(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 8.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 97700, 2036] NotebookOptionsPosition[ 95674, 1993] NotebookOutlinePosition[ 96066, 2009] CellTagsIndexPosition[ 96023, 2006] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell[TextData[StyleBox["Observer-based feedback for undamped, unstable \ oscillator; simulate combined system\nProblem 4.9", FontSize->28]], "Section", CellChangeTimes->{{3.5074806490215054`*^9, 3.507480663470973*^9}, { 3.508337190964676*^9, 3.50833719173075*^9}, {3.5126019190977497`*^9, 3.512601920618958*^9}, {3.75915594386228*^9, 3.7591559468042107`*^9}, { 3.764644042622394*^9, 3.764644043988037*^9}, {3.7933283471201143`*^9, 3.793328350972897*^9}}, FontSize->18,ExpressionUUID->"b9813126-b4fe-4a9d-a808-32df250d877e"], Cell["\<\ \[Bullet] revised, Oct. 24, 2022: \[Dash] simplify use of EstimatorRegulator command for closed loop \[Dash] miscellaneous code clean-up\ \>", "Text", CellChangeTimes->{{3.716613652345023*^9, 3.716613661762876*^9}, { 3.716635650557143*^9, 3.716635673813285*^9}, {3.793904900379339*^9, 3.793904916165039*^9}, {3.843071915202323*^9, 3.843071961225065*^9}, { 3.844255613422617*^9, 3.844255654635604*^9}, {3.8457406313604803`*^9, 3.84574067346458*^9}, {3.875643242184225*^9, 3.87564326428683*^9}, { 3.875643298696796*^9, 3.875643322222205*^9}}, FontSize->16, Background->GrayLevel[ 0.85],ExpressionUUID->"d8d3b0d8-d637-4b7d-8a6f-47145b823473"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"Clear", "[", "\"\\"", "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"G0", "=", FractionBox["1", RowBox[{ SuperscriptBox["s", "2"], "-", "1"}]]}], ";", " ", RowBox[{"G0tf", "=", RowBox[{"TransferFunctionModel", "[", RowBox[{"G0", ",", "s"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"G0ss", " ", "=", " ", RowBox[{"StateSpaceModel", "[", "G0tf", "]"}]}], ";"}], " "}], "\[IndentingNewLine]", StyleBox[ RowBox[{ RowBox[{"K", " ", "=", " ", RowBox[{"StateFeedbackGains", "[", RowBox[{"G0ss", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", RowBox[{"-", "1"}]}], "}"}]}], "]"}]}], " ", RowBox[{"(*", " ", RowBox[{"Feedback", " ", "gains"}], " ", "*)"}], ";"}], FontSize->12], "\[IndentingNewLine]", RowBox[{ StyleBox[ RowBox[{ RowBox[{"L", "=", RowBox[{"EstimatorGains", "[", RowBox[{"G0ss", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", RowBox[{"-", "2"}]}], "}"}]}], "]"}]}], " ", RowBox[{"(*", " ", RowBox[{ RowBox[{"Observer", " ", "gains"}], ";", " ", RowBox[{"note", " ", "sign", " ", RowBox[{"convention", "!"}]}]}], " ", "*)"}], ";"}], FontSize->12], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"A", ",", "b", ",", "c", ",", "d"}], "}"}], "=", RowBox[{"Normal", "[", "G0ss", "]"}]}], " ", RowBox[{"(*", " ", RowBox[{ RowBox[{"get", " ", "A"}], ",", " ", "b", ",", " ", RowBox[{"c", " ", "matrices"}]}], " ", "*)"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"A1", "=", RowBox[{"A", "-", RowBox[{"b", ".", "K"}]}]}], ";"}], "\[IndentingNewLine]", StyleBox[ RowBox[{ RowBox[{ RowBox[{"A2", " ", "=", " ", RowBox[{"A", "-", RowBox[{"b", ".", "K"}], "-", RowBox[{"L", ".", "c"}]}]}], ";", " ", RowBox[{"Ac", " ", "=", " ", RowBox[{"ArrayFlatten", "[", RowBox[{"(", "\[NoBreak]", GridBox[{ {"A", RowBox[{"-", RowBox[{"b", ".", "K"}]}]}, { RowBox[{"L", ".", "c"}], "A2"} }], "\[NoBreak]", ")"}], "]"}]}], ";"}], " ", RowBox[{"(*", " ", RowBox[{"for", " ", "\"\\"", " ", "system"}], " ", "*)"}]}], FontSize->12], "\[IndentingNewLine]", StyleBox[ RowBox[{ RowBox[{ RowBox[{"kr", " ", "=", " ", FractionBox[ RowBox[{"-", "1"}], RowBox[{"c", ".", RowBox[{"Inverse", "[", "A1", "]"}], ".", "b"}]]}], ";"}], " ", RowBox[{"(*", " ", RowBox[{ "feedforward", " ", "gain", " ", "for", " ", "reference", " ", "command"}], " ", "*)"}]}], FontSize->12], "\[IndentingNewLine]", StyleBox[ RowBox[{ RowBox[{ RowBox[{"Br", "=", " ", RowBox[{"ArrayFlatten", "[", RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"b", ".", "kr"}]}, { RowBox[{"b", ".", "kr"}]} }], "\[NoBreak]", ")"}], "]"}]}], ";"}], " ", RowBox[{"(*", " ", RowBox[{"input", " ", "coupling", " ", "for", " ", RowBox[{"reference", " ", "[", RowBox[{"not", " ", "used", " ", "here"}], "]"}]}], " ", "*)"}]}], FontSize->12], "\[IndentingNewLine]", StyleBox[ RowBox[{ RowBox[{ RowBox[{"Bd", " ", "=", " ", RowBox[{"ArrayFlatten", "[", RowBox[{"(", "\[NoBreak]", GridBox[{ {"b"}, {"0"}, {"0"} }], "\[NoBreak]", ")"}], "]"}]}], ";"}], " ", RowBox[{"(*", " ", RowBox[{ "assume", " ", "disturbance", " ", "couples", " ", "through", " ", "input"}], " ", "*)"}]}], FontSize->12], "\[IndentingNewLine]", StyleBox[ RowBox[{ RowBox[{ RowBox[{"Btot", " ", "=", " ", RowBox[{"ArrayFlatten", "[", " ", RowBox[{"(", "\[NoBreak]", GridBox[{ {"Br", "Bd"} }], "\[NoBreak]", ")"}], "]"}]}], ";"}], " ", RowBox[{"(*", " ", RowBox[{ RowBox[{"assemble", " ", "the", " ", "\"\\"", " ", "input"}], "-", RowBox[{"coupling", " ", "matrix"}]}], " ", "*)"}]}], FontSize->12], "\[IndentingNewLine]", StyleBox[ RowBox[{ RowBox[{ RowBox[{"G1ss", " ", "=", " ", RowBox[{"StateSpaceModel", "[", RowBox[{"{", RowBox[{"Ac", ",", "Btot"}], "}"}], "]"}]}], ";"}], " ", RowBox[{"(*", " ", RowBox[{ RowBox[{"the", " ", "full", " ", "system"}], ",", " ", RowBox[{ RowBox[{"w", "/", "o"}], " ", "output", " ", "coupling"}]}], " ", "*)"}]}], FontSize->12], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"u", "=", RowBox[{"(", "\[NoBreak]", GridBox[{ {"0"}, { RowBox[{"DiracDelta", "[", "t", "]"}]} }], "\[NoBreak]", ")"}]}], " ", RowBox[{"(*", " ", RowBox[{ RowBox[{"no", " ", "reference"}], ";", " ", RowBox[{"disturb", " ", "state"}]}], " ", "*)"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ "\[Theta]", ",", "\[Theta]d", ",", "\[Theta]h", ",", "\[Theta]hd"}], "}"}], " ", "=", " ", RowBox[{ RowBox[{"StateResponse", "[", RowBox[{"G1ss", ",", "u", ",", "t"}], "]"}], "//", "Simplify"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"tmax", "=", "10"}], ";"}], " "}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p1", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Theta]", ",", "\[Theta]h"}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "tmax"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "Full"}], ",", RowBox[{"PlotStyle", " ", "\[Rule]", RowBox[{"{", "Thick", "}"}]}], ",", RowBox[{"ImageSize", "->", "250"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p2", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Theta]d", ",", "\[Theta]hd"}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "tmax"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "Full"}], ",", RowBox[{"PlotStyle", " ", "\[Rule]", RowBox[{"{", "Thick", "}"}]}], ",", RowBox[{"ImageSize", "->", "250"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Grid", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{"p1", ",", "p2"}], "}"}], "}"}], ",", RowBox[{"Spacings", "->", RowBox[{"{", "4", "}"}]}]}], "]"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.507594046617526*^9, 3.507594061989002*^9}, { 3.5127478467454576`*^9, 3.512747846949788*^9}, {3.512748003977653*^9, 3.512748030935095*^9}, {3.5132635882643642`*^9, 3.513263659501339*^9}, { 3.513263727551577*^9, 3.513263776246799*^9}, {3.528597119997594*^9, 3.528597127851635*^9}, 3.528597191874153*^9, {3.5285988203776817`*^9, 3.528598835121352*^9}, {3.528598947419128*^9, 3.528598955906802*^9}, { 3.528629723053742*^9, 3.52862975013785*^9}, {3.528629871137762*^9, 3.528629922197761*^9}, {3.528629963246333*^9, 3.528630047130426*^9}, { 3.7590850148998623`*^9, 3.759085021095541*^9}, {3.7590851542554913`*^9, 3.75908516916064*^9}, {3.759120676142665*^9, 3.7591207037234993`*^9}, { 3.7591208155334787`*^9, 3.759120899225904*^9}, {3.759121231360894*^9, 3.759121263919128*^9}, {3.759121510803041*^9, 3.759121519302581*^9}, { 3.759155328560277*^9, 3.759155340535323*^9}, {3.759155460804605*^9, 3.759155518892724*^9}, {3.7591555586314*^9, 3.759155569443014*^9}, { 3.759155651861843*^9, 3.759155731784484*^9}, {3.759156116542335*^9, 3.759156200636897*^9}, {3.7591563083938503`*^9, 3.759156308693347*^9}, { 3.759169346825845*^9, 3.759169452104467*^9}, {3.759170974654778*^9, 3.7591709917722673`*^9}, {3.7591710310910587`*^9, 3.759171066649564*^9}, { 3.759171111440105*^9, 3.759171194116107*^9}, {3.759172241820026*^9, 3.759172298531549*^9}, {3.7646243970755987`*^9, 3.764624423043446*^9}, { 3.875643361923645*^9, 3.875643363467245*^9}, {3.875657979773005*^9, 3.875657999254566*^9}, 3.875658043953425*^9}, CellLabel-> "In[1612]:=",ExpressionUUID->"7d39ef6d-4e1d-440d-83ab-ca11540ce34e"], Cell[BoxData[ TagBox[GridBox[{ { GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], Thickness[Large], Opacity[ 1.], LineBox[CompressedData[" 1:eJwV13k0VXsUB/BriEKZogxxuRkypjRItX9FJCRDlNJDSKYQPVMliYxdMlPK UOZZpnJVKiSJnojkGctwHXG5E955f+31Weess+757e/eZ105x2sWzpwEAoGD g0D4vz665cij5RRzVDbDk/v/2tpLNLEhXoU7jWvfzuN1/X3zXSIxEPoFu+JV 8PqoJU52AzEKRKw61dTw6nHE33NFNh0IpWvfoonp0MtyTcJkC8FSZ/4eU64Q eAdHleZkG+CqDuYro9gATzuyfWZk2+G1xmmStmo7lJVHDXpofIeiIwnPrTi/ wxX4kj7rOwbpI9aS7t2jQMhZbhyMGYNIkSH1nolRSOOWHurIG4P66pEpNdYo tLW7yBT2jQHxftWmVwpjoGzFznE+NA5tK4okg6Ax+OWqVDLMMQF82l9554jj 4JZ4s7mbPAmFuxWGZZwmgJOW85NSOAlqbwWMBv+egAybNkL5m0l4InDXNSpm AjqkRfXilibhk4Lhg8aqCVB9XvDB6NwUBEuF810jTMJsU2/3G9lfoLpnMVks fRK8JnaN1ZT9Brq5fQEPZQpGLg1sfN3+G5Ty/euceqbAsv++xqfx35D7nHS8 YmIKDn6cCpyQnIYi5aAMQYFfwFWZLyQeOQ0lPRIiVJtfkBYid/Tvv2YgPkc5 gjj7C16LSqTrCM3BwoxB7TaeadCOa2s+oToHO08MGAlvm4ZnPAHj5gZzIJLi prGiNA2xjD5Nt5A56MtW+BRpNA3WP5PeZ/yaA/cDcpVNMdMwXSS0xGqhQsBJ vu1XBWaATy5c6edBDPbpDJMb12ag7XCC5q0TGIQtyjw6IjALEeceH9hhgcG4 2JhAucQscJLrDS+4Y1D0jiBspz0LzLXZK98eYTB95FXkhOsszAydLfjMuQDy UZpXnnfNQmea0q6WzgXIlmudnYudg+gaba2/BhYgrM/D53DaHJzsPqazNrEA +0mttoG5c9DKe9Ho8PoC+BsxHJob5uDlDfLVeq0/sNek3c9/Yg5KrRiFFSl/ gEucOzJdhwrxQh9Vntovwrua2qTOr1RoOLCj9rTXIij0HtQuH6bC+KVrwA5e hJ+aKg9v/qKCbqmolU3qInQGU/J+sKjwy+jizc1di3C4YnNVsdw86N2d+xyo uwRy+WlPwq/Og1cR2CoZLUEo02JWwXceMr4kjH+1XoL9VernqoPmAZPdz9D0 XYKUjtzixJh5ePzylvxkwRJk0bh4nErmgU4T9LcQp4FBavofm+l5IO1wXF8n 0UA89UxO88I8nNaviSrVosExaavfwox5yE8893ijKQ3eHZrWoHBhYKH59EPz XRrs1AwcrxPGoNR1j6TqAg1uhYqJDqti0P8gPK9/jQZORDM5ugYG3HV9GhEC y6AbHNaycQ8GthuC9f5VWgae3outm/E+b8x565F6aRkC4q2cn+th4DhoReHq XIb0+lfHdpzHgC/zX0+fgWU4r1A9k3IBgypbL+mfk8vwlbewjfcSBlzfIwMb OVbAeGlS47MjBnn9jXt9DqyAS9rxfTQ8FyZphqPD+ivAtSN/XdkLgyWbr2QT ixX4UGa808obgxPf5uaUPFfgwI1AMtkPg8l/iAXDOSvw9LByWE4IBvHJpdYm FSvQrWZRknALg/1nD21ofLUCuioh5wNCMYj8aumY3I/fr5BirhaOgXJvhLTJ FjpQqB7GmjEYdCeKfmyQokObB1t2MBaDAIsngUq76DC3N+vprXgM2r809HHq 00Fb1vd1SQIGbt2z5IZAOgg+Psb3LBUDEXIgKEXS4cAb1g/BdAwazXioSUl0 cG7jjfbJwID/s6yxdzkdNmZsuiON577kk8UGpQk6+LQa3hPOwcAq7md10h86 dOvxvDiUiwHbxMORk8AAuy2uMxfyMDDtvEf5IckAyZHIoIhnGFA76gOTzjCg N4/UFlKEQUr0CWXOSwxgCn5qcinG4Oipnr5r7gz49t7235MlGDxon9lrHMGA mBWuAVopBgejAkbrHzIguif1RUsZBiMnNyQoPmVA2SPCj7vlGOxuk6FyvGQA x9+XpRYr8LxEFmdda2eAjxT1aHYlBqGGB41/9DFAj+L1Rq8KP7/35gX1Cwy4 fjGRcKMaP7+IYWvFdQa4mA6956rBgGjgviFJgAm2Qm7c0bh93oU7XlNiwtXy JvbtWgxkxg14lvcyQUpyJPgX7o+cm4pCEBPa+CdDT73Anyf30ZTLlAl5IslC z3AroLiFqPNMCAx5ocnC3XPJLFnIhQkEU7ExozoMbt8U1kn1ZYK+9i3NRNxq Wb1DO24zQfgeReIr7oHG5NC8GCbcUC18JliPQcSAzU7VNCaY5QoM6uPeS5do q8xjwjD1ZdN13CPiQ+4HK5lwMy7eNAt33L7HgpRXTNDztUluxn3Iyr76RAcT epnU1O+4p3zlbTr7mKA2qW6L4U5KGGdajDEhzJg6so77WMWzxwPzTNidwK+1 qQHvZ5frcXs2E0ouO5oJ4M6cU5mc3MiCuJJu9P/1kwJzUZ5iLCiK2sdHwE1T KVdfkmOBur5Pxf/PzzHy+RKkwYI2Q+eDg7jNXPf6c+iygCmx9IyCmx1B237f kAXG5hwcj3EX5te93GLFgsJYH+MbuK1bA+2T7VnQ7aYScxI315gut7QnC+rv iLzbiruCY+15TiALtloLr33Hz8+O2GK8K4IFQxaCupm4+SBsvjyRBdMttNCz uOvs9B/uz2ZBXnPZ1024hTPbvuvVsyBySL/BHu9Xc0P0rY5WFpRLMi25cLv3 m8ibf2GB/NY9Qk/w/r8T+3L10jQLKNtGCW14Xny1H26eWGZBct4BsMQta3m2 0p2LDaTRjqp+PG+B5AF6gDQb0urcTXvwPCqWZ2atK7Nh7MCFWwa4ez/ZoYh9 bFBSMaHX4PlV5x+NfHiaDdvkWN9D8Xz/e29avCyUDYqKspNf8fmIzytp1I5j w64vBb+lcOu+9brUlM6GG9Jddnb4PCUTFvPbqtiQGfuq+DM+f0bBLO2xcTZI /kVz9X2OwXL6q/6rC2yY4SOGxOHzmlt/OwRbZcM6f5xSbj4GqzSu1lXxVcjf wHmhGZ/3Sm8By+1GqxBBkqXUZGPQmSEaWGq9Cj4KWStxj/F91yqZfdxpFWxq lbgd8P0hKbFrxuP2KqxtL6lawvdL+OsTd1/XrsKRIBnx3mS8nyK3q93k18Cv JSXIJxoD78MRA+uaa2BX9+zX9H0Mol3i1pOOrEHTjdgHlyIxoDRmGlPOrcG4 