mksDsGSD16stkt0 eEHsfI/n0wnYCd7G8hL7325b5R9Mz2fhXApLeBgjcX4qMxoW7cT1DmVBNgV7 wfmbsZ4jZ4jf77ugsV/XGLhaOiRcX6uGSl82t1Jy9YD6XY2nfwaJ69sgIfBn vQLAfmnmBKh6TOlZ8UsxFCHZcJOhFb/UPpKdWFgwvuKX9px8Ss2UmVjxS15/ ar/cJvZBzC0JQ6x356CAhtAnEdo4sb8X/7f66BK00Ws1vvl9GGKfZH8pXnMa VNOwT3Kn/aYlazbTsE9ylpyriG3opGGfxJ9T3fXuqj3EPqn/g10Hh54VxD7p wrmqU8zTxnDCYj6l64YQEroQ80rVB8BGiZZku2/CSCtqX8j2y5sg9ksZDWaz rS+VIfZL23z4G1PdpCD2S7oT4d/2xvBD7JfyOkMO//Rnh9gvSQW6XoU6qyH2 SxpXrE/vnJgF2C9RMj4qFPiPAuyXKJJRfxOu9QDslzLSwh6uqvoBsF+i/vB9 rxBUD7Bfqr8d+WHu8QeA/ZJT5z5t3YfFAPslSvKcD7NzAcB+CdXtM2PTyAHY L1GTvB5sbksH2C9ldPfdF1NJANgvUbrH3SmuVwD2S1KZNQEvH1IB9kvIiG3s 8ht/gP1S6WWd+RDfUwD7pVKHzwK3IlwA9kuUz3c+T3w4BLBfoio7b+OVtQTY L1HGQl20yneC35feBBxUIuqxYp0OE4ceGCxkephRRdz/xv1v1stuB+bjed9a jhD3QyA9XPL6RoC9E3OEoKWma/+Kd0p79L2u8t3oindae6Ui4WgKHSZbm0+4 b6XDQta+zcu7JqDK9q4sC/EZ6Jt++FxwLB0+WrvGq/XfArxvO+Cwb98YxP6p +swOl9/UrzTsn86ndGRdj2yjYf+UrL1v86qkIxD7JzVD1jazLzYQ+6fGbia1 XSl7YK/Gj/ofY4LI+OX7SX1BAyiRR+0x3SyMWiU3W0wd0oY6kx1OoydEEOP5 on6ZNxvgrsIbNYceiKIkNc8QnQg5yDPlGVLQJYZ0C3s33rglAuUyOeQ3rpNA 2X3xEXaR3BD7KiH7NWwb3jND7KtyMht+atxYAthXRfoEogHBSYB9FeWJXb7+ 0QGAfVW9tPGjlpoOgH0Vl/M577bEJoB9lQZroOj7V9UA+yrKBVdNt+z3APsq p5uzbFZjhQD7qs6iIJeetqcA+6rOp8Wc1mZZAPuqzgvfA7/OJgHsq6ijX46u sY4D2FdlWH6hHh6+CLCvooicLwiyDgbYVyGW8EqD9tMAe6rS3xci+a4fAdhT UbMPHhtgtgbYU1EEP/K0bTQF2FOVOhU/Lf6lD4xSTmjtP0vsb45nMzG2AeDG NCenwU/U24j5g55DWwCPTMvsxkKiP27tvNZ0UAVgf6VeFHPfyaRvxV95v8mo ymIYgZZ8e9jq0n7Debk6US2i7gILY45psY9Dm9o08deGE7A26kFHScsUPH9i 9bfHXXTY4lP3hF43D58JGezPVR1f8VvStS1LXTMtNOy38hsmXhRs6aa9Vrwb GuahiEqTKXnR4ZcB+8YW+3A2Yj9ovm8pQCgUSD54nhhPJe6/djc+/S224F+9 rL2xFDFfo38a9jLuAcnMbtdSXhHZu2vYTc4QaERVuDJFE+dHEzXeHrAe/D1i 8yjReQiesx03/jBMh0VTnNQ7zhPw2SnOrGPE8+yVYRG3riOzkG3QomSHNB32 P1TMFW9QQWgAOdqYWYFujpaN7p7E9Ra7YqT0yRh4NgcDsFoNIbsYndd9emCq aCjSoZN4vYCeq9zDCgD7sAd/HsnJbhiGvaVrulI9+6ClaureLXPj8Mvng9s3 jYxC1tSdO4u1JqBY/pUlvy1TcH34z4E8xgk4Lqdpdk57Hk6qpmzVPTUOBTKP h6vu5kZtPKOxima1tOYLMeE+8Txoo9Sae0Px32nYnz2Ce7xP3OiixXHyhbts HIQHlfxTnT7Rocq99W8YP9OhwaHAhk7ifFt5/0Uk0WYgvSFBK/8oHV4cPYJ2 1RDH/3f8+ehVJfCpYlXF6Kc26HM2JT5gagSyMnup1t0dh2e3SacdJvYXIc4V 75mDp+EThiM6ic/psOydJ4fr8QWY8zfRZeT3GLyfpfW8posHibmMvD+u1krD Xk2Ju3bT5svO0PVlUkPVjWH49eWPfU/ZJ6CZ4ZjRtrkJOLDA7MW8YQJu+7DV VIVxDl4b9zl8Z3Acul4+89Vvmji+Cb5bHaHyAHu1YPGTbU6PuyH2amfWWozG sw2teDV+WUUlm6zxFa+mR+XJyROfWPFqhgcv7t9E5NqLJxtVg+cgq8/ChcSq cXiQU9FxQWcJssyclm9hJc7/fz0acwz8OlJQRcMe7Vv751wr+jca9mhjZQy3 otI6adijaem2sVAm7SH2aGOdSR8ehFpB7NE01avv5prtgmM/qCw1UULI26Hr x8VfAEbfDTAfrxFGHpZF0ZmVmyD2ai1JoX8QrwrEXu2YQOsekCEFsVcb59h2 fLSJH2KvpvH1QMn1n+wQe7Xa7kW9OP/VEHu1uLXZutkmcwB7tTw9/7E/PaMA e7W48LvyY/U9AHu10pCcAFeFVoC9mvdZ/U+N+fUAe7W8MrW06skPAHs1p3rl jXZcJQB7tdKjmzIe3ykA2Kt16hjdXr6cA7BXo+gEq/Ya3AHYq5W2eWhd8koA 2KtRaZsGxz9dAdirScnv1WjsogLs1ZBTWkvrsj/AXg1dlT/DW3cKYK+G2ncc SP3kArBXo/xTdH60wx6Ueo3u85sm+q1p/27Fw5bgZdcwe0YM0U9e7aunLu0E GS6jbaayRD8dEju/T0kPrL5ulN9fQeRTL7XWHdsONM/FGtywJ+pTKUTMrGsj wP4tfb/O/Vfi/Sv+zWcwzSfh2uiKf6vgWeTSuUbMcb1biIGHDjfvu7W2xGQC /mM8eKJkahqyRc3o0W/RoffrbuullgW4baeO0+awMYg93IMDb7+K6X6lYQ+X tMuvXE6ojYY9XGtJ28n7DUcg9nCxctc0q6UOQOzhBGrzgjWX90D4NPrAjT5B tE00ok/8sAEU28ZqoaUqjOIYTx72fa4NJ86c54twFkFTjg/1n3FrQG/v82mK aaKo00J9+4c6OThz3/uWaosYsk8RHioZF4GPnPtkW5kkkDb7kOCdMm6IvZ1G 7VQJ4mWB2NtRr6o8fTuzBLC3S9pR0nHt8CTA3i6PqaI/vWgAYG8nJH1YdLVo J8DeblzvvEJYdxPA3i7jXrwTD08NwN7Oe/seuY5f7wH2dlTX56yJeq8A9nZo uecGG8oF2Nuh5l+3s65nAeztnNwYFS7tuQ2wt5PyBg/PRMcB7O06Y51bZrZF AOztSt+yzCTkBAPs7RDjl9wUXl+AfR1iU1kN6o4A7OuovF9Z212tQebjTOVb ekS9VQox+V4yBZfyKcX6LURWA08LVhsASlBGkqEfsX9cRedLXAcBtVNbPYCL mOebY/8+e7wFzOS+dBnOI/LeX/VB31QA9nqCFMdkY7a+Fa+3SmJxqun9MDxz Xvd8+F5inm+YNz6pRIdKOx+7pHweg6WGVSzdaAJm7JN6oJo3BcUc0iSzR+kw XSInge/RPBxndRkK2D6+4v28NlU4bsxsoWHvF+I58zieq5sWl3fimJcLcb9G 5oe8ab0M9Atzf39gJPY7Cl+n/gaGgglXs+bAYOL+W2ihOWTZAo2YShAhSsxX 1Zi9n133gLQq/2P0AuL8Xz7YY7HPEPAJZDbRLhH3V+rXe1eZNgDpzzuldgsM wUWX8ZCFHjps7rT5or1jAk7emKg+QMw3h8IbGyx0ZmHfmn1ahRrEvHcvHWb8 TLwea/uv66lWgK86hO/BceL1skxEhjl3gVO3r/AmLKkipG4ZY79aH7QYV80I tRGvt3Y/5aSFIsCe8PQ9hl/h80OQTW3BxlKqD9ambTD/8HscMt8f/O6SOQrB nQxGbw1ifgcxfOjmIK5fgK9xH+sELPy6RiuDZx72b5e6sjp8HAblhR4YR9xo 79Z9hv8+19Da7wTqul7mQZlhMRxTGt9p2Cvu0/+UxebaRSs8yzAn1PcHTmgp b11bQodG8f4s6Q/oMDfg51tD4wmY+9N/D3PiDPwdWmGH/OnQLRjmrv5I1EOx ZvzRRSVguu7I+jC5NkjdUBG0pngEyk28POsWQhx3Xecvuz0T0FJtR5Sf1TQs 72eqQe/oMPLEzulIvQV4eu/I9nDKOHxCkzxZ+p0HeTwpP7q/5wcN+8b57rr3 sxXOMFoqctc542FYuF3bRolpArppbL3Z2DABl8djbx3fPAE5r+VxJ7XNQkUP yT9bZsehKd8+uGGcOL6IO6k634h5rlrM8PvjHARnp0ZGHo7Dge/meRa+PMjv NLtkik8zLdSdObveng7p7/f6WxPPOzY+bu1dO2fg5z97l2Iu0aF99U6BlI3j cCpy89kA4vuL9baSIou8KCKrWcV7bzetecZVqzd3CKZwdB7TnibqmfXTRubI Cajv/2+EzWAC7urn3sLiOAW/X7h47htlAhbcsHzqas2N7ovf+Dj3sZbG+ea3 x4kJOhw6kCqWSNQXs2nEO5WBGbj3pN7d4b10OCys8HPzp3Fo5+K/zmv3BPzL nSBvELMAL76lVEp/GYMZl03mm4d4kKjbat2np1tpeqYP7QU6h2Fm/bybMO8E DF9IPFq0QFyP+SGnQVV5gD1k5Z/3J+6f74bYQ0KL22XXBwZXPGRh7/Zrzinj Kx4ShAa7y4tOrHhIHatDl6SlJuCGNjvjHW5zcOjon70BX8ZhcuPjdf7yS7CD UShlm8wIxN6Rf23XdPyJKhr2jm3OzXpf677RsHcs+WkuYBreScPe0Tf+W5ia 4mGIvaPZ/msWZWlWEHtHZs4XYQuBu+BoumEJ7aIQkjiXq1zBD+EfZ+Oc7Z+E kRPH1L0HfzZB7CHz8v1mTuurQOwhORnO9FsXS0HsIb2jmjP45/kh9pBS78x+ B3BzQOwhDb9kiF26uRpiD5njX61afWYOYA85vuz4QlB0DGAP2fL7musovQdg D6nhXCCeZN0KsIekngn5Ov65HmAPKeUc/nWt0EeAPWTnro+e3oYlAHvIuL9b amvfFQDsIakJxzp9X+QA7CEpsRzP3wXeAdhDUs50buSKTwDYQ6J6vjjH+SsA e8jO67FWev+oAHtIiqrD0dOyAQB7yFL1vQkbl06B3zZGGVFvlBHl2zbuDwMu IOiDg4eCJTFfkiIbps7ag5ZatJN3kuh/7uHuf4MswRYDv1nTq0R//THUoClq BJaaWDnLpdRQaVRno8QWPRC77Lr5ahkxb7qjtGYubAfZBueCxu2I+uQT5dzK pgmwvzykHK0XPPd7xV+uXRcToxgwuuIvjRUM11hE0WHF1qJ+i+VxmGYSPCNj Suzz3QUs/DqnYeT8ixbHFDps5Kyr4iT2zPPaHnfrksYg9ph33f4l04W+0rDH PK69+U/Ar1Ya9pjXE1Zp6I8fgdhj+qiM+QWaHoDYY6rvOXrq3kZz6Hnit4h3 pyAqER2b8aAaQJHlGkZlBWHUvEyVy+nQhhZbLbzqD4ugbHHnLKqaBry458wl jiRRVPwCJntPy0E36mlZt0YxpPW50n+nhCgc1d+btX6VBNLKU3ywppMbYu+5 K1Nl9pUuC8TeE6UrJf9T+gdWvCdlg2Y5dRJg75kXPZlc9nsAYO/pdoqz9Mvm ToC9pze/oJYO6zeAvaeU4/0XT2ANwN4zwzSS2/nve4C9J3VLKE3xxCuAvWdn ONPjW6dzAfaenezh6WqFWQB7T2rfx75PgbcB9p4U19mE0zlxAHtPqnfa0ZfO EQB7T+r+lvPpDcEAe8/SR6n02A2+QIJf7OE7RmJ/k3P8wsDIEYAqG6gFd4n9 dN668rBEa/CWbVpkMyTqLUGVYp9vClh5I++PfCPfv71ls57fABz+U1Rd7EPs p12nMl8qQ8BubpcvwknUW/u0f1HjFuB2JjvVJJfI7iwMX3hVAfalFmkK4RYD vSu+tCXy5lDdo2HIullrm73qb3g1Fpz7LEWHhhsnn2vljMFDHkNpI4B43n/d fqU7ZQrq2fHP2RLzYNWZBFaFxHlYHfx5+q7B+IpPVfB12/TGv4WGfaqAw0h9 898u2t8py++9zoqodDs7qyFLJPg1d/vx8dXEfm+juvnCw1DQ/jHpzHAgcT3k TVyDWm2ByZCIhpwwcb799YXHkvYACdV/5ql5xPVodWnedcIQXGqPWyt+kdhv DNzeHLlnA3gRvqNNbnwQStdc7jrdQYe9zUFnIlQmYB/Y9cqemD+7RC15meVn oaq32PkibTrMrmKPDqwmrvfNXfnBH6yAulIdk5EL8XqOXMoum3aB8QXuf2CR eL2A2H89XPrAlPO1un8L8XqmL6qNwhUB9q+2A9rqH38OwdQuOrfKQi/0sLJ+ ++nnOJS5rqmwHDIK2S80memun4CtHbSc2/OTUC91b6fU2gkopDT7IH95Di5H 3qjPu0rsF7auKWvYzo36uO1p2TE1tA51r9tO4TyoPJDpr/FyMw372o6DA7b3 zLtouzYsFky8+wOL3XdHvXpFh/svJ+cOJtAhuyovL5XY3yTpb9pYEj4DeWNi /mQH02Gr3vo+x3Li+MtaUzdpKYPoF3FHqxtaoWZmNrU/fQRqDvyQeuk+DtPH i2Xaif3Ntvh5T1UwDe3z8+Zqyulw8P1G9+T1C/B4zQ0HY5Zx+GwPf3VRA9Ff 6lXti0p+0LDHHb6cxa3Q6wwlms8zHJAehiE3I36YrJqA/gqHdKVKJyDgawYv tCfg3KTntPmnWVhxwCL1w9I4LG7V848eIer1WH/Gg1UKICssJ2D2+Rx0/MPD 4PFiHA65GHKYevGgoZcFR49aNdOiHVV2i5vSIQqSef2A2L+gZrnSpI0z8HHN 60bfK3ToUepe0i8xDi+K7gxIJtYfe9yKQ222IibdNPcnDmMlkUPQ63lbJBud Dp/8G2yxOjMBW1R0C/xJr2H2Rfid6RQMThMXer16AvaKtAuaWHKjE2+C3Rai amliz9bwvCbqrE4pKvk18fPjuXqZXY0z8K6PUO3Lg3S4sM70Yjhx3KXRKVK9 xP7G0Y16e3/QAkxsZ7vn0DoGs/ihzdffPIjd6Xpqj0UrrWk5Q3D8zTBcEpd9 YsI1AadKLyULzhHXw+/kidn98sB9fZijSOwcHOOWftxWMQ5zdp++XShHh7oM mW8OEc+/Agm5mWEDLfDB7bPjKd3DEHvemK6wN62y3bTKQU3FYYsJGJDi4XyQ OF7tFCunvUV0+LfRJHEdUS8VgUXuFo9noNsRB70OTzoU+BvfIHqNqOP5YsNW swk47xEXk3VyGM53d/6bJPbnfSZ2+6wDeVDihpx1kbebaZ7sT+ZUDs5ApRC/ oqpwOjRvkj5lbjgOH7oYB1kQ8yuOJ+vKm+QJeEgmJzACEs8b4dZWlr5TUChk ai3bMh1S2T/oXzzIjb6Vu22UY/hMo5SXlUsQ+2Ijg96IEOJ4b799kL8xYwH+ i7Hv21w2BtPm96W2j/Mgu+Ksnx8SWmlcWg/VDi8R9S3m4FzEIA/+7+dz/3d/ i/89D6NkQ4QDaKAxzMLx5H4ORPnfr/////H9vy/893HGvx9n7C1x/h9ff5DV "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{1097, 1275, 1273, 578, 579, 1116, 974, 849, 746, 1217, 1075, 950, 1243, 1101, 1265, 664, 622, 1157, 1015, 890, 787, 705, 580, 1117, 975, 850, 1235, 1093, 1260, 747, 1218, 1076, 951, 665, 1197, 1055, 930, 827, 1228, 1086, 961, 1248, 1106, 1268, 623, 1158, 1016, 891, 788, 706, 581, 1118, 976, 851, 748, 1219, 1077, 952, 666, 1198, 1056, 1254, 931, 1239}}]]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJwV0TdPlWEYBuDPslo3RUyY1MVCQpEioIgGEBCiKG4sCrYFLJP1D4CoC7bJ xmJBo4CQCNIEjFGjxhIDSDGKgpLA5PUOV577ft7v/U7OOXHlR4uPzI2iaA79 JCiz86Nohiw5kww2kU4ah7nMGEXzoqiPfZ5P1dtYqp9kmvP2h+ymzJ18pc0+ 3ewlRb7BSrmBS55t1OPDc4zq2eZrCu0HzZdmWbjrrEPeLL9iq9zAGvkxrc4L zc802Y+Zybxgif7T3MZbTuj/OCcfdK9VTpN72ChfJ1a+y0Xnv818PvLQ2Ybw eYw4K9B72Rvu6u1yljxAtjxh5vEhvE8fMVfziGeenzQL+MRT56NmEh0s1nPM NxyXh8y/5lmzMvwf5pfwHrvx8J/QHb63/svczjuu6SvMO9S590BfH+7xXd+h 97An3NVLzG88t/thZtLPFj3XfB/eJa8yG2lx54meKLezSD7GFGf0CudJ8lVi 9NtcsLuvrwv3Gdbz9W5Kw2+gN7NQr2aS0/YH7FrkFLmLRPkKw/JyblHrmXt2 a+VmhvQ8vYvd4Y7exAK9ij+cst9vlyDXs0y/SY3dILl2neyy+w+t9HUl "]], PolygonBox[CompressedData[" 1:eJwV1WV0lnUcx+FnQWOhlIA6UilFfcM5IijnALbSvZ5JN2yjuztGs41QGAIq U1+ptICju0QBpVQMYAOv/4uL3d/Ps8PZi9/uxSX1at0zOhKJRJHvn5diIpHC 2EikiDQf/O1rWy6w3WfNfS3gNc8baeD5m/C57/3Wbux5By96zqKS51xm+PxV ey217S18rZW1+3GTTC1VO88L9iIqajlM1/Ipo/XlBhl6inaO5+2FVNCymaZt pbTWh+uk68laK8951A8/A2e1RvYCyturmKq9Yq+hlr2Zr7RSdm+uMUxL0lp6 