08IT7f/34+X6MdEHa2By7uGdrJsYMKsXRF+x1uCAz4kq+2sYbB2m61hsWodG l/NZoZ4YaGwk2E+Jr8OLHztJmfg+v3xxS4nwnnV4UFMm23IFfx9uVX0X13U4 /aPnTsdfGDw+6+Qn+M86HPJ1N5s8jcHTYPfp3TYEFPydb9hpF75/WjbRI+0I SCWzkr5FCYMW7oINPy8TUNEZFl/tTnwe48aJcd4E1LE+vosmi++PJ3Y2v6MI qMWuvP+EOAYZrWatT18SENXllJY6JwaJm7Ufi8hzIF8K8bRb2TyEZbPNl2Y5 UIONTOVFKhXO7K73UV3kQIq85hLb8O+9zOvrCY4MDsTvz6J//JcKjaPT3d0b OJGLgTMo/EOFPwoDZqUynOiqq1VnShMVHEtqTV3OcKJ0S43lkEgqHGvwMuqv 5kRqouRtcVJUIPSOoJdBXCgyTb7i6v45UPRzCbBS2YCeiknvO7RtBsZpqdb8 r3jQUXuR2mvMX3Bqwu1mos9GZC6XKWGSNwmnx8mqMjJ8aKA5s9zRfhym3zqG tpXyI4nho0YU61HQEO7boffXZtRkRy/xhhF8HmkOQ4tbkPDmu4obh4bAcM52 Rf6sEOr5fk55+fAA9L9x4rBVE0ZSetxnfnP1Qe391ktEmjBKHjkTUWfaCy4b /Ee6ukSQ8mCC8f2SbrjsG1wrkCGKFI7kBuisdoLmFdUuE4etSD27ZSBxTzt8 FlHj99cRQ+QrbkF+Se+gqSwsU41LHAkwClYfPnkDwRwqZzp/iKOl2dddm8op wDcUdNKrZhuSnVVxjl5uhIlncknZIdtRsODq1E/FOkhSluBuOCuB/p4+uNEx pRrIGS4fHIiSKPzHsZ7cxgqwTbLrEpiSRI+1lu57ZZcAXT+fkd0shZKSPD/b EQtgbOJ4wJtIaXTtTO6HLTF5kHNES+qTww5U++Vl06TuUyi95y98RV0GFfWJ NhIPPoLIs5eNuWgy6Iz9KJvdkwb7hp4WRn6SRfOETTb7PiRB2q7M0k/GRKQo 5bPMnZwAS4sG+XdNiUiq4zWvwf0EMGv+k6VjRkRXYqwEyMEJwGN5Kjbfgojk ig2/HXVMAP8QhtvN80QkouX6iWd3Alh8tlFWv0JEA7adW3Q/kUHAf2tubBgR yRQqGApsIcPtlrg04wYiyi2l+O0+EwfTP1qSGI1EdPH6odl9unFgzVokP39J RHb3NFeMFONAbb9tFFcLESUktTx5xI6F/mLFoKb3RDQYb6P9pzAW9qRSLqh+ JaJt0pR1Q95YmPRckOGfJyJDXiNvp85oMJU6m9+xUw4RhS73Od+6D8e8PlwQ jpJDduMli5+rwiFb2nFnJ00OBYoxinh178DOt89TTl+QR+nNUZTb3DeBrP5G padZHhXuN15WDA0Al0XuL+0qJHRk9VVZpr0fXCrS77qoRkJfDDLyky38wNoh /OO8OgllcN0RTtf3A4PPXO/FtEhowO2J5ktlP1As5mxyOEBCPCmX+30XrsOE IyGfoUdCM+apYVnh18GphxWwy46EbnpLHKir9AXHyj/EqAck1PF9j857BR/w CLNkn0ogoZCN9sz47T7gb1nzTeAhCeXz32lw4PeB+zT/eHIKCSWqaW1VWPCG Mh0GK/UR/nuJ3l7yr7yB8Xq971kxCVmefGi/YO0N5B6BuNYPJJST2a5pR7oG GbmerhHtJHQsdsTLgv8a5Pp16Z38SEIjyb6T5xe94IU4mfmxi4QyO7SMst96 wZCtqGvvPyRU52PrwunsBUpjEnqjYyT0t+F1V5liT9hdEySTN0FCawaDi7uT POHQvUGG8xQJJaVWjVvd9AQTpUcVv6dJSL5u79tuM0/wdSfKLCyQkKih/OZU mgeEHL7DqFokoUULF7u9Pz3g3ubRr340EjqKCZWOtHlAWnluDJ1OQodMj2/3 yvKAnFDuK41MElpvr5Y8HeEBxebOx0PYJLTdwGH6qLcH1Mi/33F0jYQcovuC kK0HNC8qMvA/IEjMpIBioe8B/wGtvPOp "]]}, Annotation[#, "Charting`Private`Tag$137051#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], Thickness[Large], Opacity[ 1.], LineBox[CompressedData[" 1:eJwVl3k4lN8bxjHSQgqltDBMIQpFixb3WypLSllLWsha9lKUUPZC9mQLUZaE kChZ0oaSKGvla1/GvNmNGfzm99d7fa7rXPc55z73eZ7zSpo76lnycHFxbefm 4vr/N9HTnG+7xX21XQNe5gsLuw5UN1J1jKm22EgmnHF/Pq628PGdD5XqjgKt CFtWoggEI17lLWu5C19DtdwibmkkVoRILKIGIS2wkBF9RxlbSYvQBesHUG81 7HC0UMNvwaR5dnMERpD9W/THEWx6unTXLCsaAcdfUb4mHofdAVf7aYlH6Cmf kDHT0kdBU2fahHoCxF9ce6lkfBqzV3Q6Rq0fI2p9XR3/9Dkkc3cETR9JwV7/ ULWfIuY4/DV881RzKky2WAh3X7XEQKxG5YRtGtiN7hUC620RbDFnOs5Kh1Ot j2HeEns0smyi/klk4hSyrZ3aXHD9k7gSmZ8FjUyJeFFVV6yLbKodUX+OJBfz wyUlN2AuR1CGrXOx8rjWgWKJ2+Bh3ayf8MiDmYGx314ebzR1Gm6cOJIP7Pu4 adb3Dtye85eMNb+EWeo3xkKpL7Qj+vjGkgtAS/tTPGPvjw1ulQajtoU4/zv9 erFSICrUb/wjWUVQcqqcGum5j8XtXTIjEiWw9pDTXM4TgZaKMlf6QAnOio/l ha6NRNbT2PfD+aWY7be5arorCidcTlwYUn8LepfQ6ciAGMQsLY3pty5Haz9f saNnPApvaLtcXVuBTz/tbA2+JiBhaLfYuEcFKlxjTk9IJcHhu7D12JFK8Cf9 9l7hnAzhhM88o81VmJEZI8WMn4Al+CrTaf97PGs5KeGzNg09d56c/Jf8HsXD iRK8v9PwytozibStRtCLUQ95x6cwUVbZy2B9gGjlUldacSZSah47D0t8wc1T A2oHrPMwEVsk9zf4C/LqDz1tGcjDUeva7h/ML/gbU1M5fSUfdMq0YWljDTZ6 YmPO9ZfYc+DE3qCAOuSO/dp3ObEQ33PZPDJkPQbv909NyJfAq2ar9vYLjXB/ olPtHVOJjPxi6ezoRjx3oX+aGarEj9hDlM11jdAfFSwaRBU2WZ9+u1a1CZ5d tesVhqtQQ/FV4BL5iQvJzveXaFRD9EC7cP3HX7AgP6RrC3/Ci9ygdjuFNnSv lxodGKzDkPBQsLZZG8KyXp29rP4VMte11WSj2nB69FaZZOJXJO/nT+lmtoEd bya07dQ3RHwJtjL50I47GTVbwt/U43r3g1EN099gOdWu36PTgMf8tT5CRzox OJ86wbuzCdZoeER36UbCYPZC95o2OPRu6S58MYjd+9XlnWK60Hm+dUnlFw6v qs4Qy+mCfkugwteeQXzxzNxa+L4Le2r73XvXDUG6qL/qzb8uUPLTV4oGDGGt +rbHQtrdiPWQVLtxYRg1r1avK2N2o1JE7JHqyhEc5LrySFenFyohn98dkR/B HzmtVf9d7MVTPreeU0dH0Nv7cttF114EM38pXvYYwdk8/37ppF4Y/Y36GDcw guWmnqpNjF4MZa2cYFUwkNGn4ZEY3Idlkr4yf/f8A5WyftO1kn583h+u6Hnk Hy5k7NA3q+mH/+mk3Rv1/iE8IPT1/vZ+8IS91jh75R/4Tj7jesfux+w83bo5 8R+OclfdH1QbwHCHYUY9zyi+pQhf+F0+gLpYmS0VdaNYXzTmtqRwEPcKVbZf aB3F7T1FMzlVg9D8flB1vncUqqErOomGQVQvNtXavzCKo0W3mxUYg3h7Pcz2 9fYxzKe0rJCXGUKOATMzL2YMu66/OZ8aPYTQlbVyKRfHYfVSgf+uxTBKdm8s OuEwjqOxXh7NzsPoOe8I9q1x5Kk8HxD1Gsa+HBED44fjiK8RL9Z/NIwBLdPb y7+N43RlmumHumGo+4zUu++bQPmAQfM9RTocsmAiozWB5kVJE9776IhrCO9p MppAJcnaaaZBxz+JXUxFlwlo5VeqdJ6nI+mtp1RfxgQOZqo9agmmY2Zyhaue 6CSid7bJF/fQQdvIKeO0SeRm6eSdIuk4cbgwKGf7JPw8r2T8YtKRHnE6acnx SdhSjwokC45ATzHl0zufSdxgxBhu3z2CHJsd6+RHJyHBd3NE33cE5u0G5ZS6 KQSz29bVCzKwLP4/e+fWKYw0qiqniDLw0sRhw9++KRiIRbhfEGeA0hbgXso9 DYl0m8LkbQyktZQqO++exoonX3t2HWOg7yc140/qNBovivqU3mUgNDrHSCdv Go6LE7r1gxjYZbh3UWnZNCQFuQXaHjAQ0KRvHt0yjTpp+9/PExiQbfTfoCM4 AweflHT7IgYuf6eHlbjP4NzjuDWW3QwIh7lDJmAGivnP+uoHGCjV5WNERc1A bnhaVpbBAH+9xDGn3Bmw2jRVUmYYeP5Vb5FM7wz2as6kvhIgYRDytyBqbAbj r/m0QoVIsHXszHm4mDCxvVumL0rieJ1f+e91TPB3ahMZEiQYNa/do04yYfDA d9JtO4mYe0dkec4z4b1yqXHFThJq2j9+OV5hYkH9YO+kKokHX4aVj/kzsfXi p2L5QySUPoszuN8ysULEMOD9KRLOH3zNHWVmIRGUfveFPQnxnqN8U8qzcPFT W5PhRKKWZ2mWBzGLrQXujRFXSWwmQkaDzsxCSSRneJ87idbSaO+0+7OoaVEu /e1Dwr/VeJN87Cw+bPiTZeZPQnlG7HN+2iwqIhxXNweSCNmZtKK8bBYla5ru xISQOJj3NKmV5OhpRrfbxHD2983m0EX2LGzJw+XusSTiR+T6+pawMHbE1ckj jsSkXO62CUkWJnk8LY2TSKRqOTfcVGAhUe3aO8VkEro2yq7c+1i4nCy9YjaF RGZ68VtBAxYIlmyVRToJo2r3i9EXWXA6W6y66BkJSvc+3g32LPTc9mx8mEHi HLXi2BZ/FobnTGMjs0kIxX9uU3/NAqPvWURfHol3Jfc8a6pZMPunoCH2ksSV Fh2pUw0s7PCKuKpWQOLD6gbb80MsjHuyz18sIuGiErm8d4oF87gw5XOvSEjo G+ZfobChZ74hW6eYhHtY64zbBjbO7tB/QSkhIZ0bn7Agy8aB68m6tRxu/HqO 8N/JxuP8LeV+pSS86RI9AofYGH37YbHyGxLb+LsCIk+w8SryuEojh9u2pMmv O8tGt1qCrtVbEgGaVvXJ1myYlYda0DmsYi17VeYaR2+G4mlZRuI/vyHRF95s 3IrveNrA4dC056UqIWxsFGINKr0jse+9w/k3j9jYZ6Wu58Phgf+UeA49ZUN/ V/zQZw5Hc42nf37JhtTDwTLuchKHJIq0dMvZUONd07yNw+SBGyM/a9kY1F5+ 8DiHE0xVw01b2OC6Xsx3kcNat1gq3T1ssEu4la04PPWorMV2lA0ds9bvFzj8 5LWXx785Nkpebx3W4fDJ5oPUG8vm0M4aCv6//twkpXpOdA6TB3kr/z9/1qqP 1r60Oby5bBvxhbM+Y+VAfn6lOZziFxDw4zCvnnZu+P453D/7Z48Kh/OdBPTX as1hN62R1szZf12ciHuO0RxuT+22tuBwX/W6x4cs5rD8UfPZbo5/XKTkh2bn OZjpZq4w4PA6sS3Ddl5z8H2TFvaK47+KupIQT8gciKpK+jIO69rv3v0wbg4x TjPbT3HOz7fyiE9l0Rz8pCJzC16TSBrWyTR6P4eADf2U75w8vF5tUD/8fQ5G N1Tc/3DyMmJrvl6UPge3NbHzDYUklkTZHsxmzkEnKF6umJM3qXdO1sTieSj4 