3kA9O58z2nP2fB6zVzJFa2avpqa9iS+1knYvrjJUS9RaeF5PXXsrp7Vn7Xk8 aq9gstbUzqWG/TlfaCXsnvzOEC1BO0VDey7ltOVM0rZQXOvBbwzW47WJbKaY 9glXGOSz7tpJGthzeERbxgRtE7Hax1xmoN5NO0F9ezYPa0sZr71s51Dd3hh+ fi3G/ohLDNC6asepZ8/iIW0J47QmdjZxdl74P7Ro+0N+pb/WRTtGXXsmD2qL GavlEaV9wC/hBvXO2lGesWfwgJbFGG1D+CXR3udiuEG9k3aEp+3plNUWMVpb z33S9J/DDeod7cPUsadRRlvIKO0z7pGqXwg3pnewD1HbnkppbQEjtU8pIkU/ H25Ib28fpJY9hVLafEZo6ygkWT8XbkRvZx+gpj2Zkto8hmtruUuSfjbcSHgP 2AXUsCdRQptLpraGOyTqZ8Ld6G3sn6huT6S4NocMbTW3SdBPh7vRW9v7ibMn UEybTbqWy3/E66fCnejv2ft4yh5PrDaLYVoO/9JdPxnuQn/X3suT9jhitJkM 1bL5h276iXAX+jv2jzxhjyU6vMcYoq0K70a66sfDXehv23uoZo8hKry3GKyt 5BZd9GOk6W/Zu6lqjyYS3lsM0lbwF531o6Tqb9q7qGKP4n64C32gtpw/6aQd IUV/w97J4/ZI7oW70Adoy/iDjtphkvXX7R1UtkdQFO5C768t5SYdtEMkhb8B 9nYq2cMpDHeh99OWcIP22kES9Vb2NiramdwNd6H31RZznXbaARL0lvYPVLAz uBPuQu+jZXGNtloB8XoL+3vK2+ncDneh99a+89zU817+BwYb6AY= "]]}]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwl1WWYVlUUgNEZGmkB6RiQFCRUuhtFGkklpLsbFAWkVEoRVLokJKSRLulG Qbo7lE7Xefyx2Pu9dwbmxjdENetUs2NkRETEu9EiIsLc6o9GZNMvdSpzhc5j /qLjmXP1W2ZVM5O5wfzYuUj7ZHs50tnXmPcdT2pfbP+Id/QVcxBZOKwTOb/A XpOvdGw90/4+T7WM2Bb+DV7Z5xE//Dy6Gp+Er9FT7OV5EK6Hq/YvyMoRPYzo bA/fEy6W+UZj3uOa/jJcO0f1cGKwQzcmkgW6CQWIyR+ONSEaC3VTChIrXAdx iMtr4d6x09c1JTq/6mYUCtfDLseaEYNF+lMKk4Ddjn1KTBbr5hThuh5Mdo7p ESRkj25OLJboFhTlhh5CDv7UI8P9Z69uQWyW6pYU46YeSk7+0qNIzD7dkjj8 pluFe+sZTNUVeKiLcys80/C+cDx8r69ZaK/F1+H+6Fn2D8hoX2c+c/wN+2/2 +iTR+81WxCW1cyvNZeHe2OfZc5nVzczmRjO/2To8P3NauF6zopneXGvmNR85 n8xcoutSQt82h4W/jxM6ifO/2mvzTXiWera9ClH29eZzx1PYl9kbhPfNvsV8 3fEDZmteI43jq8zl4RnZ59tzmzXMN81N4fNhtgnvljk93HezkpnB/N3MZz52 Prm5VL9t1gufJXNz5P+f45LO37EPD++Fzm2mNVebfzv3un2RvQ7fhndTz7F/ yAudUi+3NySpPmi2IR4rdNvwfvuaGboyT3Qp7tpHhJ+Jk3p0uL8c0m2Jz0rd jtLhGsJzDveOw861IwGrdHvKhJ+FI461JyGrdQfKht9NHHWsA4lYoztSjtQc cyz8ckvMWt2J8tzTI8nDKT2GNPypO4X3jd91Zyrwjx4V3hlO67Gk5S/dOTxn 1ukuVOTf8G6HZ8UZPY50HNddwj1lve5KJe6Hdyu8s5zV40nPCd2VZGzQ3ajM g/DcwrvCOf0dGfhbdyM5G3V33uehHh3eDc7r78nISd2dN9ike/ABj/QY3uOC nkAUp3QPUrBZ96QKj/VYCnBR/0AmTuuepGSL7sWHPNHjKMglPZHMnNG9SMVW 3ZuqPNXjKcRlPYk3Oat7k5ptug/VeKa/ozBX9I9k4ZzuEz6HbNd9qc5z/T1F uKp/Iivndd/w2WGH7kcNXugJFOWa/plsXND9SMcfuj81eal/oBjX9WSyc1H3 Jz079QBq8UpPpDg39BRycEkPIAO79EBqE/6DnORYCW7KqeTksh5IRnbrz6gT 7ocuyS37NN4K53QUe+yf81G4D7oUt+3TyRXO6UzstQ+ibrh+XZo79hnkDs9T 7zO/oB5l9F1zJm+H56f3m19Sn7L6njmLPBxgMA3C54/Z5OUgQ2gYPmfMIR+H GEoj5pKf/wDNswfF "]]}, Annotation[#, "Charting`Private`Tag$47022#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV00VQVlEYBuBr7Bzbja0rdWMDSliABaLg2LFwY8PGdmG7t2NsFyqiMxao gIJJCYzdMTZ2687nLB6+9/3OPQz/P5fOM3KysutFUdTIj5j6UTSuYRRdbxBF I3mpb+CQXWt22cUw026F/k1eQGMK7WIZb1+mp/FKL9K7c0LfqB+W2/Ca3Xax lMnxFMuzPLNS/i4vpAlFdnFMsC/X03mtF+s9OKlv0o/IbdmjxzHbbpX+Q15E U67osZyTi52fkbuQq983R5IsV5uD+MBl/YU5ln7uTDQr7EbxRr+g9+SUvlnP lduxV79rDudzuKuXmwnUcUF/ao5hjnurzZ/hezMXm7fNoTSTr5pxvOO8/tjM CN9T+D3u5ptdectR5w/MNL6QoteYg7ki9/f8JLlSzuCtflHvxWn9oZnOV7Y4 O2q2Z1+4S4WcyEV5rvM18i95CXfkYXyiuX4tfG7eU6g/MUeHu+4VmN3Is0+l Vh7CVTne+WS5KryH4Y55M3yW8B04KzF7c8Z+q54nd2B/uEulnESJ/MzMDO8B 8zy71vxtv5QWlNglMMX+hj6G9/o25pNIEgMYyCAG8y/8vWYyU+Vq9zKp00v1 PuTrj8xR4f+F7c6yWSf/cbaMlpTapTDNvkbP4pacysfwHjq7ZPalwNkO/Zjc kQN6AlXyAErl52ZWeJ/I8ex686/9clpxyS6V6fa1+lg+6pf1GM7qO/Xjcife cNDunjmC/zSolus= "]], LineBox[CompressedData[" 1:eJwV1FV00HUYx+H/gsZAJUwcpRL2jeeoGOcQCgaM7gGjtwG2dA3YBqNLBZVU YSOU0CsDbKU77SAMVNrnvXjg//2MO/b+MrJyW+WkJEmy3h/3pyXJV+lJ0pgP feelJkm+7zO+h1GVj7QmdNO32pkctxcwmIn6WW041fhYa0p3fZvdhhP2Kwxh kn5OG0F1PtGa0UPfbrflpP0qQ5msn9dGUoPNWnOy9B12O07Zr/EMBfoFbRTX skV7jJ76Trs9f9gLeZZC/aI2muv4VHucXvouuwN/2ot4jiL9kjaG6/lMa0Fv fbfdkb/s13meKXrCWP0GPtdakq3tsTvxt/0GLzBVT2GcfiNfaE/QR9trd+a0 /SYvUqynMl6/iS+1J+mr7bO78I+9mJeYpqcxQa8Z///aU/TT9ttd+ddewstM 19PJ12/ma+1p+msH7G78Zy9lGDP0MkzUM/hGa8UA7aDdnTP2MoYzUy/LJL0W 32qtGagdsntw1l7OCGbp5Zis12arlskg7bCdxTl7BSOZrZenQK/DNq0NOdoR uyfn7bcYxRy9AoV6XbZrbcnVjtq9uGC/zWjm6hUp0uuxQ2tHnnbM7s1F+x3G ME+vxBT9FnZq7eOWtO/sbC7ZKxnLfL0yU/Vb2aV1iFvSvrf7kLBKGxd3qV9G sXYbu7WOcUvaD3ZfUijRxsdd6pczTavPHq1T3JL2o92PVEq1Ei2DxfYDTIg7 ta9gut2AvVrnuC3tJ7s/aazWSrVaLLEfJD/u1r6SGXZD9mld4ta0n+0BpLMm 3pq4W70KM7VG7Ne6xq1pv9gDKcPaeGvi3Yq78rNftUGUZV28K3HT+lXM0m7n QLxbcVfab3YO5XhXW63VZqndmIK4cftqZtt3cFDbYNdnpd0kfn/j7uzffedS nve0NVodltkPURhvgH0Nc+w7OaRttBuwym4av99xl/Zx33lUYL22VqvLcvth iuKNsKsy176Lw9omuyEldrP4/Y+7tU/4HkxFNsS7FW+GXo152t0ciXcx7lY7 aQ+hEhvj3Yo3Q6/OfO0ejsa7GHernbKHUplN2jqtHivsRyiON8SuwQL7Xrb4 vo8PfB/z8/d9N6LUbh637/tRNsfP/Z3JabL92/8BbsfmAQ== "]]}, Annotation[#, "Charting`Private`Tag$47022#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{1271, 1272, 1270}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->NCache[{None, {Pi}}, {None, {3.141592653589793}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotRange->{{0., 14.999999693877552`}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}]}, { GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxt2Hk8lGv/wPGZkcxMlhgia2kQodVWnOvKkqQaSUWJFBGyFIkWSx0koiiR /ShFURJC3R6VFp0oxCGMsUbMYqfy9Ps9z3Xf53V+v/lnXp/XjO9c99zzuu/3 ZflhX1s3ColE8iCTSP/zPNn59iXzctJvJFKYhKRk+G8zLQbXeS2fwNbjmDON hYEXZnm5H3N6gP7BuacSNg1Asetp/2HtEWABXxV6GLcCaW/nfBGzMdD/NIh3 hsQG19Zuqdy5ZxqsGe60pRn0gr9urqnmL/4BXqr89Uj3wRC4nBtaT1lKhhZ1 9nCFtgDIJvVcSkwXgvabrA4pDU+CKDur3z5NCsOLL1O3+9rPgZNG2c5vI6jw pWM7s1CKBM25syE+PXRYemBib5UhBYYb73KRNxSDQfd3l5icFIIbC1NKzmMS 0PRBjcaZNwug9zQ/7I2YJAz0oUv0LFwIZ1Yt7tTZIwWLuw6LihwSgcYF97Nu 3GBAA5ddTu3FVMiX2nZob400lNMxt5tbToO9sYf2nhBZgrcVN8iqT18W729H qCdLQuXw3sKUpUTVLMVb6k/1Kw+58ngrRhfZ6Osr4n1zldFihrsS3u/kN+uN XVXGe6NiTcLqzyp4iwvlBLhELMNbOVzF2EF9Od40NcdS29dE65osLQo6qIr3 iU6pF9tIK/DmjsXusbpJtOXq2lQrHSbez8c2zU19INpHe13bRzc1vE1GXZsc aOp4WzDldojlEL0yLOZ0jYEG3lpuRphaG9Fuzz0ulvivxBvLanLly2jiPX53 fmp1GdFH1ApoqTu08OZrJeoX84guz53rnohehfd+8xVwk7I23grHo57qVhMt Q/d+tGOfDt4Zxysm5ud1/nY+hzr4LTUAxneHL2IVgcYPn9atej8BLtsWZNco cIC+W6XJssezwNDGoN3EoB9M85KLzmTPg5UHLFIqIrjAUXrniMJjGrTO2rgv dC0ZcmTUfV6KicIlF3OFfzRTYKqXE+BMSMGAZfv1/GlUuMT5TNgpbeL3N8Ta c6DXVQbvtk2JjXcKiPV1Ve30HW8pBssa1WolWJkgQCnFJyVqHBhFSlqpiHcD 17qwswYXZ8DdCw1Khev6wKB5b5m+w09wyiT+9rjsCBi8E3RHIE+D0T/pz5fk kGBiREJAyulFsJ+7vdAxigLfWZeJR9+WgtJhncuqSkSgpnBSQmQ3AxavfSHR TqbBdWGiU1WLp0CHssWsm2YPoM5P/KRy5sBPg+gt+icGQUM4c4OFNR1KmHry BqrJ0OuysJ/xFgb8XN1spe5EhQueHvY7GkQcr+So7LWZlhxAOlC4U44VD16a n4216RsDi7Nepu2IYoMz53sUXnybBt5l+8rbS3oB24duLP3kB0jTLSm4yhkG un6iQp0fqPCOzkn/w/tJ8Fv5qykh3UXwg1p2hOghCuRUHpncf04K9hRl3XCJ EYHr7LNuilcxYIAV3eBAGxVG5HGlA3wmQYnh9I6kHA5QKbbPSNo2B+Rfdi2u sBsAS6yfJqyZp0Ed/09/rA8mw4i5R/sklBkwl5eM1a2nwh1yyh0FCrOgj2V1 IexhHxBencfuW0AcX0x5fItDMh3ypCgmaVQKPGWT3yLUeg2EeWLOmqxQ4N16 XEE7aQzMaWfU9pqxwcLWpGFq9jTYuevW74LAXvDlgtJPypEfQDevVpdtOQwa mvY+arxLhRssNKyj9UlQzu6Q0VPqIlgD67xdt1Pg6JiRp/kxKVj3OnzXhkAR WBZ+J832HgPuaX6w7VYtFWpt6v6DpTQJMl99DFrlzAH5i+g+bT9nwcqYRZNz r/rB0yIhoP4XDVZFR55z2EOGV9ZH103TGDCWGhySoUyFrf719/n1M6D2a6xN sn8fyG2PizUdZ8CG2yrfU2V+fU9Kbb+z/OkwTKt0SU0vGRbqpia9+8CAic+O rlAYpcKT/T6cjWp0mOGg/E4snQxrnnuLHXWfBUKlwqXHuH3gVnT4xYqlxPc3 sNtC0/UZHRa2eGwpYlIglKk/LNcaAUiXusOtWb4A5vRzUrzGgN9YzIE1qmzw /uLxxlVnpgFQNvl2bm8v2C+u4Txr9AOc7mH5Rc0OAVWRs9EfrlPhdxuy4S0m CRZm67QxJunQeCfbJcGUAscl1JhGzlIQ2y0oTPcUgSE37mWMZzKg5a1Qu8oq Kvy5YL/Xs/EJIBP7XDTIhAP8yjl7frTOgjXHswfTzvcDOmflkuW1NHgh6ZCn txkZJrFO/j4yLwXDkr62iEhTYYby3STp/BlQVqpbpmrbB47yEq70DjFgtRdf uHIRDZ5nzTtuc6JDS/0EoeZPZOhnln7D+xUDXrxgqLOp99d9US7pqZ4UHbq5 TZcuu0yG0V4WE9GbZ8F4RJ7iRH0fMIz0JDnn0+FKkZU2l+QpcK7BXkV+jgFV F9DOf1SkwS9DJYV2F+mwXPmLZtEkGX6XTFIzi5sFUl+PsDrF+8GN5ctsjzXQ YfHSog9PdCmwKUMueHPrCUB6o1Ybz3IGWiJ/1NrsGwMFe8nqeyXZYHW7g6WJ xzQoX3Al88WWXpDaWCBxSu0HyAqXlmxvHALbssTHrWOpkL3XpzBXgQSDtyZp /esbHU43eTreMaHAyXT58PX7pWB5Sv5BWzcR2L6sINPiFgOC8x4OdWVUOHhs CSuAPQFY3A0tadoc0Che/1a8dhaUOH1zGdnfD9afqQzPqKJB99Q/2YEbyTC5 w4MzMCsFQ9qyI6vEqZAcmERVT54Ba9JDPT1M+8CbkGvxev0MWLGzjV63kAbz Bq++eW1Hh6uMfwR3viXDj39mJD+rZsCzR5evs+6iwpFH6mqPqXRo5eWmoxVB hkP/WnssVXcWeB+brt9Y3QdcVH54fcmiQ1Gx67XXJCnQbFfsZf40A7bW6E/F /LrOLrhoKf8phA7TmFZZ5SNk6OwRlmIXMgti6ksozPk+8Lyi+Fl/LR0+nL4c U6xJgcJH4+MSuQz4JppKLlhMg4tHWpK6H9Ph/VILyn0VCkypzHu0NmsWpFAY aTeV+//P9eaf55v0vw9pmH5T/dhRFRpE/uPFdY53a3QC5L9tjde90n9ycP/B BM7LLJMB3H9vrmtvvbVhGPfftcjwrvuyXNx/87vPF8Xk8XH/ye/L2JRZxMf9 R+atf8t05OL+Ezux2KnWaxj3HzWP5qSDDeD+G9IPttn0ogcg/521MtfM1+wC yH+Ggwdv1dq+B8h/5ToLWMdXPMKQ/2Kem51QDG3GkP+G4mwK8hm9GPKfwpDm oILxCIb8R/rvA/kPNfIfauQ/1Mh/qJH/UCP/oUb+Q438hxr5DzXyH2rkP9TI f6iR/1Aj/6FG/kON/Ica+Q818h9q5D/UyH+okf9QI/+hRv5DjfyHGvkPNfIf auQ/1Mh/qJH/UCP/oUb+Q438hxr5b3kcZb0lrRv3X+7lzPiHKTzcfy5Kz4/E pwlw/8VpKDa0FvJw/+2yB/PMgW6A/NeQEVwZee8zQP6b3/TMqidvEEP+Q5+P /Ica+Q818p/YUPmSNHE27r8gjYehL6R4uP+Ay4PcU2oC3H92oEPYeDUf91+6 5ReNNc0cgPzHHHc6cfNrG0D+m+6NnK092I8h/91IpkSVO3Exn0f1B9MZxPqm c0JNQ8KJ9SEffuReyUxfxsd9aLKxkCWrLsB9KHws5/PSGTZAPhRLHLs5zx/C kA/RvKqmO66NzcR85MWFa1dKxql24V6sHvLjpmRwcS9mtsnkh/XzcS8a1D3L Ou7Lx71oimlV6W3vAciL7zM+7simdQDkxcCnw5/KDfsw5MUmeMPAc8cotoYj 2jUzRKwv8vPEzBFvYn3Ik5UmybIaHTzck/WrSh12uwhwTxaweZ4qft0AeTLC 3d6f//4rJibqe3p0FzHfmqqk+KyamI+82TVgnuntKgA5HRwrEXcanKqPS9Ry 4uD3A/R+5E9n/m5T6Qg20Mle8+DrEDEPeTTEWeiCwe1O3KN3DYPdVxzg4h5l yb67L/yaj3tUU1LXJzKej3tUdm5XZHlUD0AeZY7HVN5e2gmQR0tWKGNr7/Ri yKOnZdgSL16OYAkhBSp3PxPr3cl72NzqQqwPebXI9VajVyUP9+pNZoUT/7wA 9+p5RTm9nIJugLxa/THmoOfGr9g1vcCz6wAxX0q1dWptKTEfeTaeOZPNNxcA C1Od6e/w17580ZODD1I4uG/HasoLnQe4GPLtOp0zosnP2GC8YjjaiU3MQ941 8t7uLPl5FEPebc19m5W2oRsg764uSEgbuCDAvYv+Hnk3gdn086oKGxyNCvwY MEHMR/4tmeRVxh7txP2b7nxuhYcRF/dvnh5Td2sZH/ev6ob+pmuZfNy/pBS3 4eDbPQD5tyHDXZCX3QmQfz/ZG+iNOvZiyL9/zi846xs2glX/slfoe2K9685d MUt0JNaHfKx5On3tlXwe7uPvy4xdquMEuI89KlalHnnbDZCP2QtzG9X5g5jd ttPnm/SI+ZOFT9y+Pfzb9fq/fh4w3b1ig54A3AiwrZ/SocGSe29qfMo4uKc3 P+iQF/2DiyFPK9Zd8bdvZ4NWy7eTcu3EPOTrqL3+dc+ujmLI1zWmHcJOtt0A +Trq7ZCSVoAAOKVfjHRcTKwPeTtoN+ywdWWDbdK7wWoeMR957D/Fw5C/t8a7 5zVnsgHyd0usvsLtRAHu761WpxjuJV0gYjb5SMUsMQ953LbG3d7AshP3uOzJ 0PCYlVzc443mH32O/fIX8niGhSk15ZfPkMcn3bnp+0t6API4c7xZ7F5fJ0Ae PzBm5rfdsBdDHh8PkC22cBrBWr1VGzxfE8efa3YuhOdArA95vT8845BKDg/3 uq7KOY7GdQHudcdLT7abt3YD5HXf7Ifiv78fxJ40BYeqrSXmewTmplkVEvOR 5xm2JNc9OgKAifVtDGTS4N3TtoGsWg7ue19Vng0njIsh30umyjGNhn6dH/Fy nVOtxDzk/cK6C+Qk31EMeb9M0r38N5dugLz/uDXZydr71+dpREY9WESsD/nf S/Vd/PqTbFDVtvlU7AgxPynM3VZFUwJvtB/4zYnvUFrIBmg/IJTWc6D2sgDf DxhaxUe/mukC49WRqbLTxDy0P5A3rOvVe8XF1GQcwoPsZsGBCpMO6lkBQPuF iNxDRptN2QDtFwrOXWq7cOvX6xvuaR/88bd5/7hf/PP3+p9naQiPXBfPFWVj roEnm3OmiNd/VkR8Xv639xP/X/7/5pFI/wbogAw4 "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{312, 360, 344, 174, 175, 176, 323, 291, 264, 243, 227, 217, 330, 298, 271, 250, 234, 177, 324, 292, 265, 244, 338, 306, 279, 228, 335, 303, 349, 276, 357}}]]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJwlzzsvg3EUwOG3rcuCQdOk0hS1YGgjqUholFrUQAQRl4TGYuMzudTdp3Fd XBcMrosaNJ7G8OSc33uSN/mn1jZnNsJBEIQoscW6WODUfs0jXzT61sUYJzpn LpNglQHmQ/8/G2SRGH1M8+IUN7PM8qNbzF4muNJVovYMUzzoTxrsKQoc6yMO OeCSez6od+9klH39TIVm3UORi9pbzSGWaGOFfub4dW8100xyp9+ps3cwwp5+ 4psm3c045/qWNyK6nTxlvcsO25xxwyth9yTD/AHaki06 "]]]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[{1, 132, 109, 89, 74, 61, 51, 2, 3, 4, 5, 133, 110, 90, 75, 62, 52, 140, 117, 97, 82, 69, 6, 134, 111, 91, 76, 63, 144, 121, 101, 86, 149, 126, 106, 153, 130, 157, 53, 141, 118, 98, 83, 70, 7, 135, 112, 92, 77, 64, 54, 8, 9, 10, 11, 136, 113, 93, 78, 65, 55, 142, 119, 99, 84, 148, 125, 105, 71, 146, 123, 103, 152, 129, 88, 150, 127, 156, 108, 154, 131, 12, 137, 114, 94, 79, 66, 56, 13, 14, 15, 16, 138, 115, 95, 80, 67, 57, 143, 120, 100, 85, 72, 17, 139, 116, 96, 81, 147, 124, 104, 68, 145, 122, 155, 102, 151, 128}], LineBox[{87, 107, 58, 73, 18, 59, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 60, 50}]}, Annotation[#, "Charting`Private`Tag$46691#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV0FkrpnEcx+HHbspSlpAsD8pSg5BCdmUpS0iWzEzKKS/Aq7EzmOG12A/s ylJ2ZSlyObj6/j/37+wOjk32ToQEAoEppqkVGYRyow/YZIZZ5pinzj2TMG71 IVu06nxieNEXLFCvswjnTh/R6f2TBD50v63gF2kMU80ftt3bbAGxvOpLFmnQ 2URwr4/ZYYll/rJCo3uQSB70CV3exSTyqXdp9y4kjjfdZ8tJ5Ur32FKSGaLq +wcyQCW/SWeEGladm2wOUTzqU/ZYY9C3f/Y/6zTrXKJ50mfs06GLiOddX7NB i87jB8+615aRwrnutiWMksQ4X32VOXY= "]], LineBox[{255, 341, 309, 282, 218, 331, 299, 272, 251, 235, 178, 325, 293, 266, 245, 229, 219, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 326, 294, 267, 246, 230, 220, 332, 300, 273, 252, 236, 337, 305, 278, 257, 343, 311, 284, 348, 316, 353, 210}]}, Annotation[#, "Charting`Private`Tag$46691#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{159, 160, 158}], LineBox[{358, 356, 354}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->NCache[{None, {Pi}}, {None, {3.141592653589793}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotLabel->FormBox[ TagBox[ RowBox[{"n", "=", "4"}], HoldForm], TraditionalForm], PlotRange->{{0., 14.999999693877552`}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}], GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxd2Hk8VP/+B3AlMWNmLGNLQkJZs0SE3p8sSRtJRclSpGwRlWixhYRKyk5E tihLZUnjKwlpsUVkG7IVM2On4uc+7j0z9/7OPx6vx5nzOm9zzpx5fmbjqfPm jqvZ2NjOrGJj+9ff2Z76GunbMTvZ2Oid/O1aegvt2x/Q25th/Lu+47e7D+Gt QVZGU/oAVJwSqRflLAex3rKhU4rjQF837yXb8hEEXG1zOQ2mQJLw3XA0ohOi VXdXHDwyD5fktnAWWPyAb3EqVQzev9DwPcMtEybgdsaNz6vXrUITFy6fWX9u GoRjBm7dT2ZHGuGcSuZZCxBqYbKzeZYD6b2YT+c5sQRe2mm29YFcCFLFNjpH r0KGtEVf9wE8+pOqIErOY0cBuofsRbWI6G/Cfae5JA60oyC+5DqFB6n3f42u u8uJXOcZ/nVEPqSuczBhTA2HFhR4e5SO8CO1wsFDu17gkW7e00cPH5JRWRHb 1ql2bsTg32t3tFoAkWzbibkZBDQYYXf0AqcQMiyXbIxoJCIT2mWTH5rCKOEH W6ecMQ+K8Xcyl5DjQWz/2Vjv57+3318sJUR/k5n7U9zKZ5aXlf6TedFu6bFu Rns1RFBVSa/fX4SqrQa0elI3pPml96mU54HHvedGCU4j8OhKxG9SaA00KfVE Jf2iA1+Qq12xeSu0fGpWU2icgVID2Wc7hPtBjT9gq18hH3IObro68heHElxs gDrDj1T0fzTqHuZGQrZ+/pcUBZAHb6uSqQ4BjZkeOTHoIIio+QO66xWJSGjn r88KqUJoXj3/27AfCfW+Pnh+ur0IFK9ldtqfOALfg/T0T061Awqq9v8bng4J YwozGhxD4DOx20MpogpsN+is/hRIA//cLn6foCbw3hDvHh86Dba0s/Yeu3rA 9KZ2R5otH5oY/tpQnIBDDftekcIy+ZFW3nSLIic3kuOIuRvSv/J+Rfad4CMQ kHvh55PJZEHkofah+uIPArrmKEs2PSyEqHE5o3RJErpA+E5ed0sYVapISIpX 8yCxMcXgUYNG0Py1R7t9Ogya3aQPrhfsB/eUtZZ2nsWwW0vj4VL9GKQed1/W ma4DodS6EAt2frT7QSK/pjUeudzm8NDdTUb6ezuFl+K40ZqyUx5nLgsgizk9 zQY3AnKa6LRUeCmITmjNSC77ENFzoaIIrp9C6Eqw8p32bhLimxCOXmhPhyi+ SI2wTRowll/+84ljG7y5yJkjeDwZlGNHG9lbB2HvqMDCdq9K2Hnd1zvu2ATU Hw1Ybtz6BWoMr0aY/ZiCX4cq+P/YfoeeNw8UX2jyodYwN5q1Ew5RK07PHr/G j5Ilr9b/7MEjNctHcaTXZPT+Vnpu2yQ3UqESehfGBNDjVfGlx2sISOXK2xI7 JSFkq6BcODlDRD1/c5SXbYWRn1h6xcUgHqQayl04Hvkeim4dvdGnGABFHLVG /km9sP+FpZ5Z6HPoGpx0a4wbhfi0Ey/sntVCRod0l1MnH/qdcDS+UAmPAn8X HuMRJ6NdHCbNE5e4EZFw3mfikACy09ZWW2NBQFskRDpDIwXRDEWz+c0hIjot b6os+k4IvcfV8S3mkdDLwHuCvwxeg5U155iX4Vn4ZFUVRw7ohPIewSGpwScQ LJuVN3n1CxA29p9lbLwHl8xy29k7osEuMn6xj1MQJvWvVH0Qb4WTUkGqDu3x 4ONWV+qsMwjrqr0a8S8rIF85If/vP+PwT9DaeTahz+Da4bZeMWYK/G7WBKd7 d0Fm19uvO6X4kAPpcNLuAzg0MaXtbHiOH/m9Wzus34BHrwKeJJnnkNHwXi2r uB/c6K5vnkT2VwGkLsPVfKSEgPDs0TfPiQqhcwaKl4n9RBQzy6t7YZ8wCj5g dpTDkQe9bvN9T1N7B8cZYvl8RX5QlhAsmnmkB/Jmt7XetCgA2YomK3W2UfA9 1NiQGfsOXGbMbzLe8aGyjEjatCAeRamHfZjHkZHRsr+6iSM3ita4eFUNBFDj 9hxSmDEB3Xr1UlTziiBiM1TbU76TiHRLNixLFQmh/SWF9qX3SahBwkOfHvkK +vxupozW2EHbxHU3rR3fwDlmgycxOwOiEyvdhlM+Abr+/dCScySMFB/XYhg8 hR01Crq+w8bwRCsp4edIPUhGpey61BcMXy5YTU9drQLxKLpZeJwHIMHPp0Q6 AkFQ74Pyxz/TOy9Fdsjb+LWAheG4Z7piHKR0vFIWpw3AExPivQ/fy2Fwrfxe lcvjIKMlHlbhtXLe9CFqvMsU3F90P32IrQu4xjrz2EX4kPCaoZ0bEQ5N88hI a9uuXI/0XSIfKXjk+zAnZTqVjEQXs9Oae7hRVe0i3GgUQOV79KneTwloznhh fJxXCK3ikM2u+kpc+Z6pqVbYJYzEd+8T5zjKg1ZdK2r24KgB8VWqTjaZPqD7 YyB4e1E3PBx66O3Ing/7ZP/5PFQ8Ak+9zjRdJL2DT+zOx19W8KGZk4Xx8zg8 ijH1ujm+zI+irBQrTK25kcVen+utGgLoxK8go9O7CKicfa0O8bwgOl2qq2Sj QURyC8FOWdlCyLxDh1wdSkIW7r2Wk2ovYMcprnsb150AS+2e9oaHHZA7cP5I 9oPH0K4/43PW8yP0LJEi0zfdhj9m2o4zkVnwrrp2XXEUgl+9LZmuFXVgPa5/ O30xEBS2SS2PprwB3Z/vItsiXGG/0Pi13wZJcIp0sEa/dDOgJjbFiZEySNHW HD12zAGcud/cnL36HHQk8UeOmJpBa4rIlV0dF8DMujvOeXXbzlI1LrssuRZI XCwd7LWOBZWoZ6NzdQOw7g2PZ4BnObBNecbVHxqHsMvUoR2bPoE85+Nas2NT EFFBlfav7YQdnmeEhvj5kCHRmhymjUOzyaIB6sf5Uep4Cf1WOR51SealGiWS ETJdK3amixt1uEp9cX4vgL72eL+KyF553o8pSqkQhJA79+eUx01EJKYqHsKl K4y8HfHU6IM8KMPsoGWh+1uw80tIeKZyGa6Hk8v97bpB2ZZI+HTyKfR0lYZX RY5AyxVddKuhBthuz9TEveRDRDP3VVPseBTbfZY6vMiPzKfXnq8/xo1etF65 IaMqgLYWusgc20lAzTlKH+bPCSJKCiO6TIWIHiWWJo4+FkIvEzddbgogoQRB YQcvjhIQm0+0n9tkCQk9RKKAUQfEKnwnW/M8Bl+he0vZnY1A+xb7VhEXDiGp 2X5zapkgXRD1qrV+B0QVn1fIl66DN0HbL/3DGwgeXVZ4F89KaJZ5HaZ20hns iz/kLkfGwv5CeQdPL0m46aO1/XxFKUSnDN1uDTwFNo4/N9JSCqDRuFxng/B+ EOriw/EaRgDVUj2nOo0TLqxuODg1kgM8Yh6/PHkMIUk3NPv31Udgy6N2/Zuc CmA+oUf2TPdv7gHMe3tbHrgkL1GZ3kN3qTWP9IaZ3qt7oLgncdtPpveiQwJ6 nwrTmN5bPnz9WXgWg+k90WMpOqnPGEzvraKr10tb05jeI17gtal1+cn0HlcW zkaJMsz03pjmFTOdtwOAee+qiaFcrlwvYN7TGjmZWGveCJj3SpXWmLptKqRg 3gt/Y3BB7EYbBfPeWKRZXi55kIJ5b/2Y3Mh63XEK5j3MZ5j3sIx5D8u/TnN5 ldwQYebd0sKrQ6vXMTP/R9mo5zRRZhYLe2amqSnGzHEK2rxkpw3M3CC6S2Pq njgz7xCrvrv1qwQzk9jTve0DJZlZPEBC10p2IzPjZKxfmr9nZWW9dc8un5Ri 5gs9/G/3sm1iZtpUxBGTOFY23lqbYKIkzcxvpnR+z31iZXdFtc4mRxlm1ptw aLXCyTKzkbTIAWI6K2/xD/ep3r6ZmeUdtSkynazs+OZscInnFmamPGp1YAjK MfN09vLc1lesfFomD5dwQJ6ZGfL3NYvorFya8bt/JkyBmY8bbkI64orMvN4t tEy5ipUF8a6FB44pMfP/evxf1/PfHt8YuVrdGNfP9HXG7dQ7z+PpoOlYoSdZ vAj2G96cvpM0CfP02Gd+acsQuVnsS0cBHawFDo6vL8ahQ5awLD3cD1RBWfca IgF9SblSEZLzFTCPL+tUmgxkjVAwj2PnxzyO5U6d+y1P8ljzYR4njpUKJZH6 mL6+vPn5jbf8dHD44H91e/ACgH1+xiWZSRgxHHylabUEFtDNobuVASNPLj+Z FMWhZOPvm1XaqHA/8K53vA83kp62uRA32gmYx+cHQxZrTw5RMI8/jF0dWmpD o2Aex+aZT7+h7xvAmk/NnzD3mncOmmhRqcmSDOBanlniov4GvR0FpsKyk/Al QHqb0T484jiX/nXdQh9g3iben4pbZoxRMG9jfa9bnzi0tLH6MV+vVd3CFynV y/Ry1ZgHLT6FBn7XB9a//TUPqZ2Cuf5DDOhzx+sKvPgL2z9UPnI7zwBlDwJ7 zycupE+Rf62xfwB+lb6bY1fmRo0pTQfScN2A+fpi2c/mUq0fFMzXrejhducD ExTM19g8IV9nFk67suYLzKIJeLvPQoVerPDmbjpIFFmmxOz9DZ8VXlodtp8E oX1ld1WWcSivj+4s4dEPmJ8DnSw9GY2jFMzPWN8+rg1ilVWs/gMi4t156xeh d9gw1dVhEtK7qSacK+uCuc+R9+VtqMCxNavvxxrW8eGld9qtYvHIlnFYXyCw D5TSVPJHx1h9mKd9bdmDtmf2MH2crXXFadMJGqztiPnJlTYPpsINTzneM1bW fxuWVp/+C3J8yu4hdxjwpfVoYUs2FxL+fSikNHQARCzstMu4/nU/hVdkrusB zNMlm8Qpqk8GKZinfQT7eN7WjFMwT2PzHKQ/b+uwZ80nr9P/2HTDLDxzSGxx qaBDLjfevXNpEeKky20Y1yeh7Bk7yH7DoetiIhrpef2AebmqKfyk845RCuZl rI9fqmNO9SWrv8Pz81PG5wW4I72QxjCcBCN9pfk/K+5s4H5xMj+eChldkRH6 02Q0VV1aYDtMoyht6Lxp6rmy7lLyI8RW9sF0+c8wmz5WX4FyQkzDJzLSdt1v y/d1guI15E7dIYNHHRn1j5K29UP1G1fiGadF2Jp3N2k4aBISwwKCy9ex5hs+ bCTnUIlHd6Vbl+5J9MGZ0ItN3jOsfszbJbP0iogzPUw/J9te23RWmwaNwW4t Cn7zkKUhrbznFQOOkzbbLmr/BaltQ63RqQyQ4rwa9ukBF2KLd/x5JXMACtKU Osmz+JXnk9NkVloPYN5uttyuMWE9SMG8/XF5zdXz/uMUzNvMz/u1KIP71qz5 ltYcd6mcngE5n2TVqFw6eJRSj/ztWIQ/krr2VZGTgKduEdpYi0NnyxUSTtf3 A+bpvrUZLbKMEQrmaaxvtuCF46/n//W8Fs+OEchdgGH9w5u2aUzCQ2/zz3NK OFSSU1ft/ooKZ+h3owbHVtaj+d2ihMc0ynXTZeu9Nngk9iHK07KrDzqM62dF ulh9HgbJD13fkVHoUc8PlfcmKDUiMWUa/HhUrd/NYWPeD2EuRjNhuxYhtH5s g7z3JNgkB4dY87Lm0wpxZrPNxaPLh1G3uUMf7BU4DFvprP7//f2HTvk+VlJg EYxHe+44ZbWl9sEfvhgZg8hFaI/QXJ95f+X/2Shpfu7Lyn6TS2Snkl4IXIw9 