uOSGcvJoJOxVcFlqHoZT9qxVnLw67fdvXVCch9Ar9z/vX5C4ZxWyEHVgHpUm MnqWOSTKS+OPlZ+eR5ymPM07i4TspdfdIg/msYz8b1Q0jXOeIeVLMxPmIam2 svNsKgnT4o+KalnzCF5y6Fsk576F8/+8ZfNhHgfqD3Z1JJCYLRgVKWPNw4FU s/8ZRWLVnxlVvaUL0F0t1VkQQUJhCdfFftEFyM9NVvqFkbhkKvhcaMcCrOil S3mDOf7zyh+2slmAYuH2rXZ3Of4r7LjMcl3A2JZNj/q9OP6fUQ0L81nA2WNG 3Ua3SezM0egoTVrAYhfbo0JuHD8NLa6t+LmAhIebP03Zcfz0uhKX1rWA0h+8 ScKXOfcp06VC9d8CllvmlEtZc/LgRfC9XMRFVJEdYlQzEnsaT+h1ULmI+Wcu T8MMSKTcujKkZMxFtO89wTTg1FOliqUzAee4iEqPdnMmp95W8GYs+nuJi6ib HNGP2kGiM6SHGuLERawXo83kyHPqafI548EgLmJRbKCb80YScdW61SlvuQiY dNYcWmAgYrlKkrAUN5FcU3L1zFsGpPR+ZNvKchO5lz897C5mID/GqaRCgZs4 HfPfQ8sCBr5L5DQ57OMmYJhjeCqLAcEd0vy1BtzEDZXSgc8PGbhntNbNJ4Cb OEpvszzozMDdx+xTE3RuQsy2zzeJ0y9PKr12lh/nJhYPVkrrizEgXnk13JzJ TTh5mcpzr+L0r66h798X8RA/47zuaC1lYGxzq26OOA/xpG6/WfA4pz8/Lzpu dZKHuGAj1dH1kfOOK3HQaingIVSnvlOFbEfA1dhJvL1JIWLNFlcYJNLhO/gu 5eYdCgE5v8DVMXQs5UrkUQ2kELIt+fwNoXQIbztTXRRNIcwPy1/e403H5oAG jdw8CvF49EbSF3M6tPdVnUjtoxDOc4vuzkvTEfnkiWmgHi/xLtQkeDJ7GNLX rNwM5BYRBzrNBNdlDaFn8qERfxkf8X4oa+FU9gC0ey/fjnBeQojY0I9X2/Xh RE+YvLj4MmLA0jrOWLUHQ+/NvT/n8BOyESnZZXu7oCD0a6P6heXESQctzVn5 TizDpFnHuCCxscT0uVVFBzRGTKalDFcS7XNU2cktrWipsuA22SpEeKulW3yZ +omiwOrz1EkhwiJJocP5cCOsFrl2fvsmTETShNUUn37HJZdbRQJxIkRqfSlT f6IOitby33TMVhH6htc1T2z9gnrhrfyuqqsJJdJhaGvYB7x5cTd+K0WUoCsO lUcnVuEWt9zJut+ihG/fBSorqxzLOm5qOhSuIRru/z79cbwUvU8lox57rCWs 2it2jG4qRpSsGG+JoRixp2bDKpHoAoTFWX0yo64jMpcp6b4pyYNJ1LlvAv3r iDh/TodJeo6Zw+nMx+/WExOaFvQ7Ehno7j3kVhWwgXDT0Je4fi8NqQe2r/9q tpGwOSKzzHtfCnL8XIWst4kToQom8xG7ExFgeOkYZVKc2Fb5IDDuRyx2dqRk BnyVIKYjFUTGP0Yhdkt8ztdjVCKf0rqjOSocE+NH032OUwkvbbuQtYHh0H03 lqCqSyXUO+razG+Fg09fOzhdj0qkynHtEjYPh6sH8/LtM1RiMaGh0a4YDr16 Y9lt1lTimd+2LKGvYRBwXfUk+C6VeG2xpLlveRi8KkJij5VQiVBqwK5x3RAM /a6IYpZSCR+WnSBzbwiMWONhz95Sif6xne7LpUOwdZdJEKWCSvwYft5pxg5G S7b0zTcfqYRYtuRgcWYwdjwsPyvfRCWupur7rFwcjD77UXF+kjN+Q7L8jrp7 OL7eML1mkyThqOAYvd8zEAcdPp0VCpIkhm0uORS89MXjDeab6iYlCR2+Z2ET e+9g0/tnMSfOShGBeZq3LHlvI2xbldyPd1KEXvfBT6u83WA1ztvwRY5GPK2v 93hw8RrOZx3+ZrqVRqhkfvcL0rsGIzPfWnIbjRgVqKSEHL6Go/WUj6u304jx 9CdH8mSvQTqb543ZbhoRsCJfxXr0KnrNudKZ6jRCxCDLKtz3Kix+sNy2nOPo X7q9NiffBeb5Y9SgBzQisr2wsWyzM+zu6rO1w2mEsv+vVP+1znDVL2wWiKQR f3ubHM/wOyNw0jU0LIZGSE7P9m4YdcILVSbrYSKNoHwSvb6uzAnMyoVfT7Np hFx5c/2gkRPCfgiEVH+iEdvZTSG6NEfEPbG38f9CI3LLHnYf5nfEk2vf1DVr aUTEQq6zzrgDXomGzdZ+oxFKjfzcEe8d0GEiYtP4k0aUbSpynbRwgEy3mHpX N40wM5CkCmfbQ6nwpnhaL40o/2+6fFOUPfb6tTMt+2mEZfv6D5q37aEjk5g3 OMTR92yorda1h8sVqvjoKI0I7Yu3uD9pB4/9d5gvxznjrY98lvlrB7/lXU3X JmnE8WM75X9+tkNs7pP7MzM0YolX+FvzBDukevNal87SiHOTAw2H/O2Qfcry kAebRtxbca5Q2ckOhVIfN6rN0wjtGnfjnSZ2eDcuzeT8MBEXBJteaBy2w/8A zmd+3g== "]]}, Annotation[#, "Charting`Private`Tag$137051#2"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->250, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {8.171238126041236*^-14, 1.0451777554464838`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}], GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], Thickness[Large], Opacity[ 1.], LineBox[CompressedData[" 1:eJwV1mk4VO8fBnDDbNaiEpIwlhD5lVRKz5MlJUlCEioqWwlRiJQlFIWIZKdN lqxF8ljGvoSZkz1kyzq2sud//vPmXJ8X51zn3N/7+1wjYXXb8Do7GxubNYGN 7f/X+AdW5P+uPT12me3/vxlAZ4jrXRC3A9rJ/u1E3BvVpX7i4h7AfnSAsAU3 X0ThJ64OXxDrN/ZXDnd8Wegukngw+M/7ifIp3HtY155t2DwHSLdB3gl3L1/C v7X2CJC0WGmdgFvqLafqymoUqDeNucTAfVPd7dbirlfgnb5LJB9hBuQx+9MW NOOA4laviLO4Vxz0emZtEkHQ667uKNxaTeHSf9tTANYx5aLMPgN+x+iUL9il ASI56Ycf7pBr6+bzq2+A9vLLnC7cjFXbyJldH4CIJg9fOMcMuFsjpszKSQeM at98Fm6RF8yGKc0MwDlKEzUgzgArecgxYZMNnNDHkK2kGeCewV00154LbLmP DSeRZ4BuxAh5LikP+LU1eLJTZoCoe7nRrF0+aI5cLbLCXaZ5b4a1WgAemxjV 7aTOgAg5w2MseiF4/Cpk9B7ua5sUQ6ZDPwPNlfunv+OmdP+SndpVBAr+TIS7 cs6AjrJvbpO/i4BY5XJzOe70tzGVEznFYInSQubmmgFeIXf4Jzy/gmxT9/Gz uPVd9C+Pa5aAdC+3PWG4xU3lMsd4voH3fOhhA+45deLqb+wboMp+iyNw4/Ol 9Z38nVAKfm3WOrgP90vO4pejNgiscYZRLXDn39N1uSNUBnh5jtc/wh03flB4 3qsMfEs2OZiEO8BCusxloAxI0BV4vuB2bBGwmdMuB66VLuQ63Bc02fhc0stB /+H/httww8Kp/Fm+CrCXUmKL4ZaT677kfKcCnL+QZ9iCWyCuln22vQKo5P67 Xol7la/wg9PRSsCzre5GFu6hR6kGM0mVoHmbt0g47qaFsMXbJDr4sqlcxwF3 oc2DBJYdHYya3ik8ijuxy0H7djMduPq+3UvCHXTm4uT0virwIinem47n4Vx2 4oVjdBXwiKt18MRttl9FbXq1Cpg/L6uWwa35VmLg1pVqMCutZV6H579HeFPQ FL0arPOqrF7FvS1kTemWXA2Idnh+Zwaf379/Y9hkaA0ovuD00hX3qHO71825 GuBgQ1WdxvvQMkSnTZrUAuaReGkL3Mn1ic4Tu+qA/TOajgjep4WYAvm+kDrA o37wjSnetxM2DYNty3XgVlTDh2C8j5Mci8bFjHrwOGzjZwXeZ9DGsykLNoD3 Seey6/F9iEiSrE3ObACq6T7X6fg+HVLXVwsObARX71NThddZ4Cn3tXmvhUaw N1PHunCFBX52emQ4XW0CylUGMQeWWMD/7hsx0yPNAOpmS3fNsUBL9hq7LOs7 iBZ4+CVvhAUEAKclr1ILeHlv79KlQRY4IhOpFnitBVx+0uY61McCzxY+zHu2 tgBeoV6VqA4W+NKt0rJAaQUCw3mkb0wWGKhAGY7HWoHkXz0legsLqIRj160+ toLNxVuKbteygKX7FY2egVaQMvGiaAudBQIvT4iZCLUBdsJN/ZeIBboUCR2n AtrA2rPBQNVCFvCp36P732UGCHexG/uZzALvcz7LfIxigGeDBKU7cSzQFqPB Id3IALxBHb1DL1lAysa0ROgwE7xSucp75SkL1HP4K7FtwUA6X850rgsLLIzz cXuewkADy7dy700W2Nn2anTeBwO96S9PB19nAaek7KTRSQyQ7u471HaBBQTV uwW+V/8AyvoZ8sVqLAClbrBOrv8Af3eMHdixnwXsuGcbKva3g00PLZNMFVig pJMcUJjUDsrH5/xsd7CA1d19i/GeHaCxUNKmZ3kaZGUHd99U6gJjr3rqt3+a BuMC4yG6V7vAbNwEffTtNJC9q3tsd2QXmCCxLcXET4Oko9zJg8tdIPJnkFri k2kQURdyw6yqG/R8Mys4aj0N7g4+n9Ux7wWyydzUer5pkHtiJkX6eS/AMpUH 8jmmAeuDgRFHRS9ICT3J47s0BWyd+D+Xyv4EyDukoHJgCpitR3gdmP8JIms9 CKO5UyCRu8GPX7sfkGV/59DPToFj6vfNH1r2A6GV2pJ+jSnQ46hwgHWvH+xj 0Zr6D0wBobanI43p/eCAqaJX6I4pEB6jdypo8wBI0rSPixueBH7SzXwb3QNA yKvpbrbrJLABra8mXQZB3uub2976TAC2lL/F3U8HAYO8Mt5+ewLEEEV76tMG QXj2F+35yxOgtu6G2IcfgyCMlygzCibAbqO1lOtqQ4BjeLCz5t84+G0rm/GT MAwuaC01P3cfB/YR3qUtYSMgV45x0sRiDDgOyw3mZ40BZUGGfMfCCOCS8Jft OzQDvtZa9x3cMwCebW6QT74yD4Zdt3mpHGoHVt1GiKPxL/DgPeS4vaIGcL0e uOXc+RcUpcWxRB1rQK6Zo2jfyF9w5YiXroFIDeDoCvQoJiwC4xKeR8fvVIO0 juL9zgcXgVVirruRbBUYwcTf/0xZBIQl1QDHmApg3zIZVuSxBDbuCjqXgq/A ucrf6rbsCqg6tbY6tz8ZiA2dIP/dvwJ4/DXdW+WTQAM7Z7oXXAG1p/PNRrQS gDQMnQ2+uAKmcssq2HfHgs7iqIdpT1fAu+UdU0lsEeD4p7cJnawVYM7hm89f ehnwv67t0vyyCsSvSbfl/4pDpUVPHtTTVwHr1vyp05UJyKFDT/Jc6ypojm13 kz2XhKq2tdpZjq+C07/FbjYrpiCPsM4ld9E1cPZWOue73jdoIGBcMOvhGij7 cVrQZXsmynHiOS90ah2EhvBcfeFRgBpjt3hkmqwDqRdZAhLTBWiELpKocW0d KJvxlh60KkQiwnITN33WQenZZVG2U5+Rf7m2X3nBOjCSXehb31yETAR88uwl /wEtHo+BwiclaCVvdsu31X+gf0RPqzqiHG39uXTYkHMDhPvCuA9V5UiJynZl VHAD5P9I8zZcKkfW5nwZ/Ps2gCorQOCPeQVqJCpo3bDdAMoUTR4fWiVKML7m