Xb7I6sO8bl7tZLnduIfpb2GvGwHhW2iwtcvKWO/sPLQYNrmfW/FXQksezyWZ v5BipM8Vv+KzvY9I0/siuNCsEy35eMkAXNkTI//PL/zK57WNmPOjBzCvn5gy 8NivNUjBvD7tLVxkZDNOwbyOzZNhcM2XbsWab+SckKl33wwMBaTYSaTToYX0 uZ60cs8oS1yjbn4wCep+FQEpr3HI+taL/YYd/YB5/Hzac9LNxhEK5nGs7+zF jCSTAlb/qosxXLKxC0A2Z3M4ojQJFOKPHRelcSjbx/yiaS0V6nyj72gMkdF5 KboZ1Z9GyRq5V/feAo/4EkSktcdWrg+pVOlSB6uv6WNKbGUVGRV8CFoVc36C Ml4oK1PMtbLu53Mq3WnfD2P/qJ5LUF6E4o5Ym32uK+fbHBKaz82az17ir8v3 R3jkItVwR92rD1537roUMc7qXxNsLNrsi0c7bRhWLwv6wPasf7yF7yKwJw2c qL09CW/KiyqHavFIy+RO2LuFXpiuCkkQnmcdz3HmTuR92sp6V+vDoMY7GkVG 0CrgssUinCjX6+a6Ogm84+0x/cV4FJhhp71Lvw/iK7IKVR8tQt61W51BiSv7 t+UonvzL6vv3JoCMK8evGUsQ0P//vvj/9yv2emfHB6QMQh/lS5e1rMczzMO8 yOGiV1v6HOv1S+WBXzf+1/H/B7o4TNo= "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{311, 23, 21, 173, 174, 175, 322, 290, 263, 242, 226, 216, 329, 297, 270, 249, 233, 176, 323, 291, 264, 243, 337, 305, 278, 227, 334, 302, 347, 275, 357}}]]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJwV0MkuQ3EUwOGr6AYLYorU0A1dVJpoJG1TxaYsiKQiSBDpA/BKhpo9jXFj 3GBRQzdqoeHr4ss5v3vu6h8tbhe2QkEQNLDJDt10cc4tz1QI+ynKNGc6Y67S xzrjLPHnljKX6STBAm++95hjFPjRbWaMWW50jQ77KPM86S+a7UNMcapPOOaI ax75pMl9kEkO9StVWvUIM1zpDTPNCr2skWSRX/d2M84cD/qDRvsAOQ70C9+0 6GHyXOp73gnpfiYo6X322OWCO8r1t3ePkOUf7HktPw== "]]]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwt0dc3FwAYBuCfjEJouAnJrogGUiSyaRoNo2Wr0BBSRkikkCiz/lWPc7p4 znu+u/e8X3L7YMNAUCAQ2GU/P9P1/77FFhP84zJ/+Mhf2tlhilTWGOUp20xS yybjdHKC77zmITfY4BMd5PCbMZ5zkwNM081tCkhjnQ88o444fvCGR5RxnmBm 6OEOV0gnniXe0kw5Fwhhll7ucpUMEgjlC33co5DTnCSMgxwinAgiOUwU0cQw xwvqKeIMiSzzjhYquMgRvvKSBq5xllOsMEQrlVziKPO8opFiMvc38twk+ZP3 tFFFLsdYoJ8mrpNFMqsM85hq8jjONwa4TwnnSOEXIzyhhnxiWWSQB5SSTadO e/xUNG0= "]]}, Annotation[#, "Charting`Private`Tag$46890#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwNylkrpnEcx+Hnsdeg7JLtoSw1CClkV5ayhISYOZhyygvwZuzLYMZrsR/Y laXsylLEdXD1/X/u3x36M9k/EQwEAlNMUycyCXKjD9hkhlnmmKfePYswbvUh W7TpAn7woi9YoEFnE86dPqLL+ycJfOgBW8kY6QxTw2+23dttIbG86ksWadQ5 RHCvj9lhiWVW+EuTey6RPOgTur1LSORT79LhXUQcb7rfVpDGle61ZSQzRDVf vg/aKn6RwQi1rLo12xBRPOpT9lgjhXX+8Z8W/+QRzZM+Y59OXUw87/qaDVp1 PjE86z5bTirnuseWMkoS43wDkU85sQ== "]], LineBox[{254, 340, 308, 281, 217, 330, 298, 271, 250, 234, 177, 324, 292, 265, 244, 228, 218, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 325, 293, 266, 245, 229, 219, 331, 299, 272, 251, 235, 336, 304, 277, 256, 342, 310, 283, 346, 315, 351, 209}]}, Annotation[#, "Charting`Private`Tag$46890#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{358, 355, 353}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->NCache[{None, {Pi}}, {None, {3.141592653589793}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotRange->{{0., 14.999999693877552`}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}], GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxE23k01N//B/DJOoTs+77vSaVEc1+IQh9JEZIkVLaQyBJDaJMoRYokWiih zVKNUCEtlpB935chWxK/65zvu99fndeZM2Nm3vf9et47PV4yzietXBlIJJI8 C4m0+u9cR1WF/OVECom0R8f0x9btv5u23KA31SF9CRu2Vy23ULnRw8zajF4k 7LDnvl7jOyTeWTTgrD6OuPOXdOataxG/5+FsVqNf6NkzTtNnqe3o2gaTEgvr BdSBupplzw2gn8lapVPcf5HYGh7K9I4JdDkz/BuDyBow5/Y73erzCwkl9l68 nsoI1iPHEjY8nEfn95tS6uaYIa047sihxD/olO69w1WRZFh0NnYKH15BOyYX g7172cGa9qBwnosBIvT3HhHdyglWi7KDVhJMsC331osw2jqoiPs1MzPPDJ4L U9RKTh7YV9903UaDFX6rcXdoWPNCQsvJi5f6WEE/50n6zZt88Gxs+ORXdjJM 8Zo52ZTxA/exOt83vazQF+tk48cqCL/0czUXBlnBdDLQtF9HCNRdotYbsZBh 7Cj51ItwYZi8xDcZtoEMJvJCDOfLRMD49NvsTw5k4P2iGJc3KQoypCvuRRFk EL/wzFJHRxxuLi6zGGSSIVlNl5vvmASMN9RLrqGRoVrUYPOvBEkgi0R1ujeQ YZt4Wfz6Ril4UZeUOTFABi7GDP8jkdIgtnSjMXSGDJIRUvp2ijIQKc7i0L1C BjYFh1dWn2TAesIq+xiZDTS3izwLPCQLLi+0289ysYFfB2+5GUkOajbZ25/j Y4PJX7HWpsly4LZf8i2nEBvsXP8xxVRDHlSOnx8vEGGDd7/0/sx/lYejMj2F bWJs4K2u3VLrqgD9y1VkJwk22D7h0mDHpgiMx+y/35JkA2N54f84MxShjCui 5JQUGyhTL50p26IEnroXI/il2UDVVZem0KIEUpLcvjdx7frueNQLX2XIuW1y ko5rWnqDy5SACqiMj2VvlWGDmUcr8+tfq8CxK2apnrg+qpDDlvKfKmxuOxMX j+sp1es6BXRVcHqv4f4U14WZf7pnL6hBlbWL+Xtc2++QAz1JddieZdD+Dddi XueLNEvVYaWx8lorrgXYPfP/O6ABpHqGrF5cp3kVz66saMArhc+GI7g2kR9p n2oqQ1d69l8NpQWi0vVGk1Vc7cjpBE1z3Z485JOQZ5xybAgFnJvg8NOqRLUa HXF3xuhIj1fltv/6JtQjoOhdwckBsUz8BxfFGMHx9OylmhAuYNi85myIGDNU HLs7Xh7ADbuL5Svz7rOANm/E+pB8HpgtEinZcocVUjwcUc8sL2ymu3zjJJNB 8HAINUCdHxrnxbXZZ1hhZI/1wT4XAah6m5ed3MUKgpSxb2p3BUG/v0dSYxY/ XwU6drcKwaW4GyzmYmRIUvU4+euaGDR9vBhXep0MLXb+eZlfxeF70XT4zgIy bJB7K3tuSQJU19z6Y1xNhsjba47ybJKCrysTx7d3kOHmhYi0NzrSIIjuPZSY wO+nzMn2UIM0NDBvtE9YJAN//fbfPwJkIGpPT6c3ExuI5xdru/LKQm/hgmfW Wjb4zimo250rC3+s7pVq8rCB1vAeDrPdcvDLZP7IMQE2uJ2gcqaqRw5oYTu1 AoXZIJJnzWfpMHn4vn3bnjZRNhDkfj3iIqoAqXtPteeIs4HNFfOmG68VoGvh ZAsZrz+Di+/in1srwqS26VUuvP50rGp7BscUgW8q5lMVrh9Pd4vNXFCCdOOD p+3xeqvkqZUZV1CGzpWVnI+4vvYsbaauXBm2XA11EsLXv0XePTfeTQUKxB5l 7Me1+rEfJFcGVRB9ub87HNeqylLSindVoXvbHol0XDcc28nRoK8GUcLMAoW4 vui/LiG5Xg0UMm+IVuG62PbH0qaT6nD7TbN6I66TS4I2v1urAZePGw92rv49 vev1D3I0YO9Tsu4grjvfWJycaSpAXwS5tmd72aC2c9sND/1qQt28LZdISVko ZURtdjPzAJrgSNM+dL0cHZbQY/gaOYm+HTU6oKrZgK5HxvvfOrMWkg/oWgrf ZAC6rVzAr5+ckPs5SmdbOhP4SM3dN1DjhoMWO0fWWrHAnmjd5nuHeaD+eBH9 +QlWqDZ/zXUhixe2VPzwjF1kBRXmxPiYbj6Yfuu8OXUNGbzzvx1K5RMAXhfr xRt4/Z11VeTbs08Q1ib635kfZwU/jjY+kYtCYHSk9l0sNxka/lQu7zUQA56T TjLjl8jwh55A9YoUh1MVH5O8c8jgohQi8jlfAqof015WVpBB8aDMboZeSTBi +Tgf9JMM9ua+G0e4pcGcZa3nvREyXHOOcDucIw2dHyQk782TQSQ7NyXJQgbs xfo79BjYgNfj8kzrmAykCV9a4mNng/AsIX/1GLz+TjzK6FnHBrVH84+ZKcqB 0VbtG2f52eCDYavbxbdywPHd4Uol7ocu6b3aL63lIdSeQ+I/vP5GIn775c7I w8mTWf078frraXvX/DxOAbizmx+8xv2QVpJQELNeEdpFXhs34vVIKZlJCv6k CKRn94zT8fo7rqtjdtBJCdhOSdVvxestSC/ah42kDAF/qZ7PcL306tyb8hRl qHOIyGHC17/G+S6bAUUFatM4N+zENfcF99DqNhU47KaVHIDrj4r9/E4BqpAl PnU/GdfOpl4y5YJqUGd4c6oA1+mx0bo7c9Ugs4P7wAdcX7IIlSw0UYevr9/I 16/2x0Rq4Fy/OrAw7q9tx/VCRrhhcIQGHEx4H9GPa/ER9ahhoxo02Of3Zt3K ZVTnJW8hJtCN+mta24tWXiGTrZtvLleNoNjLm8b19L6gmoRPd7Mk1sFP4aqX BnHMIJy3a4tJGTe8/srbXj3GAoJ3K2P2M/LCuf78Of4PrOBxmdlH34QPmB7O lB7iJANTkbOPWyA/UK+9lf87zArHJlps1V4JQNFEsMsWnMd5ggWx5FFBSHoq X2b7lxU6WruDpKOloC5iXUxhDxnqPiSwXXWQBpUZhSnXKTKkyIDZwb/SkH/+ UKjlX5yfSzUH+O/KgOs1/ZJQFjZQmB/2mdgiC59ufoyT4GQDmQD+5RtNsrDb /GftUV42iPeeyDP1kwOevIMfDQTZwLcr8CIbWR4o86rHRXE+pkdKHo19IA95 em9NjuB8NEzzdxYDBfDzuyfMhtdD9fbmH4FdCnA2eb3Ifrweym1GvbtCFIGs 7jBriNfD+uGneDuiBN5yWwPouB7JuTIem68EsYZnUoLwehAcEq//bq4MRyqf /NeGa+VHReo9Y8rg+yz8iTK+PoMDm/Z1xalAVHC7wBFc7zKB6BUlVfB4NhV1 AddxKnZqY59UISCAyvJwNc9iZOb7nNWg4LRt6xtc+zncGhpeUAPrQubbNbge cdZszU9Sh4WTmYvNuG7s8fsVvUEDupfim7px/abhgUv9Dw2gDn/5MoRrngmh a7+bMpDc0o9tNgWb0cjT4tEHrj9QrK1pT81cOtJMGq5hbOhDAg8SX+n6vEeU sGD/5AMTyMeLcif3TR0aK/wwz6i5Ftg6hZnirRig0Kx4lOUiJzj5sVrnHGYC kxCZcCozNzRyvtDhUGSBjnc31F/q8EBhQbdQ+W5W6Ck5Omd/lhfqOr/vT6ez grZtejLXGz4ItvwWwshKBq0ejs7fI/wgoCbtXNzNClpB5S+cNATB1p6xomYE r5+/jzVXDgtB+fGT9jZryXCqL9AkQlgMFM1tVA/HkCH2TfrQXgdx8KbfDeh5 SIYwlRb+k7ESoFK31XbiPRkWtuWXBhdLQoCLr8BSIxkC7er+rFmSAgYdXaZv Q2T4XpDg1XVTGn5/NnwiMEeGOwLHPM5sk4Gj1MHnfGvYgKvylLVQiww88Vnc ZcCG88w3mafOVxYkPae9N+L+JCvjfMOMTw5SvhnfZMD9yV5sk+Nwthyc+fzk tSfuT42DDW7hBvLgPHLWdw3uTw3Folvqu+Vhc0LNdj7cnx5FnflpGKwAAmc/ P4nF63F5f4iRj7giTCSb3SjE67HsZMx0+QtFiPpvwuUSXn+VDk7dXLuVIGDC l1EJrzcry84koXG8Pnl0le/jOm9bgLR+jDJYSm4oXcT1xzXbtoioqsCF9ike wOshUnjztr9VKiCpWp3vi2t+xV3r/h7B+zUU9DRxNS+3kZ4UM6rB1Qf12/Jw /SS59ErabTUoK4+3L19dj1V7ngVpqwPjkt7F2tW8JEUl89arg3K/5es2XMc0 zv4+6qkBpouGyX243nB+bf74lU+Ivu9Q0zvGc6iA+aMx9U4nOimS4ycY+Ry1 9k171SQPo1itzTwpj6rRjXOOAkU1XHBDhvPzgjUzTKz1542+ww0TM0e/7ali gcxm+dZjLTxQyu8W1JTPCpF/8g+sk+SD+BdhXa/w+uDkOHlmYi8/BLU561In WEFZSrjl/BUBuFZGib2D19dR1T2aoh8EwaBtc7XSb9yvSnwnkh2k4NbfezXn usiw6SFbQ5apNISJx8lUTpKh2ddyb9uQNNDy6Z1zf8iQcCxaefaSDEi9rv4v mJkNpPfX1aooyMJGS86rLhy4PxvcuK1XLgu3t4bw1OD9U5fa3Q7Tw3LwqfCX TyPeP7EUfaeemJWDhIlHGtV4/8RTvS7J5po87D5ZzyKN+5N60w1F0FAA8w0m 5q14fcT3JzSy1CjAHdujG9bj9cBAb1ipOq4Ix/IOblPB66EgFV1IW1EEibNi Ae24Nvv2OgpSleDD7sD97vj6Ty4FLHZsVYZGj9zcWly3qz2Jt29WhiWjNxuk 8fXpiv5GLQxWAX6xV4v2q9ezkd1IW0AVHjaK74zCdZvyG4WLz1UhWUX3/n1c cwa+iGjbowYS+q7ninEddrxB32BADXbydfZU47qufY3nqXPqUPDidUoTrrfs CeDPkNSAmKf03i5cm5MlxN+WaoD5nausq/3pVWSCwJjRG2Tjrl+uQHJHX+1K k/kiWpBnnjpbzddsVGrefi7uAg94VSiraUaxQkEru9LLL7ww39a2z5aBDNIF 5y8ss/BD2Y9TkXl4//OEeq0N9AVAQbLGRw/vd6r3XvTdHiQIYj2yDSenWCFK 8WHOdOh35MEidYbqcx1dcPXUNlDnBefff50XfrDCfjG7Cye8+YDme+ATB867 RVeb4x13+OF9+5EqzwFWePA2telrhwB8RvyB9v2soHFP6+nwiAYU6ojGDuPP E2CZ3cTYfA1d40zgP2EpgKYNg0o/SzYgm4wztKx3qeiMV2Whu14fKnW8aNhx ohQ91Ux5+vf9OLpcgIKnWeuQ8H4n3SLyWnjFn3rpvRYD3CmPfhDvxAlcaX/X vKIwwVEr75+ofx2ECvIrG61jgazW8kaKLA/IvbWKc9jOChO/dN13nOAFT1Fv 3VbcP19HPLhj9ZgPst5ajoizkSE+OEfqUSM/XBGhnUzrYQV2xmvRJ0QFwTJo WvgAzvPEOW59P3MhGFrvsvgJn2fKbPeMCDOJwbZLhZR1UWTYL/tIfIepOMii kRP8D8hwOfsi7/sgCXghelYsuJQM3aq/F3UeSOJz8aXRlz/w/bPN7KPwsBSI ub1M7hokw2SLyFR6rDRMUCVmzGbJcMi8vP64lgwsHwiuCyGxQezcIPPL7zIQ Mb7F/gc+Hxs22XZlHpMFoY97Tv/E5+Pq8G1PqtnkQDRRO7Icn48zz3fZ3bon B9Gv8tK3434bd/kL1WWLPJjuUYxtwflvekDtlmuzPPjcWLN1Ad9fl21/2LH7 KEBzCDkhAPfbNBn62n5eRVjknrN+jO8vJrNvd4/nKIJySpFKOL6fznjPPhky UMLnKZ2fEvj+eWcfm5PWqwRD+catd3B9KfSk1UKIMlz8nJM5i2vDvawWzNIq YM9865g+Xg8lTqK3bpaqwHPj4xonV/M5Kyj28wFV2EKRvX9tNf8LTH11FlVh j92XH7m4LpDs2GJ2TQ12b7e3LsP1QExRoL2yOpyRscVfC87/V8yP06vUgexy VHG131rQ8340H9EARptuqdV+++ZH8KdJ7Q/I+VvVSP3JMFSUEiWaZd2Bvvhl aWh35iPFklq7jaRh5HfJZrfSiSoUvKTy3TCTC376BJ9a2coMP4vYqJkXueFq GOeHilcs4DFrFT31gQdaztw9sv8hK8RtvPB5gY0PFv8TMJJjx/v7zadDtRE/ DHAascvh++vi61eiOkECoGd8r4IF91v9FxIrsgWC4HJIa5vcPCvcyilStt4l BfrxJY3OnWToTzLW3QDSwNrJFD6Dz6vzt5ob7nRIw1ITS7ox7rdWqd3x/VQZ 2CKHSmbxeTUt0iTyk5gs+A4YfGDG/bbvobU7V5EsFJnqSobhfnvhUuBslbUc 3OvIdb6L+62lwtlQkTE5MO/6SsY7Pqj2IufrXZCHs99cQ5ZxHt879eBCnZwC xF6xqirH/fZU0YTN1/cKEO34aJM4Xg8Zb0wrKYcVwZ/syCiO18NM4IXNRnOK 0Lruz4t6XC927bYUvY7XQ5rnGWd8/R1Y5bnc1itDphf7thpcF3pllQl+VYYx JaUGMXx9Dv24k5TpowJ+I/6NB3D9S5J+7/NaVeDmshCJxPW5R+MZBx6rgmPT k757uPaZ/Gtia4LPC27ce4pwHTUxNTDWhvtvayVptd+a3PbYtD9IHYpS4/tX z6vHmRfktQQ04OHeMrfVfssr2zy/4ZUGyN23v7d6Xq2W8jGkX3mNnE90m2t/ PoJ+TIR5bd32E7nPhC5PSj1CF46v1RT254GKlODzKJAV3vF1p6QV8YLbSlDN y2VWyGy9Ems4wwc/SsairXDNKbJBYlJJAFBRUbpl1+rjBwxN3ATBdOxLQvYk K1y7/dZrMO0r2lgfWLzhVjzaE5nSVi3EC8vcfi61X1jBad/6JSt7PohcvJt8 Cvfb8KsOnrKX+OH6m3v1QkOswGKjL3y2GvfzbVXvt/axwkzx6AXHLg1Y6R/T WO23Q8/tt04ZPUGf1jzzq6jfhRrPXYn0TeAFP80kUussK+RqpiRWf+WDF9Xv t55jIsM3U+808xV+8D0Q8I4Tr88HW++kjA5VobmLLqd8jM+j9pI5rY4JHtj4 XYVUVsIKAeWtvQrafJCXXDRVxUGGCz3H/bNd+OHjHm1xqTFWqIwJuvXzngCY 3ojgtsX99Luf3cyv0FIU3Nv+1GHKFz24v+n5525euNFwH51mJsPtCxFRxSL8 QN6xyX0rvh/Mh37dvmYpAF/On96wH39/u3oj+amRfCAqfjtNFf+9AH1Ll5Rn /BCbzl76G39+Y4WVm9K/BCDObWt9Cs4jt/Ona/1nNaDnmdPQ6vcBAt+chZsj kUnG5WvaUrOUgCvNqo4h9YjKbRSwv/w2Smt+rSk52YuC0z6789bTUB+LqplW 4DjqMu8qvZ1bi3LvabTwzbHDxGxTaKsUA3BRR89Z7+YE+Z8WXTyaTGBBYtp5 uG4d0N/uuP+EkQXIIy05jMI8cCLb4LzXZnx91inI6x7mBTWyslvFICsE33yc NnOXDy7yhJUw4H5R+nERhdfwQ92mBDZFfF6c3/l7fJxbEL7LXy/MxNd7wq+i TM1ACPTF2a2j8PlghFfvTd9vUSgTo3P3R5Jh648cnbdIHD5LHD6qlkUGXo8j PO4+ErD069XmdzQyNMpKCAvckQS2kDQGHpw/F9Vi1DI7paBC24X7OM6f5Yl2 7Yjz0rClv8aqb4YMFLcp1iNqMqBiED2iifOnmlO2g7FGBgo46ovTcP5sZS/a GecsC08mz7Xn4PyRfPbgNTuzHHAOkhPu4/ypfvvqwNQdOZDRz6tUwPnj3l7F eUAb95fczQ0fcf5EZW2szq2XByfPt+dHcP6EljGKTrgrwHG4Ze+B82fivKqP FJciXL7EeOce7jfyr0/NFT9QhAiFtUFBuL9YztOu/dBXAnqf+EYR3E9mOp03 93QowfBg6+NbuD4j4enRGKAMf8v1OX/hmvTby+6PqApE069d3obXQzPTlV29 JSrwQa9hwAvX8a68nwusVGFvu2hKAq5LvSf2+c+qgv37OunV/HnZPcaRfkUN fIMXvq/+PpvuOtFqJqcOKKTBdDV/GK6Z5A9WqMNyyFjb6u+z2mfjjK47aADT mbKe1d9n15wtqPNhrkCh4lmunH+CkX5/b9SWgnaURr5N/sSfj8wV338beD6E gKt67a/Plfh8efUpazwXRP/4k2Ghygxf4xt0NlG5oUlHrs/8KQt8ZXS3f1XC A379O/f8vIf3J3tORY+v8ELN9fRmZbyf2W92JqxhMz/odesOXZlmhWJGFj3O kwLwdqgnoxrfTyq/o449fCQIEqE/9yjO4fy63268kSIFBbYPn33vwNc/vnc0 QE8aTj69FnwR5w9L7h3Bsz+lQU3wRsfoIhk2Fq770B4iA5vjdJMKcP6036La CwrJwp2yvZ9/rGWDlpaXtfPPZcH6gWSqDc6ftqJeEvteORC/0kM9h/Mn4OC+ YN9BOTDo0toYi/PnAY2JonlOHjwHEoPGcf60vc8tEpPC64HvXddrnD8uchJC BW8UoEjJ9jovXg/TslHqQfaKkJBG3iuA14NAv3rsjSlFMM9rKv+K67oTQjqs cUoQ61gb4rj6+2jsYtJjVWVoCdENqMJ1FldG60ylMgxKiaeKrP5edJbxfoqH CojGRFNsVn+vKnfeK8yqClFXby1TcW1zPKabkonz6Jcow2r+ZORkqNw0UIMX huUFq7+XxuST3hg2qwGS3xS3+nspKTg9eYe/OkiyP7q4mj/Urq0agdwa8M7D Qmk1f+ZyX7qO5WkA3+xpr9X82e/daTut/RL9fljEdvO2A7LV7WiqvtmMRBfI PMWND9BYgCxj+wke2Kzz3fWKDytUrK/Zf/0ZL7Tbc6wtWML9jh4f1zfCB6en B44wkfD1c6Vu/yghAAwOpfJe+HrHS9Oyqx0EIent0Juv+PzXZDh75rjvFxQ3 cDjpxMU4VBCfn3+VkxfeNRmMR1fh1zsp+mqnJR/M15MOnMH5Y5h52LuCyg8T w4NcjHg/rJNxeev+UgG4acQ9/hz3q+adVXPCrRoQaia+vHp+WbLUdZ298hDF FReZtAkboLa7Z/TdzvOC4UB9v8UvVvAxSr3p+YEPnxtvyn3H/Z908+072Vl+ eOHwwvwQzp+xzvosz5JKZFn7MqVYIBrhBsRyv48HtP+2vut8xQqhnR9TRZX5 QJ5jxdUS54HZvEfA7oM4v9ofpe4cZ4WFusqivCQBMPvT+nIWv57aJtmV4bR3 iHuAff9ssTd6QpPyKm3ihS2B207MM5LBMTUqxoGbHyyjnThGF/DrbzJ6c8JE ALiP3tUxxN+fxYrXV/8zfHCg9hs5B/+9rXv3uek/4IfaitnjT/B5J8DX4vX8 kADcPn5odA7XZvz70Hq6BvxJDypezZ/dguNn/xjdQQcZupTqNiijGc/7KXkF fLB9Y7+kBD5POGk6rHzv4gc1YNungPPyglAqDxM/Hzi+md7yF+eDrcexRcdz AqDdWV27G38eqCWpTwwVobh1La9L81xR4fxs1+NyXqCj5KYkfP3barqXhLQF wCNFUgnw+7ffssPQ0YUPJiUZ8vbg6/km2M6dep0fhKXIqno4j9zXvoueC81D OZaicYxse1HaX8kwfzYBeJUqeOIzfr7PQ7rKBn0+qFw/80QOPz95m2oQwxMB KMjVcCzH7zf9vOnvxlFe+FW8dqWWhQyidzJDSuwF4G+2mqgvfr7hpyT7y7F8 4Kk1XHB5LRleKP3nvFDID5u3D0bvx/kduZh0tHhRA369/S6w+v9XDWnCQQbN fmhBpOAJ29oflEJtstNDlXpk1lT86VlNCtKKezY8X9mLXIwv71TfT0OkX77J VXvHkfyWSMGNkbUoaFei6vsxdriWvQWdEGKAXY5p01sMOcFebM3LlwpMsKPp 69+JynVgzyo12fCXGbb5ugkO8PJAx3MRjmMbWGEuVTRioz3enwxRWtXwfqJV Oueu8W0+UBDwafXA16PZU/a7+yd+OF7wxfEkXv/eI+qyWhyCIDjp+eo/nNfi GyRjyPpCMBB0yqcXfx/Lk1pZ1TOicOBorucenNfZuU/Lf28Th+2KE4dfZZLB 2vxL/DsPCWg9Gvz9MM7r75LPFJmSJMHouq/wuwYy9MjJdwy3SAHPC4ZANZzX LL9p+6aipMFYUCkvD+d17imybLuyDNyIUdtKxnntLoLMcqpkwMK1As7hvH4u d+IPg5MsGHkEjyTivK786PA2m0EODrh7hF3Hed3WfM8mNUUOrm50qhLBeW3L smv/9/XyMKL5duANzut7Na+d99XKw6HPipm9OK9Pz4suHj6uAD8LZF664rwW LNmZ8WatIsS7Hy9Mxf35xfgHGZdMRVDU7b0dgPvxG70s5t3blEBSvqJVEPff q7IWi+falEDF/ihXMq4nvEYCjf2VITqGjzaF667dMocDhFUgPq3htu7qec/G JP1ikQqIRXkbruZ18AdHd0VLVTBNSOVfzevmGjDm+6UKz7+9/LD6/6k6Rv7z ZpfVYLJtf9xqXv9tIHOVS6vDU8mnfKt5HbfitvlymTq8taW/Xs3rTKOzwXQ7 DbBtmitfzetMSwvbfO9yhEofvle2CUJhl/iKqU7t6NjUk8j9+Xmoo7XwUumV ISQwJz3w52wlUkgyFB+J5gJu9UvWw7LMYLqkyxsawg3BD5xTIx+xAOnybEXy Kx4wGFY5wHmXFZLaj/cMLq72w2Pud/H9/7IhKFxhA15P5dBiivtj3WONzwsn BKB2+6tDefj+Sb9deHv4viA0MJykPMb79wt3T+6X1ZWCGTt7rfM4r91jtT+I 6EqD+PHl7H04r7kKw7aMN0pDk//PF+9wXmd+UOy0C5IBAYO1X+NxXodmpX58 yy8Lz9bQHr3FeW094xrtmS8LMQp2xYY4r2Nqb7FkW8gBfUw46DTO6wsBlCCJ fjkIuuPxOgLndeJQZNRDqjwYeIcN9+G8/j2kbVUqrgAJG0715OO8PmS7aV6u WAFkslqKOPF6ELW55yhoqwiOnsLTPHg9PBALf02ZVIROVqGdNbim5C49OntZ CRop9UEO+PprfOt3MFdWBtZ3IzyVuBY/LD109KMy6LeGhwvj6/Pn+6tHAifw +jAS8LXGtaSA+ON3TKqw86Kpz2peQ2UdteCeKtwsWbq6+v+bJWyzopuRGrRG 8bqs5jWZ78KD8R9qMG0cs381rw8NF1e/8VWHdUcPHVzNaw4Lu3xRLg3wynJg Xc3r46cz75jmagBPsOW+1bxOERByOcX8Aq2Pb3it52GHUjo4OfmNm5HTrGHe 080PkOTyUy+aCw+EBIgnKXixwqe37/OvZPOCIJkedP8PPh8FX7u6eYAPSkTb J+pxv7ZZ++hLvjDOq/4BEhVfb5by6Q4OW0GwdONMdMZ5HSyYsPyopQbFnKM1 eMAV1Ce0XdyPzAs7SFLyVp9Y4fjfdXyG5nzgNSz/2xv35/uaR04KhPJD8c1+ 3TCc1xa7nleiEgGgtXfc9sf9yoyrUCOgWQNshpgGVvM65u6jkHntLOTS814V EvVQp4b3LadIXmgzo078mWKF2i9pSW9L+eDhJ00mL9zPhPX7Lbjo/DB47Zn0 JZxHcc9Pqj2Vr0Q2qCyTjS0K+e295RPdyQN1Nx46Or1ghXCvN4v8cnzAP782 ixXn55MIr8BUG354tkmxtxvnNXcQ3fTONQGIMmKf/4Rfz6fVjt3D9y2q1/j1 mNXSEz37T6C6uI4XeByHyeo4r2lKMeefruUHyga5Y59/4/1vi/tuawMBuKRz //h2/P3tvXJU7eQpPuAwVC/txH/vVuv+Y1fu8cMZqbx2dtzP44QCdvb2CoCD lQvtIc7rNy0GAbHjGjDOYXd/Na+PPP+cvXIlCZlUeouJFksjm/nM22ty+SC9 sNAgHd+vZxrOXX3Tyo/vhx+CTjj/Lmdd817m4oPdCRmmiTgffHiuXjILE4DK ouwEZfx5os9s3XKypBA1+Aw5/cw7ikqiR7dnvuOFWL+jLDkr+Hzox3aFUUMA vAa5B03w+z/0Qfeu7WE+qM+cjXHF11OS+aBHbRw/zhfV/Ic4rx1dR2Um03KR SKTC+SWD/9Cr+yZcTkwCsPSoc2oEP//U5oEYtS14fxVd93ERf/68rr1sEw8E IGzblzux+P3eF0A2tQO8YFJdSFPC11PbsGbtQ2sBePIpZvcR/Hxj6yuvo8/z gdo3i7kOnNcCBRZHTV/ww/LFnKCs1d8bSmNShBY04FCE0srq9yXYysPGvSMW 0bMMJGM7WFHC+7PKv5j44OUWWalsfB7JONSRLeMvABzpfn6D+PUVabZPW2QF gNPzr8MhXB/tlrf7z5oPtOVLOoPw5/VjqLb4NfQY3VJ8s9Xt4w40NHlDc8si P1QmM/3ciL/PoL21IK3BB765VOUE/Plc4sTUw8zx9d/ZVmuKX8/c94xv8Fl8 P4hdeOCNH7+jf/7Rn9B09DpKP278ohaKvvjwBZsIH/Rd1ORzxJ+vQrHYU30L fn8Bywf08fMPPLboP3qCD7Jc1opo4/cTc2B+/AKXAIwZT4k8w497i/yp0THg AzarnY934McZ5kJHvx0WAOXzNxPO4ce5Nz1WP/RXA+biHdRX9zOEV8uakt7f q9SBCK+Wq2t5KChn8J9Xe3Ts+gXH8OF/Xi3FPXRFl2P4n1f7frDcMExm+J9X 26td5vXp48g/r/bEnOtbX8foP692SUpjyMhv/J9XM1Hk7Ywvnvzn1Qby0y3S L9H/eTU9DdnewkP0f16NySyU8aLZKCK82rFd9zS6FgoQ4dWeJxRNpn5tpBFe raJSbPL28y4a4dWUBa3MG5y6aYRX62VplV6X1E4jvJo3f7/E4edtiPBqB/I0 vmwwr0OEV9OL8//TyIzPw//zapl7V5it/N8hwqtxz29m+B74HBFeLb7RJuHh w8eI8GryCw8ct+9LR4RX8+RL+yHifgMRXk15zEHrwP5YRHg1Dqntb+OFIxHh 1Sq7c84M1gUiwquls0mv3DL1RoRXO27Sltd94igivJp028tLI5l2iPBq329z GH+1t0SEV/NZU0VJCjNGhFcrlWDiEQjVR4RX4x6Q6gvU1UaEV6NmuewwYlVG hFeDmsOWskmSiPBqTjEFzW7c/IjwaiSqmzfpIjsivBp1IWy4cIqECK8GsmBH NZ+jEF6NqjzyvsF6jEJ4NZKmDDe3ag+F8Gqlx15mmPxuohBejeof1nAq7iuF 8GrUMk/zZO4KCuHVSHsf2/y9XkwhvBpJiXrAek0+5Z9XG4o553/oAYXwaiR1 iWpe3jsUwqupJS/xkG70/fNqByQprqdUhv95taU/vZej9g7/82o9hQcHY+hD qP5rnbZazSzSzyhxZqYNIx3Xku3SzxeRR8f0H1PmMbRAT3oWcm8FLXcJexR6 j6G9d/LVzQ8ywKaDRROiqRNoj79gn3Y1EzRevRWguIuO/prMfv2izwp05cTr f5LoyIHfYlzsORs4VATusKNN/vNxzSXuwjfGfiLCx2X4JlmePfCJRvi4Q8p3 aooi2mmEjxMqSJ5pieumET5ujW9S8S+3Lhrh48r+y2tyfdSNCB/X3xalbT3S iAgfx7BmAZVlfUGEj5uw53+kKV2ORCquFkvIiMDESV4OPbtC9GRBslLMThQq R1ZP0M8Q4edq1m3y7gzIRISfI32cnmHwTUGEnyvdKPElzD0BEX6OamHAoJEZ gwg/x13NW8x66Cwi/JxwnfbWkGU/RPi5UtU/bInoOCL8XGmO0s3pK4cR4efA lWsyP3g/IvxcfKQF2+w5M0T4uS4Gizq5cANE+LmuTaqepZU6iPBzcOlYIV+y BiL8XGnQndDnanKI8HPUjdtouh+FEeHn0r2k9/RaciPCz5V+dS8x3cSMCD8H MkzSg6F/KISfI8058vN/mKIQfo66YsPhUTBAIfwcacfaY7MR7RTCz1EzO3po cvUUws+RTrn7VZRVUgg/R30mKjmxr5RC+DmSwl+ztB0vKYSfI+V2JuTdyKEQ fo7kcGbl8ot7FMLP7Tw7Eca+vuefnzv3pvmn+u2hf35OZ/LSbJLP8D8/t6PZ MPTi3BDyl7jlfev8DPpj13X9iPMwcvlMDd0S9RvdeF/AeejIKBra0fdax24Z vdrQsXSBbwx5pwsvKxavAadtPXF8LBNoI9Nfnd6NTBBVNpY8KUhHZf/dZfl+ iwUynirXPbxFR0MPAh9M430/pL9Ny1Oi//N6xRLDj97e6kWE15ux0Cp91pJH I7yeXrY+b0RsC43weo3miaLHTbpphNd74txz32Oxi0Z4vbUblNe9LWmlEV7v zIT2Brusn4jweqEg/fNN4HdEeD2T/fGZVic/IAb+GsET34VhzvStN5deCQri EnOt5RQFFz2/EdFL+YjwfIVe627kDz9AhOfrKtZ/VH8kFRGe75HsSHbDnuuI 8Hyl2++q+u+7iAjPx+EnlPhqNxURni89Srn1tfFpRHi++N1Tm+6JeCDC8209 WX7EjHoEEZ7v+90vBU9GbBDh+eJHOa/qnfoPEZ7PMvlXT6KLESI8X5dL0PVX QbqI8HzSPaGeEx5aiPB8TjErm04EKCDC85V6fv8UeF4M/fN85EMsjUK8iPB8 pRbbLx4vZEWE56NexV9U9DKF8HylZay7Nw3+ohCej/Rb12Dm4DCF8HylXZ8T Ux27KITno9ofO5bn8YNCeD7SgOjw44jPFMLzUUWmT/iLlFEIz0f1Mroj8PE1 hfB8pJ+pUyb3cimE56OuSeRk7r9PITzffm5/9jKngX+er+Zdf42H9/A/zzez 6UUBl8Ywmq5JE68TmkYvWC9EMSwPIW0qx/wb7nk0IPl3TYjOCCKvzC6Te/6g +3pseqY/R1HU16x9Xf4kuGIVfaNgYAxtSjY7eHKJARYMHNakaU0ij771CZFO zOApLvRH5yQdbQXzpM+drHjfLKbsEEVH3yPkNxmbs4Oh0ozRf+yTSPtxybHJ DA7wt73/TIP5/31hVgZf4ePvtTTCF27b1z6wtaKTRvjCu4yjTPo3ummEL3xh 3ODub9NJI3zhnhX+nMONnYjwhaPLHtNXgxoQ4Qu3nZTtX35WjcpNMh9RNYTh 3unHc++43yMt/32Odb4i4DSZYHXtw0vU2SOr5pYpCsLj29b7Bz1B9nacXYl9 YsAVDcmSOzNQUZlNV6uoBMD2v+m3PyehZckVNb2dknA8e4SWceIqIvxi6YmM