ugnbAHM+by/mvaGj5PsO48oX2OClreDoFp8apFzGuRRowQbvdwdRBt7VoDLi e1KfNRtM/L5U6t1Sg/pDh8RDndjg3mdpqlIStUgsyeLCWDAbNBMRUpYtq0Wx 9LP05BI2qDAs9W/rnzoUwauSICBJgGtKWNfWI41I0rDto91uAszXIP4dtGhE OS+disqUCPAxd461/8NG1LIrk+l4hACX7F89PVzViPj2yXA3GBGg3P4TNvf0 mtATEyF3v0ACPKqj42Jk2Ix8E9fOLUwSYOHFJxzCYi3IQPmLs8I8AWJhBBGr PS1IrPxOuNUyAf65xi7+Uq0FFf8ab2khscNt26R3I5MWNCfdeTZTjB16vLlq J/isBVllFJy5YcAOe1wjmgaXWtDxIsdTHXnsUIvvR7AeakV8uvJ2m4rZIaM8 XZGroRX1dA0HnShjhxMksSP5P1qR+5p5bX4jO+TV+lbZNNWKPoHTOuHD7DDz 8dKv7TvakHi1rLbudg6ooEOS2OLShtgY/bDEkwNGuMe+XeNnIP+x0mTPRxyw bSNzSF6UgTjZ4tkPB3HAnRIrY5oyDCSgeJFeEMUBf4p0P1FVYyDpwFad7E8c 8Epaxviuqwyke6RCP2WEAzoIWp3j/8hAzeeSsq9MccAe+Yex83kMdN72weZd CxxQdMEgq7yEgcyj1NpeE4iwQF38nkQzAzmyco2jRIlwXknNeJbFQC9SU82D DIlQTp/Lr38vEwkVP/p24iIRvtdgEw48yERxLZfFSFeIMC9c6YEIYKK36zv6 H90iwooag0WKPhN9uRBpfT+ICEnd2jc37JmohzvA3rGUCPdXicc6JjPRFUnr hj1VRLg3urli7B0TDR86vmeiAb+/I7HUMIuJpq+vT9l0EqH89C2n6WImIpS5 OV9dIEJXY/9H+gwmknG94W4kT4Leqs33EBuGFNX6zicqk+BQbH53JQlDKmym e8dVSVDm5l69Ii4MaYScGvHRJMEeTtbje1sxZJm2x+ijOQlm082/a8hi6CVz bi/7cxKUq+UliOtiKD7WgftMFAmeEtqkcUQfQ2lXhkaiX5Ng4fsIy5OGGMqd xOIV35OgA4ezxSEzDDUTi7gvlpPgJh1Cp5MdhkgHfEaz50kwZzGVpR+AIZ7V xYqVZRJ82U4eDg3CkEC5U4I2Gxn+Uot8hJ5iSPyMlXE3DxlqG0b9WgnH0NHr 2pVkGTLUFNmVxojHkKZCacK5PWSYUN2370MShnRnVT3j9pHh7mGlJudUDJl6 7/5vHyBDc+tLJj3vMeQaxZ1oYUqGD54obxfKw9D9S/6e7y3J8KNllWVgAYZ8 JdaN56+RYftt9W3jnzEUljnNE+xMhhtmimxPSjCUUdXqmf+EDO9+uCFzoApD eU91TTbCyFBK8Ln68RoMFZ+r/E83mgzfEr9LH6/DUG1v/u++VDK0NDeJFW3C 0NCfaBPub2S42PnVRpOJoZTj++/0VpJh5qBwucAPDF0ObX6eXU+GTnDjKLMd Q11SpLrzHWRY0pLRqdiNoRinpGHpPjJUEOQSru7BkEnJEfalYTIULxX6YvAT Q63nXY7EzZNhjrCsofoAhp4l8po6rpDhuwd+Dom/MKQ38d4VEijwfpSuxMIg /n6+fZlDfBT4+KxfgtsIhh43e9YXbqPAdD4h/5RRPF8RwdEgUQpUfmOhUfEb Q6U5euKK8hSoxjfr3zWOIa/10aMbyhR4QUNWljGBocOn/C62HqTAzxs/e0sn MfQ3Uuxu6jEKFG1f/hw/haH8/qIIN20KbPpxjn57GkMue4yzdfQo0NO3iP8A C0N73WcahM9T4FL9atYU7vRNsqTSKxSIjW7bengWQ7aXKiTCbCjworvFcgNu 6XcWx6wcKdCD77Kd4RyGfs0tmam4UeB2HeTSiDvpWOQ9shcF/l4XkVKbx/v9 ZG9khy8FbjlBCXmNW/RH/af0YArcsOIvmsHdJXGjySuMApXKS4sOL2Ao+hZh XD+aAk+zQuLu4jYqiiNLJFDg7ujZ2+9wC5AO0ebT8OfdM9NoxN1iwABVHymQ 65Ki5DDuZ3GO5tG5eF6CtTvncOv95vSwK6LAR14PNedxc6q8iTpSRoFE87Tk 37irfWAubw0Fst3zONGG27+hu7mviQLDvNXhJ9wa2+9N5DAp8B1FJt4X94aV ANW/mwIFn19xOIW7JCtTyuQXBX6yEygi4vZcOXl89xgFhlSaRubj33foxJDF CosCrV+d5L6I+0+4j2fjXzzv3GmFOTyv3F6R6IR1CkyMP0t8iNtJrjDPiUiF 829tUthxK7mda9HgpsJH7fJbPfH8J8omJ7cKUGHKlL/NyAyG3vMEcY4KUaGb 6cV0Hdw3TGkyRbuo8Ps+v/F4fJ5SaaUaT2Wo0PYYdmAMn/8v1sXLFopUKNgn HCuH2yIwLIZwhAo1vT2HgvH+iDAUChjHqZCsSRj5gPerQ6ym9c1JKrwrbXAQ 4f0zKlzn0jWhQjhdulGH91N32N47wpkK19kNU68OYeiENy1Dy50KlZ6cNt2P 911jW0/X3wdUKF8usXsV3w817TOHLoVQodGbSd1bfRiSf7N3nvaOCuMDF9d6 OjEko/5b4kcmFYo95By70oEhSSzJICifCmkth4y68X0VIQlkTZZT4Xvhe515 DAxxX1+wLeihQm0t66WFRgxR1zOibQapcPpEsKpSA4aIUderhcep8GIAp4kl fj6s0X/QHixS4ehsnF0qfp5MShX9PCHACefzh1QqvmGoccjbqEOHE9Y/aP5u noHvq5eq3xN9TtjYrljBmY4h+lZWzlFjTij/RdMo6x0+f60rm5KtOGF/Odfj nyn4eZWmUW/nzQmz5B5Y98RgKPQaBa7mcsIdPG/Ipn4Y0h8KUxAT44IC+3cd j8fP70aFIaa5FBeclphcCjmLodN3Dj54Lc8Faf4FcXf1MHSS/WeL0EEu2KsV XX/wBJ6nuMLdLQZcUGFbRpbLYQwdMK8qo/pywWzZk2utYvh+MZeN54e54L6o zECnYSYar7R6WJvJDQkXUkdHrZloV3iH/bN8buj2gn5S5TITGVnqGxt95YZm Kp2t982YqHTpsHx/LTdc/9Dhs2bARBGK/MzFQW7IL3dSu0qdiY5EI1lZER5I /t6g4CXIRCH2ot8DHvPAutgXN7/SGUiJ/8dOzcu88OxYY6O2IANxgT9Xe+b5 oHfxYwmb/FakM2W2KGm8GUqyHdWcxv8vdVRcI5jt4YeMqvLjncJNqCCIbin+ hx+29CLZmKP16AbJrb+5WQBOU3i667RrkLXL/QKe2C3wpOomQUIWHe21UWjW u7oV7jC7F851vgJ9F9jD7XZ4Gwwc7zWcXUHoa5bv6z0cgjBmg1VRwVWC7hPk DRp7BSHzwTcW8dAXxNXjedIxfzu8LnbhQ+9QPhp+KxGZ6CUES18/fukjk4si dwsTi4yFodKgluY1/mwUFnuj5qq4CIxPVOnZ2piOzCItmnlGReBBo4W/GhLv 0JLWm+XE0h2QaXdWe/hjKhoc1nCvCBSFJyhnzikMJKEU9f92NF3dCScaFNCr J3EoM8CN30ZRDBZnPXX6dikGBRpbn+b4IwZLZMeO32+LRAd6kj8ENu2C7R8/ hEcGh6MYudeZTafFYWvepTrX9lDkUxYac7pIHN4v7nSO4QhGZ3YYv6mXkoA2 YeqKbOwB6LhjzSX+YAko3jDq8o/5CCWKWkk1/pGAJoPyiMDwRlKV717qX5KE ChUc9HpVDxSmWCHfVioJ+fofKly0dEM35omtdfI0GGqb46LY7oyscubEg5/T YF6640ysuCO66Xt+TTecBqXoOtMMTkfkdj6/necFDeYcE8rfOX8LBf1xexb2 kgYfDa/YDFbdQlmHl1ej42nwGZEirXrzFlou3/jx9iMNpqyofZr+ehOFtfGE 0mto8P7Yiv8lGwcUm3rL9nEdDRL70tijDR1Qqmuz5skGGtx9iNI1oO6ACgXD VhqaafCog4L9m60OqMdsiy0Do8Hn6jx9vyrskeygsOavQRrsr9mWoShpj5Tz PcXShmkwntmde5HPHqkFdC9fH6XB03YBNpErdkhPNv7T2DgNevM9/XSAYYdc HMTFZmdpsL1eOl4mwA55HX20nDtPg69cX09XO9uhAN5fTNc/NKjDLIl1s7RD MdmpT5eWaPDvx8nO9YN2KOUh0aZ4hQarox6ZtkvZoY/nrmt4rdGgzebvVMRv h/Ilq3ce+0eDwZ8/9Of/s0Wl8zLLGxs0aLZlCvsyYYv+Byo8HJk= "]]}, Annotation[#, "Charting`Private`Tag$137108#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], Thickness[Large], Opacity[ 1.], LineBox[CompressedData[" 1:eJwVlnk4VW0Xxk3nHHOihGQ6ScbQZKr1IES9RShFk5JZUSJTA72liESJzEmJ zBWvPGbOMWQ8pwxlnodMlfnb31/7+l372s+91tr3uveWtr16wo6NhYXFk5WF 5f/XuABbstrlxwc3PAtXX18/cKCyVeroKSlHgPoSxQj/vwfXq0sCpaRuQdO1 ztxMMxHgj/iYzf3tHvTo5J2QVlSEuNJQSZJUMMwY6DifXN4PStOXn6zbh0Gf tFzlWowedPPHr60wI8CWEVS3EmMC299w7VtajoK4u3u2riyZgcsBT9c/ki8h XfWCvcqJU5DX1vN6Xv8V+GmsBpw6fhaWnI92zdgnQFuTT7/tn4uQyNoV/Mcg CerSwjocn9vBoYansr+ZyfBnZ8y3uXuOMBJtVDbv+BoSkviWNf9zhZDLqzZz y6mwL6jj1RcJd2hddoj8JfkOvE24xgJ5b8LNGgnV6Zx06FD5NXnzkzeIPWur m9TPgK4c/W1sQb5gq4DYx+2zYOnIHu1/8B3wzuApnGXmwqmQ9LUS9wdgEjFE nk3MAzM5+6+X9YJB3LvMYsYxH+RZOXfnST2GUn2vX9PLBRCzSYfZxBEGlM4+ uUnJQtD+6DMVmP0MvpV+8ZwYKYRgqQl8jR4J6W+iK8ZzikAK/CRpo1FwzOPY +TH9Ygj59W+SkEY0POcqej5sj+GQ9eeCp/xxIPiqlm2GWQ7VU6+rHpemQBI9 wX1ckgYl03nTt/SzYD66QOFnCA1svtKrKriywdC+rr9lkQaLDcrrkh7ZMMH+ x7KolQ6hN8/s/6SfAxoHjmkFP6iHSDlT7YDRXGjKWmGTm/4KEvpV+fUaH+E2 XclE7XwrnIueDF/9VAxvcz7teB/VCg9+7GmaFf8CLdF67LL1rVBHMbhz9e4X 2G5vVSyi2Qbl6t9GJw6XAJ09SIVFqB0mXvlq+jdjED7QKfi1mgHh53hSC2zL 4ENWcKeLSgdI/NnAaSFQCWOCYyEmFzvgqsAvr017K0HupsnBnZEdwOPikO9x uhISdXiS+hc7oN7A+gApqRIiaCFXzlR1Qlp17CMXxSq42R82Y2TTDfWSLaQ0 pWrINfyVLBvWDXcnT52bMKmG6XemFuzl3fAvxZhe6VANDtc2fiqR+wHCXt5j SinVcGY1wm/v3A8IM2grbRCsgQSeusCNBj3g1OvRtNJVAwcP+NrcOdcD4gs+ DL35GuhyU9w77dUD1Swj+sI8tSDS8nioPr0H+nxF7l7eXwtPo48aPxTohXW1 pciXj2pBlb4i/Ue+FxaiSmkG8bXQuJyxZKffC0on9WUCcmqB+zxfhv7NXuB/ MdMXwaiFQNlG/vXOXjiqUzlgspUGMqcChl0XesGooP38SUUalD5UKe3i74OT hRcSJ7VosDL+xL1Itw9aOzbfxVY0iNkGJvLWfQDrsapLV2igcXxaJvpGH3Cr