j1XboxDhF9M1zrFN+wUjwi9abq/6Ujrrgwi/KP2u7cHeAldE+MUuxvRr2/wc EOEX83bmbBP9zwoRfjG+8YXD7c6diPCLpD/F3QevIUT4xa6nNYNXnTYhwi86 7fh0OyVbFRF+setZfXKmlAwi/KKTUZ3EVXNBRPjFUqtwK34vTkT4RarF8Ouz MwyI8IvUvw0pOe8XKIRfhF49zeMlkxTCL1KbSIhm0Uch/CL1SslyRXILhfCL QOUzKhCppRB+kTrssH2j2UcK4RepujY5g6ffUgi/SH3+svQR83MK4RepkZpp Ak2PKIRfJKUKc60/f5dC+MW8E8r07qKuf37xxenLslIbhv75RUrZ4JlPwcP/ /KK6uv/RVytDqGJHaKxl/y90kqVF5TRlGIWE9YqVjy0go5+czk08o6jLm12f /+VfdE1/rqPi1ygKla0ZSDyxBvKkJyStSsaRwm4fp5IhRqip0ZEWmZtE8nv9 ZffuYoEwL7kS+UQ60vThYOz4SoYyHaeFkR30f15Sp90467jFICK8ZPojv2sz ly0R4SXZuSUmZCqbaYSXrGa9UdjG0k0jvCT52BpI3NhNI7yk3wGzHSx5bTTC S+acnNBxlWlFhJd0tHHDO6laRHjJH2sqpBTyP6J5vZEKrkfCoNmWbStX8wY5 idzaqD4kAhlfXwRHBhcgwlNuGq/gp1EeIcJTdjFPRkn+TkOEp0zvSTZisElE hKe0NJu+Ll51CRGeUutS0Ps09QhEeErqT+cd684FIMJTQsO8gNkDT0R4yuSh 8RM0b2dEeMrv3s+OraHYIsJTfn/eZkNl24MITynd76CY474DEZ6SxEO7pETf hghPqZXb9Chv9wZEeErqvYq7CS8VEeEp07UYNs4xSSDCU0JjGSWFkw8RnhKW blimCbIhwlOSGMSmb/CTEOEpqS9H7qdyz1IIT0lSE2HU+jpCITwl6crIUwtK N4XwlKUOZ9V2Pm6kEJ6SusNc+MvfGgrhKanOvXERXOUUwlNS84wi22SLKISn pD4vYbCTy6MQnpJ0v02zUiiLQnjKnXbrqi7G9v/zlDe3Zpx5vm/4n6e8ExI2 bY+GkfPZd9ZbIqeQhmUSY9bMEIp8OMnv7z2HPP7ET4fPDyOpAtu0RLM/KDVz 777rQ6OI2lso8E2WBGbNt9ifPxxDhqLLRu05DBDr3VudPziBDqnfL7YXYIbx csoTDnx+TjGSfr47jhXGHGrOhMbTkaB5UbzWChu4cc0cjDwxiS510kfsbDmg 1D3cNXGl/p/vXDgUeprh8xca4Tt3G9ROcRV20AjfOfasp6z+VjeN8J1SzcW8 zZxdNMJ31kk171hb0YUI30k9dF9V4/EPRPhO1Wt32kala5DmVr9yNyZh+L1T POAXdxmSv+PLccZUBEqfPX+iwvIafRxP/10aJgrShc6qGStP0YLBG6WKEjGg xB7t4D1wH5nFue4qnRGHOxJPrx0RuIWEZRyVOmVwPtjM3V25GI8IP6qslBzt cDwaEX70TLel8baOEET4UdJhi87SaV9E+NEzXYwcXZNuiPCjVB5Zn5rZQ4jw o1qpFu/5HfYhwo9+t2ZmHFM2RYQf9WGyvXQhDRDhR7Vs1ghzxm5GhB+Vrlv2 ThJSR4QfpcapNphIyiLCj5IORiRcogohwo+SDq6Z7ljiQoQf7fqxW86OgwkR fpTarJmoILhIIfxoqf8lF2o1nUL4URxoxoFn+imEHyXl6brdY2yjEH6UyvLi l7tQHYXwoySVvV1KYZ8ohB8lBfMoHGGiUQg/ShrX3OIn8YJC+FGqElu1pUY2 hfCjpMri989fpFMIP8rB2hVND+j950cLmC7uGR0bQswUb4njOoNo26ltGo74 fAAdfz+tOUBHV0YM7u2eGkLycy8te1RmkSbjuS9GV4bRf8KS7Tlii+hdRyl9 4cUooou+22j3dxkxXzlFmdAfQwZvLnKuDWcCOfq74pdadORkVj1iMcoCHkFj p/6m0FFGe48p6zE2GGHwmZljpqNtuw9OaZavBUMd4YSDyl1I6VgsqUuVC5ZU ly2F9UtpKeXVlQx7uaHvW11fmWQbjfCuG0I+Xz9yqptGeNdNg6+817zqojGv f9jVz8QP4guDX54+6EGEZ70r/+0/Gv8gqm52DZo72IOsR552q4cOo/zLge+0 /oyi5vAjTAViw+iceHiv59NpFJ2e5dbHMYx6bFV+Mj+fRweOt0zlhowguvn1 w2eDlpBiAaeJW+MoCrrz5lh2DjN8/eH8ISCMjhr1A0LMVucoM3+GBp+io0uF V5vsktihLL3P/O69CcSYrqV6zXsduKe8MlP2a6AZ7pdwYB3ihjkO73GT/V00 wtvGdV4tnI3ophHeliuQ8z2Ed9AIT0uK9ylTKU2lEJ62flRgObCl85+nddaM z56dGvznaX21TeI6zw7/87Tj7T+dk5mHkWezl5h64i+0t7XwjNj6YcTSnDhK vreAHDuSeUpGR/B5U2KZ4ehflGO5a6p3EO+PexVazQ3WgJC7bHb0zXEkSVc5 rVTOCPMjT8I/NE+ixjrHvAQpFsjqFSzvvIr3ww02+fWPyMCwVUOjYy/9n9/9 sOzxn7ER7sP/87tsne+aJGszEOF3DcPsFXTqmmiE3124NUn52NlFI/zuCb1k szfm3TTC7x5Utn66XaGdRvjd8RCzjvjBVkT43QIqNTGvthYRftfa9acjj90n NL3n9+3u68JAZbqubpj6FtVLNqfY/RCBdOMPzhHzBYjwvfEPl7Me0B8hwvdW tIbVztXcRYTvPfOxa9C4IxERvrdS16J15vJlRPheef0FPY57EYjwvVBtkXRL ORARvrfLNPk/ttNeiPC9Ps6hEvkjzojwvdzlbH/pE7aI8L1dZy+O0Nr2IML3 Quhm85bpHYjwvdLh7LoOz/UQ4XtL15frXHy/ARG+l3q6R5/soIQI30vynPF3 +yyBCN8rfbXN1/oKHyJ8L9U9acvmL2yI8L1UvsPrXkaQEOF7SXZuY99zZimE 76U2U7jh6iiF8L1UN/3ozIJuCuF74fWRtmGLJgrhe6ncDOdCyr9QCN9LrZFJ 6r5STiF8L/XvsdovzUUUwvdSrzyJ6I/PoxC+l8S2rki7MItC+N4HL82uHhHo /+d7G9d9634Gw/9875rOtnMxu4ZRirXF9IktU+jFy2CuX7jfqep1398jMYfS //CPercMo+y17N4ty4sIGo5905odRUutUeOxv1YQfUD0hvOlMWTWemBr4jkG eCpc6361bALZfHf49nGSCQI3B0pOWNHR7g/sBldcWaGxj2fpC94PFz1jRIo/ 2YAlIXkg6cYkehV8WX3dRg7g+y13KWuw8Z835tigoBGXVU0jvPG+mlMClrId NMIby1Z/7jtws5tGeOM623v30/S6aIQ3Lu6JkaNt6kaEN464oDodvrMREd74 xvam2cquGtSn9fP7z0kh6ED2Rhk3y5BkHrXXbLMIGPosTlo9fY10f3U6TXiI goND01xodS7a9er654MPxYCUs5w22Xcf8c54hhZ0i0Nm/fL2odJbSD6DU2HD OklI9EtQrlmIR4RnTlY1z+RkikGEZyZNmvtI3Q5FhGd+tEs9tTDADxGeGfb2 bXS7cQwRntmnKkVfn+aICM+slVin7TS8DxGeOf726yMqDaaI8Mykfn9HF04D RHjmrsDsEi1lHUR4Zifqlo79P9QR4ZlLlyk3BO/LIsIzO13t0douI4wIz0xd Egu9W7MOEZ6ZpHrAAqUxIcIzl17S8Vb/tEghPDOpyNyR0WSKQnjm0uNXPWz5 BiiEZyZtTXxlXtpGITwzNcd0/6vbdRTCM5P2RtlZSVZSCM9M0ovVca+nUQjP TO3R5yY/e0EhPDPp+aMA1c5sCuGZqfnHdF9p36MQntkjQy7Qu7nnn2e+OacR 3PtxCFny/8f2LXUAZWtaNvSdGEZnXl1x2cRBRyNkR3GXX0Oo5uLDzrfNM2g2 JJNlNmAY79e+PZn69hvJ32TenXtpFI2tr53dmbOMLvjKHhdTGkPbnIxkA+2Y wEbh8C8ReTriqXlx5moZC/hne7G14vw3NtRYWAI2mHqaWeUiREdug7Pafalr oSJXV7uvuRtxdB0oOcHABWsYQjjLmwpp0b5OOrK4lZQodWa8OthKI/w1f/rG 6wqHu2mEvxa/++Z84s8uGuGvWaztHjXqt9IIX93EpNGS9G4AWch96L1Q2I0M NobcLsefZ+mITXaS8yiqJPE0a8sPo+IZLupd52lkEeY8+o5pGF0aEz3efWQe LZf+nrOyHUGhWTvWl2ssoc97DuodxPnvBwGhgjHMEKjpybclkI7Ov3Niu0wm w9zjPT7RoXSkIdESvceXHRr3uy0oNk2gIeGlPjGTdbB77vXSXtV6mgbD8yrF H9ygGT7lmSrRRSP8t99CndGRK900wn+7b/A/wjbeQSN8N0ntj6V7ehqF8N3M IRlmNsHdqFd4STDySSMS3pl37eiJIdRXyt59x7Mf7aoaCzfFn/frF3u9jeO4 T+k4dmUvDiHx/Et//XVmkO8V1l2xe4ZRn918kALrMkpU+PzWkWEMnfp2MZHb lwUaaNHbTyTR0eW1ZfuHZsgw1J+e2qZDRwe/XOY5IrzqW6w2fMj7SRPMOBap Zs4DlCsmm1hUummENxccknD1E+6mEd488jZTQ9iWNhrhy3u3XB9rX+xHNoXn Cp/6dqHyTmv9RrwfVc3SLGL6MoWKew7aPlwYQom2D79a3PyDpiKeMu/tHEUu F4azJrYxg579df1QNzoafr9ZgeM1K1TdNLrIcJmOTg1492xTYIewcB9jAb1J xOjYken6jBu4GUlMRkadNMKz1wrdueqBz1OfKtZUTHxqRRnDds+yOIcRmcVb 7ds9OtISqHyzjz6Eyt55crodW0TsTi3sWl2jaIY5x9d9zwpac6F2R8v+MZRb 2enAxc8KinHBbWx4vf/WfPaTKZUHTFgieSjnummEb+eQ9+Xik+pBlPCT6b7Z tahffP+Nm0cHkUkcyzqXlR5knOaQ8CtsGLm9TK6ruj6GdK329GfzDaPdOyZN ti1Mo9SPakJnBIeRy3T31S0flpALz/Pc1d8vqQsM+yi1zNC1gfsnPYqO5Esu j7PZkyF98yP/LSfoaHCfsYrLW3Yw1D+g/f7kODrw4PzE4CI3RJ5KE9GL6aKV 7qJceA28kPdVK5IP768JP0/KsK6SH7hDIfw8A2eGlCtTJyL8/KLJiepH3wb/ +fkn4ZcTf+D3T/h5d3GB/DoyPl9kDPTc8viFMn9TPQWUh1FNlFe9WsgCMjrD ck7s5wiy51I6vKj7FxX/yL3B3DuKyBVW1koaa2DadTJ6b9Q4Ei2LCT+UxwgH nunv+lg1iXL59s9vWMsCaYdLpx2v0JEsa+iFrzfIUGtz2WsCn2MIr69svEJN 2DGCCK//9YQ/KcLkCSK8PphsMFS0aqIRXj8iNmvFurqLRnj99+WeL3JsummE 1+/q3ZqY6NhOI7y+Z8Ly1ve72xDh9UstY2TWctUhwuubZhR9b8z9hCZ/Ulk/ XxSGjiH5/9jI71DsvUAL+mcRaLmycGD7lueI8PzxIseyIswfI8Lzxz+56k4V T0eE5294kHf6jdwNRHj+Zg9uT7/Jy4jw/Evkq1bubRGI8PzNT8S7FM4GIsLz pyedf5LY4YUIz98cN2nYpXIUEZ4/b1iK08zUDhGe32cigEVf3hIRnh++BUQb bzVGhOcvTfFOZBbSR4TnhycBIeJ/NyDC85de2ERam6+ECM8vffrkaLKWJCI8 v/QBMQm/r3yI8PxwwvWqryo7Ijw/1UBb1K6IhAjPX8ofYiD0Z5ZCeH6Sio5m 09QohfD8pXTV4Lnxbgrh+UkJpsth95sohOenNliL71b+SiE8P3XNvqbvX8sp hOennq7aW7K5mEJ4furxM4O0yjwK4fmpsUKDOuwPKITnh9tGPo6Nff88/07m lh1pm4f/ef4kBteLnP8No1cGN4GRdwrJT0RwCOD95jKTvcfbmVnUK19XEVUz jHwKe6z/Ni8i+02Puz4vjaJgtziLqOoV5HdA5aBN6Bj6WhJVcPIkAyTfTOhv fzaBrDKKfi61MeH7Ycvau//h+52FdEFjLytw/T7z58JNOmLvURaU+cgG1VvX 95dlT6LdlbZfTkhzQNiiwS8/t+Z/8wW/uQpTcxmraMR8QWPW1myX+nYaMV9g NVbuI3a9m0bMF5xfaPFO3ttFI+YLrv/9PaLt3Y2I+QKdWwomtsmNiJgv2KDm Pn/X8AtCT2MPXO8XAu/ezomRljIkvo28Z5OaCGgp+0s8ZShE06fD+aOdReHM eO6u0Q3PkI9PeKpSqhh0KTBaH9XIRHMPfG6qNYuD8tsjnEeEU1C2c79cC7Mk LFUdubVzQwIi5hcWTjmlXdkXg4j5ha0zu/l9/4QiYn5B+eent5LFfoiYXyit O681MHwMEfMLXVkfN4wpHEbE/IL01yDLmA37ETG/AJlKriFqZoiYX0hP2Og6 YGyAiPmF0kYe1eFAHUTML3SdFxvl0dFAxPxCl1fv3eEBWUTML6RnXTfUOiWM iPmF9NRvCwZi3IiYX3C6bDH1dogJEfMLYDRm4Cvzh0LMLwDfH3nh6CkKMb9Q Wmw2YOs8QCHmF6iOKpfDpNspxPwC1eRsuUFnHYWYXyCJPEsi+VRSiPkFmOCt CpIspRDzC9SrD7Msf7+gEPMLJN6J9z90cyjE/AJVI9tL/tQ9CjG/oHzE/ZpU dM+/+YXzIeEiFflD6HS4fnjk3gH0oZT72kGvYaRsnON6+8skMowr0micGULp +6QfquXNIG7+2JxTnsMoTfJRIn/2b1T1+/Cb/tOjyL24xQZFLqNWcZ5nrBJj SEc7Xf2pCRPAmxb5mxJ438qRTVufywITdT5aR3H+3vS3+javwQa+22/W5krR 0dKm8nrK5bXgfv1cC+V1Dwq78zZZc4ITah4bj670vaAF71Ibz9/EDefvlyY/ mG2hEfMWNuvlN9vt66YR8xZvR04324500Yh5i/AvDfxPQ1tpxDxFxd6PJY/i B1B85YxwnVs3Cvs+G7joN4xkvhhLmwuOIpYvrXuScP41dtl83bp9GjVzeLBv WjOMHF9dX79Hdx4VH0xv2rxzBBlaSQgNsC6h+HFBLt+mUeTNWx+z+xQzbLL7 r8jiFB05rVhbqs2wgvxee4EkKh2F7VlxMHNkh5uZThIsUxPI/seRsq4N6yDD 5U3a+/A6muzPs9RXn7nBO/zOmmBSF42Y92gPv3G4LAHn/f/mPTSS9kXslu2k EfMcpI8Vd+d571KIeQ6xWC/t22LdyO3owQh+tkY066H0n5DFEGJTX7SxlO5H h0OL+QrODCOWByNNrhkTyJucd5b/7xCiBzN+6OGcQa7bjFcqTYaRcx+pVbzj Lxrs+qH/dnEU7eYOb81zYIFTKbxHB2/QUdv2QbXebjLwd/LZs1LoyDLTppLO xQ3okFacIOUnLTgv7AAdeEDwvm12LN5fEvMlw2d5th5R7KYR8yX81/s2qPm3 0Yh5ktn7AyKVFf0o+dDz8TmpLsStNxFVcnAYmSQEsKY9nELCfAa3QuaGkD0z 9ZWvzx809mLi+wW8H3GyN8mTV2aGZvND+S1H6KiMQc3zSQYrlFWMfe/D+48K 4cSizbzsYFkhtXDTahItbHp8cDaLG7J6rS/NLnfQiPmVnoiqw6Ip3TSzdUc0 I+Rb0U2LX8Jj+PuRn34ZdByfG95p/gnJwfvNCx7GsxcMFpFvlVtpYDU+b8S/ qDuiuILufmuKu79rDJ1n+3E/d4UFCu9cffEAr3eH7R9zq67xwCYLaunPkG4a Mc/CUj3scu1gD+q2WqtYwFeLcoxFdNdtH0QXNursePq0BzWyhAp1nR1GsdIX dp3dOYZsvVqtU4WG0XGtLTfq66ZR44OejVQevB+/Wxxo/39d3Xk8VPv/B/Cx zUhZxlIZkb2USCS6mffnipQWEilLSipbtGfpMmWpNJWiLOmm1VKJEKKOSinK dbnc7DMiM2ZibCVDfuf+vvfT9/H4nv/m8ThzzpnPeX8+5/2axzwfc2MSsuWz v0eR9Xiixsf7yHMZtPSYZOP7kyKYErMscu1lkXvpjeWsEBFYxQdSfHLlULlq i9tY3ABs+M3l7vEhJaSrV3WuaT+H0Hd38z5hqYwy6hrrhyLI8fjXy1DYm7z9 XK4zt0i22Jac7oH+3iV7Yk7w4dhWOXrtrAFY2PxFfF6SnC/fVa7PZE+B7nG9 ZxFfBDB1KSBgyJyK2FX5IzqXRWD74YFEhDEdnVXIOzM0wiEsnQ3ylb93gmW2 q32hIx+iAqh36r2GQOnlWIIumXd7dpjFl+iLoWhxwc0jAwI4HKs2IQynodzp Moka8niyfb/kG9fTUVjUHZ3kVC7hcme+1L2OFoheWrEwpZUHXjX2s6+ZkZ87 wDl2+TAPrM4RZoPNVJTmu/iRwjXy+ewxum1LFB2VvH6Y9GcAlxDXb5vPEKug UV5sZZl8GzEr6koe+dCGioYA7T/DyfVPttqMemYYvA9WGN4h++cn40EOmVsm QWfUMleKzJ95vwW97J8niwL2eVQYhpHzpb8ozzVWDrE8LoY9qhgA4eEYGlVX GbEfxo1pnOEShJtGEL+0F/jer2nJh/lwdazmd4rVIIy9bqmNJPNV+oXkjQfi qEh11tmMnFQRqKq4xvi94sABZfcC+QA+KJR9DgwaHoLxq84bjcQ8qLtf93lx hRjMEiXb+toEoHQSdQbV0pCbr7lB02kRRDzs8lT/TkeGV67za1K4hF3Ere1e Qe1QI3plrT+PD0J1w47l1SL4tH2bhANZ75P0ZIPV5yeAEtdlpP1VAM2n+9VC FtLQnF2y2wzTyPVcO1UaZZHj/6Yt8vJZLiHNb25hbP4Ear/M1zwQTY6X/Yxs VcEkfNxb7/SSvJ6rOtouAfVyaPKpkucdDyF4rVxQOOyojMIi7kx7B3IJ7I0o