a1eW3qCBZ+7xNs+0PpDeFsuceUKDTQPrGQOlffBnPDzAJpYGuZuz75t39MGP G7OnzNNoMOUtsF+Nrx9ErntvGPpCg5D00g2JO/rBa0pd8V4tDRS6ro3wo37I +eA2n95CA3tofjnh0Q/7WAvlUgZpwJL8u6jzcT/EC1Ox0RQNojnEu+iv+8Hf O1084DcNVO11Vwu/9EPg9zUXwzUa1NKuSLxj9EP9J+6fiSQ6XFAKgejpflCe H00J5aXD3yc5Fx5wDoBLSM8UrxAddlqsJNtpDUCAbsFUhQQdSj9KV1qYD8C/ 6U83rVDpYCVqNKjvMgCz268l1+ykwy9fF/Lu+wNw0aq9fYcyHR7+eConEz8A ouc0pkTV6CCl++nwxk8DMCK7pJS0hw6fU7ocWZoGIHHOpr14Px1MyWyPp0cG QGXOV8lViw4jDnIZP1gHoXZI71auDh3u1B1taBAbhJ8jdhyhB+kgouIxVbx7 ELiNT4usAh2yw19syDg6CJH+xqzsunQ4PFesGms3CBeVhPgSCO6x7DN7FDAI e49oP24m2Psz5fqtF4PQbzlcH0OwwFblSIfsQZh82b59GdHhnf+JglO0QXB8 aTk8S5yv1+PFMOwbBJ5A5HSP0O/Qi/uzd3kQrpfMcKQT9XmklovIbhoCWgQI OBH1c3OOaG5SHoJ/O64PlRP9JTvxWbMbDsGZ1kP9+UT/Wg3qfrPnhsCBtfES IubTsssqrtdrCCqkg6vtiPk5RfiXNIUPgbWmkbOsPB3YFpJ/4ndDYJonn3d7 Ox1iTtWyZJUPwfuIWBZPSTqoF01Kx3cOwWyxySeSGB3o4kL6ofNDEGgmraO+ iQ62tzUu+/ENQ4woLCzx0WGp9+x95x3DIMQzZ3yBQgfFtLc1xlbDsC9NwpGN yLlKrsYRDfdhOJ49REEzRA66zHHtfDQMlB3fx7aOEn5VO3iUXDwMT0U/qWUz aTDxX2tTueQIGAfeGT+ZTYMgicWZHI0RyNu/qz4ilQbidyWEksxGIFoj6/q1 GBocNXS0vB04AuvHRcYEA2mQ2bT2XXt4BELE5B1YTWlguHv7sgLLKMx5ZLlY 6dHgR5SxuJjoKBhyicxZ7KEBv3Xkub8mo5BTd9cdbaGB26B8f/6HUfDh39M4 9a0Wes595yyjjcLbxa4fwjW1YP7toUrDwCjEmfmJfc+vBY264VuDYmNgNe+f qBJWC+w5qQLCD8YAn7w6swtqIdpP+qDX+XEoNynaLBFaA9y/my4F+oyDt7IP c59nDfhfvRMcFjUOG6+JG8zb1ICt7c+2tLpxeGG91H5esQaUDsc5f9s/AYaU F5i3shrKhERfagpMwpHvNLWTg1WwJ7S2xEBxEsgMBRWe2ip4Q/YeMDOcBIH3 oSVX06sgZJGxy8lvEmZVY6xN3Krg5M/I6piRSSD1tdRZzRL5ni4wv1w6Be/f xefemKgAbukguZ8av0BImz/RM7MManWe7gow+AVPA8mNK8Fl8K9V/P5tJ37B p/3Vv0yvlAFb+Gcja+dfMNUSp2srUQZLaxP2zLhfYBtcp6MRUgrjXZZvv7LN wF5eGwGLkhKoj5aTL62fAR3PF+kf6grhiUCdQtKFOVjdbdYXbfIBbDstMHv9 bxgTcpD5QkrB7lVBtlfllqDM4+DNXt9SLDFgSP69ewlklBYzj6SW4jo2rnQ/ tASf95lvTmwsxbIodCb49BKM7rStJ0uX4e9FUXdeP16Cu8NZdjWVZVg3+038 9+kleJ27MjFLqcAbY2s79D8vA7WrOX7BtwrnXOM1FzFehS6/dNtlITqujxG6 lXlyFYa2nKj8rknHQ5ViCXqXV+FGaXN11Hk6FhOVH3e5vQq5vWZmb9LpOKjM ILCsYBXSx6c55aAOnxS8neckswYaQ+VVkRfr8VLejNCX5TUoKvdKef24EW/6 8VfzBNc6fG49Q9+Y2YhVOFkuDAuvQ/BnGbczjY34kg1/xkb1dciiCrEGCHzF 9RyKh644rEPkUIkG37OvON7y8o0N7euwrURtS/LhJpzk6zymeooFsSZ+eDWn 0YxVS7n+PjjLgrLTErWuGDbjUo63pJ+XWJD7jy9xtebNuCd0QCr0Ggvy3y2a a+PWjCUSz54aDWZBG2cebihPbsYxlccrk4pZUHRRUdtdzhYcwbcnXlCGFcn6 f7HtqmnBMida3jvuZEXKLFHdh1tbcM7za4WlKqyoeclQL/VHC26SzGxz02ZF uuvfW5UXWjC/+g6eOgtWpKWZeSVAuhU/OiniHfiAFUlFOZGkvFrxvYQVs/kJ VsRdxD4bINyGTVU/uyvOsSJxefY+LNmGJcquP7VdZEX/bnFuntnZhov6xpqa SGwoLFuxbKd2G56V/X48U4INqV997dR/rg3bZhT8c8WUDYV0JxiEp7Rh1QPu rnEn2dBDVXXf/vdteK1BKbTNhg0Z+Luy7sxvwzHTKfV6jmzIHDiE71e24Rb1 iCOS99hQ+viN1bCBNqxb6Gb8LY8Nadkd7ZyUbsf8JgqOG4rY0IMiyQYr+Xbc 1TH40LCUDX18/Na1QLUde6/Y1ObXsyGl+5Ot+tCOs+GI0dNBNpT1cetwgXU7 lqqWMzDZwo4mi698m3/ajllae1CxDzuqeCN6gW++HQeNliT53GVHY6U+y3uX 2jEXSxyb5kN2pPLgYskxFgYWVD5dWRDFjhakn/SY8jKw7INmo6xsdsTftTcp msrAJtrlx5KH2NHFgqTgg8cZuNEsMevCJDuKFLwt6WbBwOYOAQKS8+wo0PKS 95PTDGwTpdUSy8qBrvaaxSZdYmC36VzLKHEONNc7jwW9GPhZSorNwxMcSOnB oqt8LAOLFN39YniaAyna0BccExj4VdN5CdIFDmRavm8gNoWB36xu7bnryoGq 3mVJtL1n4M+nIi/5PuRAq+Mcqi/+Y2AdN49KzTAO5LTPSfAyZuCyIFPZv1Ec yPnsyyyZCgam5/AO30jhQAtGLYc86QzcxXPfya2EA21KVSS5f2PgCzKX6pSq ONDaGY2R+k4GHtTQVRqv40A3mUGdYj8ZeMpuddL+Owd6zTm5LXSQgVlLPd0v znOg2XkTVD/DwDtuXPG2UCCh7396bpVQmFhZ66d5gioJhZFsRjdzM/EeFqtd Y/tI6Pb90w0XeZlYL8R46LY+CYXsCRJmCjDxuddKFu9tSIh9PiZNQ5SJ7ZxS d/22JaHUr9sK9mxlYhdVCR5dRxJK00oOkN3GxD7FG8oZniQUOBLqOCjFxM/b ZnexhZHQhp3HY37KMXFcjDPPP1EkRDJWD7wnz8SvLwwMvYglofWr81fFFJk4 d6I9TvktUU+i6C15FSYuzD12y/sDCa003klL3MXEpd41FhX5JHRw19dVXjUm buQo5DldRkJituqGVbuZuJ2uNpxSQ0L2JmYmG/cycVd4evlUA9Gvh3PMiX1M PCb+6lZQBwlpf36vV6DBxKS9t4ez5kjIi1Mhe1mHiXmX/5QvLZLQyeEJgbkD TCxYdi3egIWM5jVGSD0HmVjqH1vLTl4ymria3hSDmFhOqFN1hxAZ+V2/99lB l4lVvpvzuouS0S2eAislPSbWsTOoIO8gI+MtR4Yi9ZlYX7Ek3kyJjJyflwxq HmJik5l9Pq/UySj9TUZZG8Fmn7IshzXIyDNMPNDOgImt/HeqqQMZye/dvHuC 4PP6Sbz+BmR0hTeuw8GQia9wiY3UHCGjML6ie50Eu36NqBA8QUan37rvOWTE xDeieBLOWhHnfar9m0ywr3WQz9tzZGRzo+LbH4LvSa9azl0mI6qzXbfeYSYO HvZUO+hM1O+WsyGI4PDMKd5gdzLKevzO+z+CX1y3H2n1IqPptWPSowTHa/ZU SASQkYtcsiCfMROnrlslOAaREc032VKO4IyqZp/8R2R0P+DY3H6C8x6bnFwP J6N7uSnzBwkuMqtQM3lBRh/D4m11CC7bosMXFUdGLV5ahqoE13bnj/xMIaNt 793fihH8NUW5UiGd6P/AgYhlQp/h+CbBM5uM/nBH8bYS3L1L0rf0Ixl9ybwq lUTwwMKLkzxfyMjJo5xhR3Cy7u7r3RVkJKkpx7WV4POhjWFZdDJqUHcyrSLm If7dMeNuMxmFZkx9ukxwx3YSzfwbGcWNbT6ySMw3+lrioOxPMpoSgc2BBJ8s 1mb7O0hGVdo10mwEN5t7aL+aIyPGsbO7eoj3+SSBz8ptiYzsF0WNgOCj429v IFYKujUd0fiM8EPtvZ+ZA/wU9CVn5fQ2wi//NvrQP26moK9pD2+cIPykLyY8 /FCcgsKkKEr+hN9Kco5KKStQ0OD8fHwe4Ue/1WGddVUKEpEeu4YJv2oaB55u 3k9B2LKbt4zwc35PYYSnAQX1SqV/TdViYg8lyyyjoxR0xWuWN1iTiXd5/6oT Nacgfh1hXVtiH9I3yJFKLlBQ9tT7ot/E/jhYl0uH21MQc/C6cO4eJpZNO3vQ 1o3QO1QRdYnYt8SDkV5kP0LP847iO1XCH66sY8deUNDN2WtjWIGJLQpfkaXj KShJ9MFLZWLfBUka1LnXFLS7prPyKZEHT1652bzIpaCOaKviA9uZOKius/Fn AwW52nva/j9P9LZ4jee0UdAheze5w0TerNsKcgZ1UlDkgkfpRSKPfJYO6+4c pSDZKa2YW5uZ+Jr8x7xrHJyIsrZj2wE+Yh89zZr0eDiRac/f3C08TDxeOjGx SZAT+VinXB/lJPbHirqjUJITxeyNTvTgYOKzD8KjWbU5Ufu5N+3iy8T3ZdDJ P8KdExVvLWDrGGJgQ39qxiFvTrT1ldqQxgAD623u6vgdwIka/ezHwnoZWMvg Hw3rEE7EL5rht6OLgRVSd81R0zjR2rRZ9+8mBuaxm3co6CL0cp7JKhcycP2A v8U3Iy70D0tY8O4gBq712xf46BgXEk7ysn13h4ErN03n6FhyoWccZ8JF/Bm4 +NCFDUm2XIjHW0+g35OBM17r0R39udD5ld8p8vYMHHqZgpZzuRBVQGj7/cMM fGwgXFFCghv9TiXn5ZMJPcWBNpvt3MhToEgrh42Bj1zfHxCrwI2Kv8pNv11r x4fZfjSJ7OdGLm92LgX/bsd6Uoo3hUyJ560fWQsNteO9NlWlnPe4UeXEkLlx ZTsWb1u0nBvkRuNmqjfd/dvxWIXtndpMHiTD29cqQfxPqGxkbNM/z4dctsre KHRrxdywcLFrjh/ZzD090jjbjI0mz/yRsRRApz3o+IVxE/5Wfpn1jNJGdEr5 kORNiwZc8LDynNTCRqT93sagyY6Or5A8exobBVHiBm2T3os1+JKHbwFvjBAq 7i5pe1VWiXfZKzYevbgJmdKqkxovlOOvgko8npqbkVmWqh6DXIr/+3AvVold GKUvte5u2VKMfVkVTOu7hVG05fM1JvqMubt8Drvlb0Hs+9V1usfy8eAb6cgE PxF0XmWkKVMhF0fuFOUotBRFvVNu37i2ZOHwmCs1F6XE0GG3GLG1r+n4TOTZ Rt5hMbTOvmN2hZqG/x5KXUwo2Yomty6VFGem4P5BPe/yB+KIZTM/l0dfIk4+ oLa14eI25BN4z9c05BXOvO+50V5ZAtUyL+eM20TjB5aXjrAvSKARS53+o62R eG9X0rsHDZIoa2HNTfrRUxwtH5vZcEQKzc44Cu3/Fopvl4ZGHymUQngL0hXj CMb/bLVMpW+XRrILardPsd3Hum411huDpZH8Bq0Srfa7OEHcdnv9gjTiOffS 8USrP95ekfb8mLUMCtaWlWfbfwuHK5crtJTIIA5jHZ/b5zzxlTmOZpoCFdku HBc3Yrpj25xZqeAwKvphPX+gRMoNu9wzXzF5SkUBJYssf7jcsKd5PpP3GRVN GlmFoDlX/HDB80n4cyp6zLhVT6p2xR80F5dfxFHRuKf/m1MurnixbJ3x5j0V cdat+fEXu+DwFt7QyhoqWperkPe2d8YxKa4O/9KoqOP+e6+8E8445Uaj/uE6 KirOjZVcO+CMPwqHL9U1UlFkWY1Z2SZn3HVGyKG1nYpEx87wr5U7Ybl+Uf2+ fipSwAPeRjJOWDXfR+L1IBXVsry2uM7vhLXudy7aDVPRo7NPfmQuOeKjcnHZ o2NUdMxjrOVYqyP2cJaSmJmhot8l3qJw3xH76dxdzJ2jEv/LW/R+ujvi+3x9 bTcWiH7zUqtCzzni6KyUx3//UhHp9q38zRqOOPkOh33REnE/9BDP9HZH/N7M Ts9vhYqiLnJHMjY64nyZ6m0H16ioXS7hUP2aAy6Z27G4vk5Fn5a7BZvGHfD/ AF6Fg+c= "]]}, Annotation[#, "Charting`Private`Tag$137108#2"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->250, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 10}, {-0.3638455761963898, 1.002889069670754}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]} }, AutoDelete->False, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{4}}}], "Grid"]], "Output", CellChangeTimes->{ 3.528629964407454*^9, 3.528629996400133*^9, {3.5286300516875563`*^9, 3.5286300784380493`*^9}, 3.528745136510663*^9, 3.528745166880762*^9, 3.759078690638822*^9, 3.759084905858745*^9, {3.7590851699436197`*^9, 3.75908518051088*^9}, 3.759118925865879*^9, 3.759119849021902*^9, { 3.759120691849872*^9, 3.759120704474135*^9}, {3.759121250015038*^9, 3.759121265279181*^9}, 3.759121524294941*^9, {3.759155334059894*^9, 3.759155343561602*^9}, 3.759155465323038*^9, 3.759155520749668*^9, 3.759155570604555*^9, 3.759155656129559*^9, {3.75915570159345*^9, 3.7591557323383627`*^9}, 3.759156222907009*^9, 3.7591563118669662`*^9, 3.759169387743088*^9, 3.7591709956341677`*^9, 3.759171034175931*^9, { 3.759171067444866*^9, 3.759171073581661*^9}, {3.75917116670971*^9, 3.759171195543661*^9}, 3.759172226501601*^9, 3.759172306748945*^9, 3.759172454981564*^9, 3.764624264069704*^9, 3.764624343887063*^9, 3.764624428681098*^9, 3.793328363502329*^9, 3.793888085369462*^9, 3.82323005145313*^9, 3.875643365918895*^9, {3.875658034494494*^9, 3.875658058843246*^9}}, CellLabel-> "Out[1630]=",ExpressionUUID->"f2f1d91e-f64b-4600-b055-9dd2eab4deb9"] }, Open ]], Cell["\<\ Or do all this directly using a special Mathematica system command:\ \>", "Text", CellChangeTimes->{{3.875581088590773*^9, 3.87558110230126*^9}, { 3.875631474034074*^9, 3.875631501856968*^9}, {3.875631588508267*^9, 3.875631594101198*^9}}, Background->GrayLevel[ 0.85],ExpressionUUID->"18d1ce66-586c-47a5-978b-dbaa204ec664"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"closedLoop", "=", RowBox[{"EstimatorRegulator", "[", RowBox[{"G0ss", ",", RowBox[{"{", RowBox[{"L", ",", "K"}], "}"}], ",", "\"\\""}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"initialConditions", "=", RowBox[{"{", RowBox[{"0", ",", "1", ",", "0", ",", "0"}], "}"}]}], ";"}], " ", RowBox[{"(*", " ", RowBox[{ RowBox[{ RowBox[{"initialize", " ", "system", " ", "at", " ", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], " ", "for", " ", "\[Delta]"}], "-", RowBox[{"kick", " ", "and", " ", "estimator", " ", "at", " ", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}]}]}], ",", " ", RowBox[{"no", " ", "other", " ", "direct", " ", "inputs"}]}], " ", "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ "\[Theta]1", ",", "\[Theta]d1", ",", "\[Theta]h1", ",", "\[Theta]hd1"}], "}"}], "=", RowBox[{"StateResponse", "[", RowBox[{ RowBox[{"{", RowBox[{"closedLoop", ",", "initialConditions"}], "}"}], ",", "0", ",", "t"}], "]"}]}], ";"}], " "}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p1a", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Theta]1", ",", "\[Theta]h1"}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "tmax"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"ImageSize", "->", "250"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p2a", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Theta]d1", ",", "\[Theta]hd1"}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "tmax"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"ImageSize", "->", "250"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Grid", "[", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{"p1a", ",", "p2a"}], "}"}], "}"}], ",", RowBox[{"Spacings", "->", RowBox[{"{", "4", "}"}]}]}], "]"}]}], "Input", CellChangeTimes->{{3.87565801374479*^9, 3.875658027281002*^9}}, CellLabel-> "In[1631]:=",ExpressionUUID->"84cf7c05-c783-45ca-988e-d31b3a3d8dd6"], Cell[BoxData[ TagBox[GridBox[{ { GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwVl3c4Vn0Yxx+7kIwo++HJyExpoLp/RSQkI0opqZAVoteqVLKJIjPKiuz1 2qNSIWSUrMprZx7x8Cy8p7/u63P9rus+17nv7/d7zk/K9pbpDWYCgcDERCD8 rS/u2bKrXQ8/ZtN2kvVvbe4lGloSb8K39o3vF/C6+bHhEZHoA0z8nVEKeH3R FCnJRgyFRZN2JSW8Oh/1clmTTASngo3vYcRE6KU7xGKSucCpsfiYJpULHEOj cvOS1bCsgXlIyFbDq7Y091nJVkhROUNSV2yFwqLQIWeVQXhzNOa1OfMg2EN3 4pzHGLwYsRBx6hoFQvpqzVD4GDzkH1bumRiFBFax4bbMMagrG5lSoo9CS6ud RG7fGIiFlG6tlxkDeXNG+g3NcXi/JkvS9R2DaQe5/J9ME8Cp/pVjnjgOjk/v NnRFT0LuXpmfEtcngJmc/qsxdxLU33PrD/0zAUmWLYSid5OQyP3IITR8AtrE BLQjVyahQ0bvSU3pBCi+zvmkf34K7osGct4iTMJcbW/XO8lp2L1vOU4wcRJc J/aMlRf+BrKJTQ574xSMXB7Y8rb1N8hleVVe75kCs/4QlY7x3/DyNelE8cQU HP485TMhMgPF8r5J27mngaUki1coeAaKeoT5FyynIcFf6tg/V2YhPF0+iDg3 DW8FhBM1eOdhbla3Yif7DKhHtjScVJwH2ZMD+nw7ZyCb3XvcRHce+J87qqzJ zUAEtU/V0X8eutNkOoL1Z8DiV+zHpOl5uHlIqqQ2fAZm3vCu0JsW4NYpzl03 uWeBUypQ7tdhDLQ0fkbXbMxCy5EY1XsnMQhalnhxlHsOgs6nHhI3xWBacIy7 SHgOmKOr9C46YZDzgcBnrT4HtI05++8vMFg4Wh884TAHs8Pncr4wL8HuUFX7 151z0J4gt6epfQnipZrn5iPmIaxcXe3KwBI87nN2P5IwD6e6jmtsTCyBBqnZ yidjHpo5Lukf2VwCH33q1Ybqeai7E32zSu0PqBq2enpNzEOBOTW3+PkfYBFi DU7UWIAo3s8Kr2yW4VN5RWz71wWoPiReccZ1GWR7D6sX/VyA8cu3gOG3DL9U FZ7dnV4ArQIBc8v4Zej1a8z8QV+Aaf1Ld7d1LoNm8bbSPKlF0H40/8VHawWk shJeBt5cBNc3YCWnvwL3aaZzMh6LkNQdM/7VYgU0S5XPl/kuAiZ5kKrqsQLx bRl5T8MXIbXunvRkzgqkklnYr+cvAoW83ctUiAw68Yl/LGcWgSRuu7lJIsOu +LPpDUuLcEanPLRAjQzHxcx/81EXIevp+dQtRmT4oDmj0siCganqq08Nj8hA UvUZr+TDoMBhn4jiEhn8AwQFfipi0P8kMLN/gwx2RGMpigoGrJV9KkHcqwB+ D5u27MPAis1P+z+5VWDvvdS8Dd/zlvT3zvGXV8E7yvzGa20MbIfMG1naVyG5 qv64+AUMOJP/c3EfWIWLMmWzzy9iUGrlKvZrchW+ceS2cFzGgGUw2KeGaQ1O r0yqfLHFILO/Zr/7oTW4mXDiABnXhWGC3uhPnTVgFs/alHfFYMXya7Sh6Rp8 KjTYbe6Gwcnv8/NyLmtw8I5PdLQnBpPfiDk/09cg9Yj8w3R/DKLiCiwMi9eg Q8k0P+YeBgfPabLV1K/BEQX/C94BGAR/NbON61+DNJnnJkqBGMj3BokZ8lCg