raGjuyIzmNgbTTyb/GPkaidgb1SmOmZb96zvpzcy+fs3vYXk+bA3mj5c/Jkl R84P2u03zu4j4C87Kl2hzwfTtu0ONv7jYOPtPdr3Rz+kN95XPGYwBWFapks6 yPzoaBGgrKYngUIupGfbR36BuYuLY8fvSaHte3utlr0cBEZRHUNSgop2Hgvc RGOLwDFTYXQ9WxYFEju92j1EP33T8Prhiq9v+gH7Jh/t9h33E/IB+6bVbBPJ BqW/Ceyb4NPqaF2CQ2DftLTRjtbiySWwbxLuDbv6JaKDwL6p8nXL4u7odsC+ KU8i8F2scQNg3/SjIGO1aWs1DPxu94yInYveJDN0pmyeA9/XIfuXanXk2iGZ G+ReCNg/iVYZfAkMzwHsn6Kigp9Xr8gE7J+MY2I16tZcAeyfxs++yijRYQP2 T651q1z9Jk4C9k+ZtTnlXVnHAfunpWF9FX0qIYD9Uyl77sk363YD9k8iEzvF oWPbAfsnSs/WFSHgDNg/sfJO79rsaQ/YP2W+zLbauW4VYP/EESRImGksA+yf WHofFlPaFwD2T+iK6cHHu7UA+yeWxl3nzYMqgP0TqhH6XNguB9g/oQ1jPgeb KID9E+IGWy/Q+8rE/ol18NJf2XpCJvZPlVerl/TP7GZi/8TK90ar6v5mYv/E MrSvsfCsY2L/xIrz9k0bfMXE/onivPxIgd9TJvZPlN52xkhPPhP7J1Zm+sY8 83tM7J8CM0fDxcU9P/2ThN/owwem/J/+aW6rktt6Jz5UrXja5zQtgokTpnOr yPnMC5jtdIQzBn5a4gclr/nQqPDHOwUyM1ukPHIcoAihbLHK9HTxNJRLHd0U flQISsbXQr33SCIZquS+qHsD4DyT15nSKI3Cb5d86nMUQeK9iPtTa2jo+fPl 69eniMA8svzk7xUzULrC9E3t4kGYE0pozpkzC1klSaSnLGz56bH0z/t/7DZ5 S2CPdbS2oqovt4PAHsukcXBYg+x/sMd6+nCHrIcXh8Aei290yM3iHBewx9J+ fpdv9qIZsMcau2UQSjvyAYKDPjMOcOagIi0H0/1TL4ExXSttZKiORMWDnh+W lILTCqeQem8Gypw5/FR/7yOI3Xg0Xj5VA619ZKNBcbkD/qxDev6N81Bma246 2y4dBmw33zaR0EJLjS1TajdeAuy9xl8dNyiLjAfsvUSLtsaoGP8G2HvVq14b W9J+CLD34hQcVE9R9QfsvZyVHNZWbfcB7L04sS+Xit1cAXuvTN9VkknujoC9 V+YVhdP7fX8F7L0o9MzCpZmWgL1Xpmj7CH/vEsDeizIdHWE6Qw+w92KZJo9e ypgL2HtxrmbGTC5XAuy9KLPOinYpyAD2XpQ3e+tknMRM7L0qa36Ix+8MMbH3 otRrh0LCZyb2XpTZsJy+uYOJvVdlHNj4SjQysfei6NpchbS3TOy90FaDZk3r Sib2XpRHU/HNWsVM7L0oupIjGfvuM7H3YpmovSxNusnE3uu9493cEI/un95r iqVlnX2PB7LLLVZ6Lf4MSx+1B0iE8sHObKTQInsQKk4w/swa40FCaXtC97VR kEG++V77+CBxNFnWMOU7OP/12DktSAA50T608v0/oP+e3J7lc4Vgca3ObK2N NHIuK1vgwBDB1of6n6ZvU5FAOLtPnuz3CPnelUf1ZyB3f9PyUj0RvG0z0hee nImsUt9UjC/4BCURB2j0HnlU8qRm5I/ux8RYYeLb76ZK6Hqauf3xF60E9mkh PzziZDZyCezTeBnClLBhDoF92oaa7JmbMtoI7M8mqZ5qY2Gfwewau/CrDReQ 18DB9wf4UHTKpk1f1A8ptpu59Yv40NMccTRu0TDYJHQYJ07zYK2GswrV4BvU Gagqvmf2w93sGee+jYrB2Loixe6jAIIjJdh9ATJINnhW+dqDInh/o/6wmE9D jGFro5hTIsjiXXpb7SqH0peU5VRMDUBSoarZqwWKyPjCiQ/VCxuI63afPH+8 UUKSDq7xvd1dBPZxiLrBLSOJS2AfR3XS1Ipd1UVg/0Y58+vJjg03mNi/8R7c tZ4v4EC27Lkn3iVNUGRoFP8n8CCDO0RfNNEDdqnvEqvJ/kz38jLD6RMDkGDZ wd7xgwetXUR22vcRoE7dXXDJlg83c+LOpb6bgnFTqdTF3wRQmv/9B8uFihoc BJoKZL6R+Ts8ZedHWXR9Tznt1K8iqFWsuG0lp4RMyuQq46RaiAcr5F42/EJH m6eja9sUuQT2eAfKWTuUl3AJ7PF0pYWK5pfbCezv/HuK3w1k98LBnVeVVgx0 wbdNao1N7nxwPZ2e1588BOzr0k/jyHqs8AxeFOMthv7HA+EjvQLY8epIMaEl g7w9fZeF+4jA5PbdiydSaWiMIj9kfVEEXwoMDQpl5ZCl2oL983cMwuFMhRU2 N5VQwpiRuKmtk8DeL7MheFyNzDfsosTdNQ2tYH3ezvsKeb5lvBbt4gARaKuW iIfJ50P/C7OAdJMJaG+tVSggBFDgZh3TQZ+G43rsoFJbIYzmOFVHjVHRqZeM ulay3i9UbVZ/cJ6O1kwI/SqPk/3sv/7PPMR4h2ZENzxe1eLv8rYe1u1bN0vH qA+MqHWdf8Z2Q9vNQYoGmW+0mqOl3HWEkK1Yf/O2OpknDD1XaVcOw119hUZD RT6cH7snCGJPwrlrDlrtZH8dYX7BV7FYBh08byC1kMzXgRli94hfZNHH3AYd Glmfu+ZPBbVnyqHDqd4fO5IGoJpXwiKESogmM3zLfBeH2NrJqd5hpowCIt/b X4ziEtgXUoZmvVY7e535uaR+KnFXD+xcVtVsQ17fZVsXH7++L1BVSZOWl+bD 9eepG08fnwJ22sf01H4BBC7rYb8wIvvzTEaF7CURHHG1CvZaQEfxMq8tpPs5 RNiYa69nVifkbjHObbAn85zPovWajkMwW8yOYZF5xKFYc+ItXQzHXmRplAwJ gKOfqPkslIaMPKMWNCWJYGVINUOxlo449+bXXyH79eR1TlaD51pgYomKTH89 DwIrA571aYlgQ0SQTRV5vDuLV7oR76noTFbS/n9+37OVG/1qeTgdfcix2H7D j0us3sw+NzSuggLFazg357URD52XrPPjcuHBPEvzXWF8ePCj/6PL0WF4Xixv do/KB3WnbeUFaBL0eUrCOeT4M7Q+9z5VlkUhgZOET4QIpGMdGA0Rcoiv4L/2 x7sB0BIrHOLNU0bBp4mB1gQyj81UMXx1uRecuwjxtyN8eMxV/pKmPAidToh7 7jsPqKaKB1EkFS373TWLTuab4l6B5tl0DtyQTa6U38uHeY/klEu7huDNIdfI DnJ/M8lyD5scMUh35nSc6iDzrk65xKoXNJQXdNn26FkRPLAIeiMeoaNt1d02 ZWQejJ/fcOGuejsYRuQkz1Tjw4SiY+ypIhFQ6it6VpP17uPPSnONmACe/Vdr HYEAbBfusWZq0ZBVIO17Jplv3mbphereoiMjc3PphHgucbc85Ags/AQehfoL 7ci8IZExpmH4cRJop9+dOtAqgOdPHz/7/EYOzXrXtPtSjxAuvHis2WSvjPzn lx9rDOES2GdS1MXuyfkZzJl6lYft1HpgYKPai31RfNBYdysvatMUrHoXvNub nP/Z6w+lPdEfgh6pGePhQzyQ9/3KFQgmYDLVdmX3OLl+7Ynz8/akoXUr+ZeK yPUr40TnYGMlHX3d9UTYkswlZm3fPUdyZBBESndaVEd5EBVsmuFTSkVxvcdT s8j6kNl78XzSoAryrT12stWrjRgc84p6eJELMmmMef/cry7x0tt/MSZBctM0 o468/6wZhg4PlZXRzdLV7LyLXIITKl3K2UtFZoLWI/lXRfAtQWNLw1oO7GZE 9e3x4YPVNZedm58OQXNty8v4bzz4lpdkuzNGDHKn6ptcuAJQWH3qWiWfjnR1 uUHcNC4xe/JSgwa5rgnNqtyOkfeHEeDB6pxBQ4cCm1V3kde76MlKu74UOjrQ ZmiQF80l+nb+nnOmuRvi5eThN3L8qtfWSa17PAnNOX5um8jnl9KXv5O5hXJI N1HW0nLyC1Ru4J7ueNgDWXrvJQsi+XDgcPdkTOgQSCgFu7aM8KDZJ9/esYmO fIttN2whr2fTXzqhm+xEUN+SaFVKjv/7fjuF+VwqCtl1rPSf7w+C7k+paJh3 g2hg8oYqebwtt6IbL+ydBJ38qhFNcrxMBtQXZV6kIseLfjQzsp6C3LoPMf4Q Q8X0nMhosl7WGroOWf6go8e9RTI3r3KJTj1JS36LCDxzndd4k58/rTyrwCxz Ao4XW9wylhBCYF/o8PVlNGTWJNuXRs4Xv7RZ6d4P6ChfX/ObO5tL+M0G+Br+ CZ4bUhPCyPpcNTjPQurHJLxNjUxmkvMF+1dK10AEe00Gk/L/myq6tSyxdOYk Df3v7/X+9/sQvH/C8JUnq6OLYKK7kGyi5BHl3+2////wnw2/H7/Gx8evf3rD f7f/AwxeeYw= "], {{{}, {}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJwV0jkvpXEYhvG/YWYUjilGIZFwiNJQGBJLLMmodBI+gG1UmHLwBdQcVDhD xbFMSWEp7JVYCvtSCZlBJyH8FFee+7qf582bN3lzm7saOj+EEJLQj8jHEPI+ hRDFscUAX0sJIRujySFM6Vp0Mf6PdyINcd2ergAJ/ttdsa6NL/EqzPILXoYT +0G+LudgzH5a16ob4v95Fxb4Lf+BCP/D9+VvmOHb/FluRI/nv/N2edluV05G tTxnXurLceouxjfkKI7kNIy7WzEfdZ99f/37N/IoMnnCc23ysP7JvHd/aKYi Yt/NF+U7+xReZ97wLGTwdPsJ+UD/ahaal+ZXzNrtmC+6JjzK+ej1zhLzp27F TQ3m+RWvwJn9EN+UcxG3n9G160b4A/+FL5jUHeqKMMf73JXqOvgqr8Vffs0r cW4/zLfk5/f/wjw23wCXhUzW "]]]}, {RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJwV1OdvlWUYx/GnE9oSREaxCGplg6itgoLigASUhE3CXsWJIA4E/wT2prLB AWX5QvYqKoIDFBkOQIaBUkqlAglTgvq5XnzPb1z3fZ5znpVfNK7P26lJkqSg 2McYIT8zSR5Cx7QkKcUr6UlSmJEkH5rlyGNRhXn6Iv0a/VK5kbwXc3QndM/q dmGUrkA3UdeYXkU/XbZj3KE/yOusq03/RGvdEazgs/Wd+Upsk8fIlzBXHimv 9p1L5IbyN5itO657mj+Dz+VnzHeiSH5cnmDel/8H38trze6lZ9BKdxjL+Sx9 A1qBTrqL2Mq/pa9Gf8Vf/C06x2wELfHd9f2vB/kqdNNnylfpl/Ji6++Rc+J3 4n79HbqHzqLH7K9tnsuX4Sl9Ip+m6+UO9qfSQ9jBj9Q/xn9gXx/+Nr6La2LW kj+EZXJ1+UW+Alvk0XIlZsvD5VX2L4r/K3+Nmbrfde112zFC96huvK6a/CYu YpZ+mH6l/rc477ptGK5vo39flym/gQrM1A/Vf6Z/mb+C3fJCszz+K8yIc2ve jj+FdXEezFPoz9jKX6fDzB6h71nbwDl6mL+C3vos+Rb9Nu6RuL5yLf40Wuj/ je+iS2mGeR3zPP4CXtCnyRfoZvl180z6S8z5m3SG2RD6qWPnWvsAfwkv6S+j lF9g7X1x3TE99sd/0m3BUF1r3bu6Erm5fBBLdOnyayjHdN1g3SfWfSTXj/OF abqjurb8SayV25pvxhC5lfyOeS/+JvbFNY57j55CM91PWMynxe+k5Xhel+r/ lNNN8qtmNeSMOB7OyzfoNPNB9GPHqGfeKJ4FdNVnyH/TXXKx9TXl7Li3kRvP HS2lU+mR2E/P4UndH1gT3r6EHsQmfrC+JT/O+p78jXjXxH1n1pT/EYvk1Hhf oQxTdQN1K+yZL9eL34QpusO6uvQsntCdwOrw1uX4vf/F+ZE3ytfoILkFjZdl nnk+fxk99NXl6/H+ifva+lpyTf4kmujv0gN0IU2JaxjnEc/pUqw9TzfKo8zS 45zE+eCn6Afwyx2zIa1EF10VdvLzrMmK5xR1o8PkeDdYX8gfR4lcaN0GDJSb y2PNu/PXsCfuYbPG/H4skBO5I1+GDXKRfBaT5f7yMvvnxjMj78CkeJZ0Bfwx rJILzL/AALmZ/D9hltRS "]], PolygonBox[CompressedData[" 1:eJwV1FV8lnUcxuGHVEFSWmkwUIEzFDHorlEqiOIJvdG9LrqUBgMBJaRTUboH ihImYYFByOgYXP+D7/b8rr3v0b3PU/nduJjY3FEU5dIsPxbmiaKq+aOomhb4 w+N+V88XRdnqkjeKcpTlebXP1fZ8Uovdtd3TVdy9RZnsiO/fVw9+VmN5Zz6f 1XJPUzG2WRn8MM/RO/yMMnknPo/VdE9VUbZJ6TyL39Pb/LQyeEc+lz3vnqIi bKPS+CF+V935KaXzDnwOe849WYXZBqXyg/yO3uK/Ko3H8NnsWfckFWLrlcIP 8Nvqxn9RKm/PZ7Ea7ol6lK1TMt/Pb6kr/1kpvB2fyZ5xT1BBtlZJfB+/qTf5 T0rmbfkM9rR7vAqwNUrke/kNvcF/VBJvw99nT7nH6RG2Wgl8D7+u1/kPSuSt +XvsybCfHmarFM9382vqwk8qgbfi01n1sJ8eYis1hu/iV9WZn1A8b8mnsWph P+Vnn2s038mz1Ykf1xjegk9lVcN+ysdWaBTfwa+oIz+m0bw5n8KqhP2Uly3X SL6d/68O/HuN4s34ZFY57Kc8bJlG8G38smL4dxrJm/JJrFLYT7nZUg3nX/NL as+PagRvwieyimE/5WKfaRj/il9UO/6thvPGfAKrEPZTxD7VUL6VX1Bb/o2G 8UZ8PCsf9tN9LeFD+Jf8P7VhRzSUN+Tj2BNhP+VoMR/Mv+D/qjU7rCG8AR8b 3gthP93TIj6Ib+H/qBXL0mBen2eycmE/3dUnfCDfzP9WS3ZIg/hrPIOVDfvp jhbyAXwTP68W7KAG8ld5OisT9tNtfczj+EZ+Ts3ZAQ3gr/A0Vjrsp1v6iMfy DfwvNWP7Fcdf5qmsVNhPN/Uh78/X8z/VlO1TLK/HU1jJsJ9u6APej6/jf6gJ 26v+/CWezEqE/XRdC3hfvpb/rsZsj/rxujyJPRb20zXN5334Gv6bGrHd6stf 5ImseNhPVzWP9w7vcH5WDdku9eEv8ARWLOynbM3lvfgqfkYN2E715nV4PCsa 9tMVzeE9+crwv+A5WzvcDwByv91Y "]]}]}, {}, {}, {}, {}, {}, {}}, {{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV1XegjnUYh/FjkzIikr0qeyV7hGxZWUVWUWSvEClCZBYNZKSt7LKzV8Mo IlvZI5WZ1ef+4/K9r+/zO973PPfzvid3hx5NuidKSEh4OXFCQuQR/zyPZ/gt Xkv+GJ38hD8uV/K2sqlsLPfKZ10rYP7GXBP1zbvkX/oq5o3m1ijFU/C3zfnw Ey/Pvze3wHBenC81N8BVThOOml/AbfOnaI2CLszX1cIl/hhS6sbx/PiZj0AS HOOdcMf8GdqgNFI5P17/MHbwN5EUx3ln3DV/jufid0cyJI/fIV4rfh73IDXu xR9+5sW4kfhCtEUZ3Ic/dS8hEb7k7VA2ft57mKB7BDv5SKTBCd4FifEVb49y 8VrOT9Q9il18FNLiJO+KJJjHO6CQswt4bfwd9zrep24SL4DdvAJfa26J0bwE /9b8FK7xdDhlfhlJ8XX8Ts6sMj+NjrwwX2iuE3sz75b/6KuaN5nboJn5d1kh 7od5cjw3sqCsK3fEjuUvrleU63h72Uo2lfvi/sm3XC8pv+PPyYayofw1diav u15dbo33JtvFsyUPyvSunZbdkCzui/4n+U3swrw63mc877wIXxTvDdks/V/d E7rN8bqoGHvi75gL4Vdeia+Pzw/G8FJ8mblRYN4jb+hrmLfF7xf33XxI3q8/ I+MDmTzupf5nOT/2bl5jbiebyybyt3jW5AuuF5WL4z7LerG7uI/xzMvLrleT W3gH2VY2lwfi+ZKV4vmR78ZnVBaW9eROuce1yuYNsavYt3m/HBufN/Py+A7A f/xJvj1eAxn4WdkDKbCAd0IxZ5bE9wOuxP8dz5duCi+CvfxtZMQ53hMpsZB3 ju8SPIBMyIzzrvVCKiziL8YzhwdxQdcb92Axfyn2hyy4qOuD1FjCu8Q9wkP4 S9cX92Ip7xrPE9J7n1N1RfEbH4esuMT74T58G9+lsV/c7/x7umLYx8cjG/7m /ZEG3/Fuce+Qwfn3dcWxn09AdvzDByAtlvHuqBn3yPkPdCXwO5+IHPiXv4J0 WM57oFbcN+c/1JXEAT4JOXGZD4zPBlbwnqgd99j5abpSOMgnIxeu8EHxvGIl 74U6sQ/np+sewyH+DnLjKh8czwRW8d6oGztyfoauNA7zd5EH1/iryIjVvA/q xd6c/0j3OI7wKciL63wIHsAa3hf1Y5fOz9SVwVE+Fflwgw9FJnzP+6FB7NL5 WbqyOMbfQ378x19DZqzl/fFU7NL52bpyOM7fx8O4yYfhQazjA9Awdun8HF15 /ME/wCO4xV9HFqznr6BR7NL5j3UV8Cf/EI/iNn8DD2EDH4jGsUvn5+oq4gSf hgK4w4cjKzbyQWgSu4y/6bpKOMmnoyDu8hHIhk18MJrGLp3/VFcZp/gMFEL8 gX5Tlx2b6at4Onap/0xXBaf5RyiMRPqRuhzYwoegWexS/7muKs7wmSgS/71+ lC4ntvKhaB671H+hewJn+SwURRL9aF0ubOOvoUXsUv+lrhrO8dkohqTxN0WX G9v5MLSMXeq/0lXHeT4HxZFMP0aXBz/w19Eqdqmfp6uBC/xjlEBy/VhdXvzI 38AzsUv917oncZHPRWndCt4EN3lN/oO5I1qZD8uusqRr/wOB1xm9 "]]}, Annotation[#, "Charting`Private`Tag$47088#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV1OW3FlUYxuGXA4cOFZCQFKRDusuOZWHRDaJSdv4B0t0t3dLdDdLd3c2i Q7yeD791x7P3mTPzzuyCrTrX75QikUjkSUokOqBIciLRIFUiMTtlIlEOE+WD cjnsMP9LXsJnRX/zUbovdV3l03IrzJHPyrWQkIfIW/hCGCevke/wH6Cj/UXl hvwcs/KYJB+Sy2OneVd5KZ8NB/h0GGDdUnpN9xYu83kw2voGtJvujDW7+VRo zc+l5/QpUicStek5OQdSmA2lW3VPaWF6lGbGc9aON1/L39WnlT+kN+SCyCV3 cs1ifCP9HTrX+m30mZzBvII8WT4sV4jnxGfDLvu60WW67Bho3RhdQ113+azc BkkYpvtX9womyOvke/xH6GxPcbkxP89sO59ARX4KPaKvGM+Dz47d1neny3WP 6Iv0IE0f9+z/HWTfMv66Pll+m16R88Z+eaz9jfge+nvxTK3fQ5OR0bytPI8/ b54k16Hn5ZxIaTacbtMVwTE+Cybq19P7uo/RxTVKyE34+WaVMFU+KlfCHvMe 8go+Bwab/61rrOsZ15PbIRVG6LbrimKS/J11JXVN5QVyZezV9dSt1OXEEN1y +Qb/Dq7y+eJZuZ9x1jbhe+nv0wuxn6bGV/z86MxSWluXXoj3BFnlZPOR/A79 f7QYPR7vGZ43n2y+gX+gTyd/Qm/KLyO3/L1rl+Kb6e/ShdbviHcYVfhp9JhZ Zeyztpe8is+FoeYr5Jv8uxhv3lTuzV80a4/U+EFfWt9cv0iuiv26CWim76O/ pPsaafCjvoy+hX6xXA0HdL11q3W5MSzOEl1zXd/4XuVvsEC+KNeLbyvOE3kn XxxT5I3yQ74+frK/rNySX2K2k09CdX46PR7njWdUJb6d+K3wgnzQvj78Gv1j +hI9RDPEu2c+3P6V/C19avk9ek3OH+eDPMn+Fnw//QN6xfp9NA2+5RfSS2av xXOM3ynOKP3o+MZ1JXAifl9M1W+ij3Sf4md/+1W5Fb/UrAZmyCfkqvF/mveV 1/J5MCLOEl1LXf94L+UOWCRfll9H+jhH4jvnS+JkPAdM02+mj2ON+/qM3pIL 4Rd/s1yck7pl1tXEYV0/3TpdXoyM80TXKs7feEZyR2TAr/ry+jb65XItFHCN I/r++vX6fBgV37GutW6gfF3uhIwYq9ujK4Xp8m/WVdC1lVfItTFTPilXizPa fIC8gc+P0fH+69roBsUZLXfG4vjN5DeQKc4JeS9fGjPkLfIT/nP8bn9FuR2/ 0mxXnFmow8+ip/TV49yybqC8kS+Aw3H2YYx1q+htXRr3/37co1wgzj95un1t +cH6h/EtxrdF0yKTeRd5CX/VPJX8Znxr8c4im5zZfBy/T/+MlqGn4mzBTLOt 9KnuC9zmC+MP16wUZ5NulTV18Y98Wq4R54/5IHkTXxBj4x3UtdMNiXckzkxk wXjdfl1ZzJL/tK6yrr28Wq6H2fIZuWa89+aD5c38kzjH6JG4V/wPmhEeCA== "]], LineBox[CompressedData[" 1:eJwV1Ge4SHUAx/FjFyojKpQkUiTvSiWyx7WurSLeZN7L3XsvexQyiowS4dpk Za9Lg5JREQ2r4trj6nNffM/z/33Oc979n1NncHhoWIkgCKZ5zC8VBNvLBEFh 6SAI0fKSQfCBPdP5qncRqqRk/iofynfYLXWardAQPosXskhVVgp/jQ/jO+1W OsPyNZTP5tdYlKoolTflw/kuu7V+Zys1jM/h11m0qiqNv85H8N12G51lqzSc f8JvsBg9rnT+Bh/J99htdY6t1gj+Kb/JYlVNGfxNHsb32u30B1ujkXwuv8Xi VF2ZvBkP5/vs9vqTrVUYn8dvs3g9oSz+Fh/F99sd9Bdbp3D+Gb/DEvSksnlz PpofsDvqb7Zeo/h8fpcl6inl8BY8gh+0O+k826DRfAG/x5JUQ7n8bR7JC+wQ XWAbFcEX8vvF90A1lcdb8ih+yO6si+xrRfJFvKj4HqiWxvBWPJoftrvoEtuk KP45f1B8D/S0xvLWPIZ/a3fVZbZZ0fwLHiiNP6NxvA2PZd/Z3fQP26IYvpiX UDqvrfG8LY9j39vd9S/bqlj+JS+pDP6sJvB2PJ79YIfqP7ZNcXwJL6VMXkcT eXuewI7YPXSFfaN4vpSXVhZ/TpN4B57Ijto9dZVtVwL/ipdRNq+rybwjT2I/ 2r1UyHYokS/jZZXDn9cU3okns5/s3rrGdiqJL+fllMvraSoP4SnsmN1H19ku JfMV/CHl8fr6kHfmqexnu69usN1K4fn8YY3hL+gj3oWnseN2P91ke5TKV/Ly GssbaBrvytPZCbu/brG9SuOreAWN4y9qOu/GM9hJ+x3dZvuUzlfzihrPX9IM 3p1nslP2u7rD9iuDr+GPaAJvqI95KM9iv9jv6S47oEy+lj+qibyRZvIePJv9 ag/QPXZQWXwdf0yT+MuaxXvyHPabPVD3WYGy+XpeSZN5Y83mvXguO22/ryJ2 SDl8A6+sKfwVzeG9eR47Yw/SA3ZYuXwjr6KpvIkWsWN2E+XbBXaRc5/i/75z PdUs67/r+/8BX1LdAQ== "]]}, Annotation[#, "Charting`Private`Tag$47088#2"]& ], {Hue[0.67, 0.6, 0.6], Opacity[0.2], LineBox[{1566, 1567, 1565}]}}}], {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->NCache[{None, {Pi}}, {None, {3.141592653589793}}], GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}, "AxesInFront" -> True}, PlotRange->{{0., 14.999999693877552`}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}]} }, AutoDelete->False, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{4}}, "Rows" -> {{3}}}], "Grid"]], "Output", CellChangeTimes->{{3.716626743656364*^9, 3.716626808611267*^9}, 3.7166269476410646`*^9, 3.71662704663275*^9, 3.7166273078726788`*^9, { 3.716630050112769*^9, 3.716630064891651*^9}, 3.716630217404928*^9, { 3.716630412987892*^9, 3.716630431445198*^9}, 3.716630462762364*^9, { 3.716631176005014*^9, 3.71663123190425*^9}, 3.716631820376644*^9, 3.71663189244998*^9, 3.716631972056011*^9, {3.716632680884293*^9, 3.716632705594145*^9}, {3.716633480801176*^9, 3.71663350536832*^9}, 3.71663355826431*^9, 3.71663388154924*^9, 3.7166340030925627`*^9, 3.716634307008522*^9, 3.716634714782069*^9, 3.716634856185184*^9, 3.716634886185363*^9, 3.7166351061860456`*^9, 3.716635159277287*^9, 3.716635206363532*^9, {3.71663528014221*^9, 3.71663533293329*^9}, { 3.716635376307576*^9, 3.716635395663877*^9}, 3.716635481067729*^9, 3.7166355196885366`*^9, 3.716635561482033*^9, 3.716635612743945*^9, 3.7166356789346447`*^9, 3.7166357140647793`*^9, 3.716635790139824*^9, 3.7166361831616087`*^9, 3.7166366990418463`*^9, 3.716638766103705*^9, 3.716639082924501*^9, 3.716639256532716*^9, {3.716654926621581*^9, 3.716654943406619*^9}, 3.716655063029464*^9, 3.716659152217225*^9, 3.716716942909182*^9, 3.7167170543060627`*^9, 3.716717119769256*^9, { 3.71717521663517*^9, 3.717175236863985*^9}, 3.717175303074882*^9, 3.7171753432781477`*^9, 3.717175391469858*^9, 3.717175501836512*^9, 3.717175593166593*^9, 3.7171756397165956`*^9, 3.7171763882877617`*^9, 3.717178380649037*^9, 3.759450284027527*^9, {3.793504345873345*^9, 3.793504366948001*^9}, 3.793904890130986*^9, {3.793904926982964*^9, 3.793904941687089*^9}, 3.823229414707664*^9, {3.8430719670638514`*^9, 3.843071994806291*^9}, {3.843072063611785*^9, 3.8430720740089703`*^9}, 3.843072938520028*^9, 3.844255708066525*^9, {3.844255773419056*^9, 3.844255792166182*^9}, 3.845740358556653*^9, 3.845740441505106*^9, 3.84574050620199*^9, 3.845740582386405*^9, 3.845740652807477*^9, 3.845740707869282*^9, 3.848356334164647*^9}, CellLabel->"Out[68]=",ExpressionUUID->"584cb94c-be03-4521-bf16-489df9fc64e4"] }, Open ]], Cell["Export data", "Text", CellChangeTimes->{{3.716613652345023*^9, 3.716613661762876*^9}, { 3.7166171500953703`*^9, 3.716617173133562*^9}, {3.716626783084096*^9, 3.7166267858131742`*^9}, {3.716631401415011*^9, 3.716631413565827*^9}, { 3.71663828988164*^9, 3.7166382916885777`*^9}}, FontSize->16, Background->GrayLevel[ 0.85],ExpressionUUID->"a640a29d-2ea3-4fc9-94d7-6650dc18b70b"], Cell[BoxData[{ RowBox[{ RowBox[{"dat", "=", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"Through", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ "\[Theta]1a", ",", "u1a", ",", "\[Theta]2a", ",", "u2a", ",", "\[Theta]3a", ",", "u3a", ",", "\[IndentingNewLine]", "\[Theta]1b", ",", "u1b", ",", "\[Theta]2b", ",", "u2b", ",", "\[Theta]3b", ",", "u3b", ",", "\[IndentingNewLine]", "\[Theta]1c", ",", "u1c", ",", "\[Theta]2c", ",", "u2c", ",", "\[Theta]3c", ",", "u3c"}], "}"}], "\[IndentingNewLine]", "[", "t", "]"}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1", ",", "0.05"}], "}"}]}], "]"}], "//", "N"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dat1", "=", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"Through", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ "\[Theta]3a", ",", "u3a", ",", "\[IndentingNewLine]", "\[Theta]3b", ",", "u3b", ",", "\[IndentingNewLine]", "\[Theta]3c", ",", "u3c"}], "}"}], "\[IndentingNewLine]", "[", "t", "]"}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "\[Tau]1", ",", FractionBox["\[Tau]", "3"]}], "}"}]}], "]"}], "//", "N"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"(*", " ", "\[IndentingNewLine]", RowBox[{ RowBox[{"SetDirectory", "[", RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ";", "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", " ", "dat"}], "]"}], ";", "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", " ", "dat1"}], "]"}]}], " ", "\[IndentingNewLine]", "*)"}]}]}], "Input", CellChangeTimes->{{3.716638777860729*^9, 3.7166388449853487`*^9}, { 3.7166388772797194`*^9, 3.716638943226046*^9}, {3.716639149450975*^9, 3.716639178433305*^9}, {3.716639266902446*^9, 3.716639314003745*^9}, { 3.793504307641161*^9, 3.793504336516189*^9}, {3.79390486966494*^9, 3.7939048701294527`*^9}}, CellLabel->"In[69]:=",ExpressionUUID->"0d862bb5-f84b-41fb-baa8-b588e865ed51"] }, Open ]] }, WindowSize->{820, 686}, WindowMargins->{{3, Automatic}, {Automatic, 0}}, DockedCells->{}, PrintingCopies->1, PrintingPageRange->{1, Automatic}, FrontEndVersion->"12.3 for Mac OS X x86 (64-bit) (June 19, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"e983c05e-4644-4b1a-83a5-f40fd8bc854d" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 580, 8, 67, "Section",ExpressionUUID->"f5006cf0-1224-4794-8ac0-e829719a3280"], Cell[1163, 32, 769, 16, 148, "Text",ExpressionUUID->"6cd6c261-f6f9-4a8d-a21b-a0f03a9acb28"], Cell[1935, 50, 14601, 355, 824, "Input",ExpressionUUID->"16cd26ea-7171-44f0-884e-4487fde9f9b1"], Cell[16539, 407, 401, 9, 76, "Text",ExpressionUUID->"62379b6d-8e80-423f-9046-5e21f705f9ef"], Cell[16943, 418, 6801, 173, 430, "Input",ExpressionUUID->"694597bb-8cc9-4634-8d24-5df3c6aba934"], Cell[23747, 593, 450, 9, 52, "Text",ExpressionUUID->"4cfc58ae-9d62-4420-870c-d4d4cde97b31"], Cell[24200, 604, 5785, 141, 341, "Input",ExpressionUUID->"a87f29c8-c971-4e70-b4eb-519560d5613b"], Cell[29988, 747, 3472, 98, 262, "Input",ExpressionUUID->"f1537525-cadf-4359-a24c-6e72fbaad310"], Cell[CellGroupData[{ Cell[33485, 849, 827, 19, 30, "Input",ExpressionUUID->"51f49d87-cbfc-4c38-ac37-5fcd28423fed"], Cell[34315, 870, 193342, 3322, 491, "Output",ExpressionUUID->"584cb94c-be03-4521-bf16-489df9fc64e4"] }, Open ]], Cell[227672, 4195, 394, 7, 52, "Text",ExpressionUUID->"a640a29d-2ea3-4fc9-94d7-6650dc18b70b"], Cell[228069, 4204, 2255, 52, 402, "Input",ExpressionUUID->"0d862bb5-f84b-41fb-baa8-b588e865ed51"] }, Open ]] } ] *)