fsHZQDUcg66nAp+rRSnQ4syQHIrAwNv0pY/cHgrM7k95dS8Kg9bu6j5mHQoc kPR4mx+DgWPXXHS1DwV4Uo9zZsdjwB/tA3LBFNB4R/+xPRGDGmP2hdhYClxr 4QhzT8KA64ukgVsRBbYkbX0ghus+v8OUTW6CAq7Neo/50jEwj/xVFvuHAt3a 7P9qZmDAMHS2ZSZQwYrHYfZiJgZG7Y8bf4hQQXQk2DcoG/dNW5VP7Fkq9GaS WvzfYPA87KQ882Uq0LZ31NrlYXDsdE/fLScqDHy0+u9UPgZPWmf3GwRRIXSN ZYBcgMHhUO/RqmdUCOuJ/7epEIORU2wxsq+oUPCC8ONREQZ7WyQWmOqowPLP NdHlYlwvwXkpt1qp4C66cCytBIMAvcMGP/qocLzR9Z12KT6/jyY5VUtU8Lr0 lHCnDJ9f0E8L2U0q2BkNf2Qpx4Co68QWy00Da15H1jCc3T8E2t6So4F9US3j fgUGEuO67Kv7aSAuMuI3jfNn5q1v/BEN2rgmA07/i/eT+mzEYkSDTP443myc ZVDkUugFGvj4/6tKx7nnsnEcrx0NNg0Fx/QrMbh/l08j3oMG2ur3VJ/irJTS Oyx+nwbbHzcKf8V5oCYuIDOcBncUc7O3V+G5NWC5WzGBBsYZ3EM6OO+nCLeU ZNJgZKGu9jbOI0LDTodLaHA3MsooBefIA6nbG+tpcMLDMq4BZ01zm7KTbTTo pS3ED+I85SFt2d5HA8VJZSsM59iYcZrpGA0eGCyMbOJ8vDg7dWCRBqoxXGpb q/F9djqcsGHQ4M01W2NunJPnFSYnt9AhPL8L/T0/xT0f6iJIh9zQA5wEnMkK RcorUnRQ0nEv/ts/Xd+921eFDp/0bhwewtnYYb8XkxYdaMIr2Y04M4LIu0L0 6KBvwsSUinNuVmUdjzneL8Ld4A7OFs0+NnE2dOh2VAg/hTPLmBarmAsdqh7w f9iBczHTxut0HzrssODbGMTnZ01sMtgTRIdh0+1ayThzwsPFoqd0mGkiB5zD udJa59nBNDpkNBR+3YozX3LLoHYVHYKGdapt8H01VIfda2umQ5EIzYwFZ6d+ Q2mTbjqQduzjfYnv/4Ng983LM3So3zlKaMH14qH+bNvEKh3iMw+BGc6SZudK nFgYsHu0rbQf15tP9ADFW4wBiZVORj24HmWLklM25RkweujiPV2cezusUdAB BigoGFLKcf0qc40GPzvDAEEp+mAAru//Hs8IFQYwQFZWcvIr7o+ozPwa9UgG yHXn/BbFWeu96+XaRAb8I9ZpbY37KY6wnNVSyoDkiPq8L7j/9P3o6mPjDBC7 QnbweI3BamJ9/80lBsxzEv0jcb9mVN33x9YZsM4VKZeRhcE6maV5XWgdstmY Lzbgfi9x4zbbpb8OQSTJxvI0DNqTBHwKLNbBVSZlLTIVz7tmkbQT19fhfIUc 61U8P0SE98w631+HjV35pSt4vgS+PfnobcU6HPWVEOqNw/fJf7/MUXoDPJue +7qHYeB2JGhgU3UDrlRmT8+EYBBmF7kZe3QDau5EPLkcjEFjTbJB4/kNGL++ 9FL9bz5eqxoTeLIBRuefPUi5iwGtbEmgnr4Bh91PltrcwmDHT4qG6dZNqLO7 kBLggoHKFoLNlNAmVPzYTUrG8/zaJZ58vn2bEFVeKNlkj78Pq6KOncMmnPnR 86DtCgap5657bv+2CVoeTsaTZzB45ec0s9eSgPwHOX9e34PnT9NWSrA1Ae1J LqHwyGHQxJrD9usaAeWepXNW7Mb9GDlOjHQjoNbN8T1kSTw/Xlpb/g4loCbr ov6TQhgkNRs3v6ojoHm702rKzBg83aaeyi/NhDwaiWccCxfhYRrDZGWOCVVZ SpRcWliAs3ur3BWXmZAMh4nwTvx7L/H2dowtlQnxeNEpn/9bgJrRma4uNmZk p3sDZL4twB+ZAeMCCWbk5GDe/rx2AWzzK4zszjKjRDOVVf/gBThe7arfX8aM lAWid0aKLgChdwTV+bKgkATp4psH8f8wTztvcwU2lCYodkBz5yyMk+MtuOrZ EdjwV9yiTcPpCce7T923IBOpZGHDzEk4Mx6tKCHBifobkotsbcZh5r1tQEsB FxL+eUy/0WIUVPj6xLWvbEO11pR8NxjB/Ui+OrzMg3i3PZLdMjwMevNWa9Ln eFHP4Hn51SMD0P/uOpOVEh8S02Y9+5ulDypCmi8TyXwoduRsUKVRL9ixeY10 dvIjuaEYg5D8Lrjm4VfBnSSAZI9meGust4OqvWKn4dUdSCmtaeDpvlb4wq/E 5aUhiGLsHX09Yz9AbeHDZCUWIcRNzVl/9vId+DEpnG3/IYRW5t52bi1qBM5h 31Ou5TuRxJzCjbDVGpjIlopN89+F/LavT/2SrYRYeWHW6nPCyHvm8Bbb52UQ nWT36SpRBAX+ON6TUVMMVrHWndxTIihVbSXENS0fKDpZ1LQGUfQs1uWLNTEH xiZOeL8LFkOuZzM+8YRnQvpRNdGOq+KooruudlLrFRQ89uKzV5ZAb/oEaoiH X0DwuWsGLGQJZGwzymD0JMCB4Ve5wR2SCCNstTzwKRYS9iQXdBgQkYyo+ypr XAysLOtmPTIiIvG2txy6ITFg3PAnRcOYiOzDzbmj/WKA3ex0RJYpEUnl6X0/ ZhsDXv5Ux7sXiIhfzaGDfW8MmH6xlFe2J6JBq3YerY5o4PbakRHxEO+XK6PH zRMN95siEwyqiSijoNFz79lImPnRFEutIaJLtzXnDmhFggV9Ofp1HRFZP1Zd 05eNBKWDVqEsTUQUHdv08gUjAvrzZH1rPxLRQJSl+p/cCNgX33hR8SsR7RRr 3NTjiIBJlyUJrkUi0uPQd7veHgZGouey2nZLISLvtb4b90LguOuni3yhUujK eP7yl9JASBOz3d1OlkLegtQ3HFoPYPf718/PXJRGSQ2hjfdZ70K08juFngZp lHvQYFU2wBvsllm7WxVISGu9vjDZxhMuv9HpvKREQl26SVlxpp5gcTXw86Iy CSWxPOBL1PEE3S8sHwXVSGjI8aVqnbwnyOYx1149RELsz6/1eyzdhglbQhZV m4RmTeIfpgTehus9dO891iR0z034UGWJB9iW/CGGPiGhtsF9Gh9l3MH5oRnj dAwJ+W6xoUXtcgcvs/Lv3M9IKJvrQfVVLncIIXtFRT8noRgltR0yS25QqEGl x78goSNEN1fpejegvt3sy84jIbNTz2yWLNwguoc7svkTCWUmt6pak25BUoaL Q1ArCelEjLiact2CDM9O7VOfSWgkzmPywrIr/CsUTfvcSULJbWr6ae9dYdhK wKH3GwlVuVvZMd9wBbkxYe3RMRL6R++2g0SeC+wt95XInCChDd2h5b2xLqD5 eIh6Y4qEYuNLx83vuoCh3Ivi3zMkJF25/32XsQt4OBEllpZISFBPels82Rn8 jzygli6T0B9TO+v9v5zh8bbRr55kEjqG8RaMtDhDQlFGOIVCQppGJ3a5pjhD egCrfQ0Nf15rmciZIGfIM7lxwp9BQjt1r84cc3OGcumP4sc2SMg2rM8XWTlD w7IsFb+AIEHDnEZTHWf4Hzc+9d0= "]]}, Annotation[#, "Charting`Private`Tag$138658#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwVl3k01V8Xxk2NpFBKAze3EJmiQclzSmVIKWNJA8lQCKVSQsYUZU6mIiqk KBJlKpKhEEWon8zDdb8Jcd2L975/nfVZZ619znn2s/deZ631eaMzfDw8PKq8 PDz/XxO9rOeq2tzWMplPovOUtu4sb6QZmNMckLo19ajHs1Gt2Y/FfjSaB1SW RTqwE8UgHPE6e2GLL5K/a77I45VBYmmo1BxaML6q5DKjb6hhI2VzZ9buLi6I mbWft9HCT+GkGU5zBJotM3+Kf92LdY8XbJliR6NS5zX/58QDcNzp7jQhdR/S OWOyVnrGeNXUkTqmnYCm8osvVcyPYOqcQfuI3QOEK9TWCk4cx0Pe9uCJvcmY CL6j9U3MGns+h6//15yCwyo2ol0XzqA/VqdszCEVpeUepUKrHBBiM205yk6D b4mfafZ8JzSy7aP+SKXDQSvTzqXVDZcqJVWonAwsSpeKF9dwx8rIppph7We4 e9Z6T0HBZVjLE/4huxd4Zay3M1/qOvjYV+vGPLNhdsQ8YDufD5o6TNeM7c3B lp0f103538CVZ4IFf5tfwirlC3O20B/6Eb1z/z58hba0X/mTToFYfaXMZMQh F+d/pV3KV7mJUu3Lfyh2HhIcy/4Nd9/GvLZO2WGpArh7yesu4otAS2mRO6O/ AAa0v9l3VkQi43Hsh6GcQij02V+w3BKFg24HTw5qv4NRp8iRyKAYxCwojOmz K8GTvrn5573ikXtZ3+3CilJUfnN0MPmcgITBrRKjnqUodY85MiadBOd6Ubu/ e8uQnvjTZ7HrQ4gmfOIbaX4PObm/lIT5I7CFX6e7aH4As+WQlN+KVHTfeHTo z8MPUGQkSgn8TMVrO68kyqEcfVkjngrnH8NCTX07k10BxbIF7vT8dCRXP3Ad kqrC5KF+rZ122RiLzZP/L6QK8XW7H7f0Z2OfXU3XV1YVbsVUl02cywGDf8K0 sLEabl5Yk3XpJbbtPLg9OKgWvKPfd5xNzEX9Cw6fLFUH/ZC+f2MKBfCu3qiv erIRJx4ZlPvElOFpTr5MZnQjHrkxKicHy/A1djf/+tpGyI0I5w3gPdbZHXm3 QqMJTp01q5SG3qOa31+JR+wbFB+63p6vUw7xnW2idR+/w4aqSNMXrcTzF8Ft jkqteLNKeqR/oBaDooMh+latSMp4feys9mfIXtLXkotqxZGRa0VrEz/joaZg cherFZx4KxHFw18QURVia1HRhoSn1RvC39bhUtfdER3Ln1jsWrNqm0EDHgjW +Ins7cCvmZQxgc1NsEPDfYZbF9IGMme7lrfCuWdDV+7zAahoaiu4xHSi48SP +WVVA9i6tPypRFYnjFtuKn3uHkCVV/rG3A+d2FbT59GzchAb8vrev/3TCf6c tCXiQYNYpa34QES/C7Gea7UunxxCxetlK4tYXSgTk7ivsWQYmjzn7hsa9EA9 9FPxXoVhdMjrLf19qgeP517pPrxvGD09LxVPufcghPVd+aznMMyyA/tkknpg 9l/Ux7j+YSy09NJoYvZgMGPJGLuUiQe9Op6JIb1YuNZf9r9tfyDDv2rdxYI+ fNIMV/ba+wc2TzcZW1X3IfBI0tY1Rn8QHXTnjWZbH/jC3ugcO/cHAoee8BRz +jA1w7BrTvwDfd73twe0+jHUbvq0jm8E9cmiJ3+W9KM2VnZDae0IxPL+Xpmf O4BbueqqJ3+MwGdb3mTW+wHo1u/SmOkZgeadxR2kYQDl8yz1NGdHoJd3vVmJ OYB3l8Ic3qj+xVRyy2IF2UFkmbDSs2P+YsultydSogdxZ0mNfPKpUdi9VBL0 tRlCwdY1eQedR6Eb6+3Z7DqE7hPnwbk2imz1Z/3i3kPYkSVmYn5vFCnVkvnG 94fQr2d5fdGXUZiWpVpW1A5B22+4zmPHGEr6TZpvKTPgnAELWb0xfJ+TNOaz g4G4hvDuJrMxVFDszVY6DPyR2sJSdhuDfk6ZescJBpLeeUn3Ph2DdrrW/ZYQ BibHF7sbiY8jcnOrQn43A/Q11rOz9HG8zDDIPkwxcHBPbnCW6jgCvM49/c5i IC3iSNL8A+M4S9sn9FB4GEbKyZXFfuO4xIwxVd06jCz7TSsVRsYhOffqsLH/ MKzbTEr4a/8hhNO6sk6YiYXxv51cf/zD30YNtWRxJl5aOK/+r/cfTCQiPE5K MsHfGuRRyDuBNWn2uQ8VmUhtKVRz3ToB8Uefu7fsZ6L3G+3pr5QJfDkl7lfo y8Sd6Cwzg+wJOM5L6DIOZmKL6fY5hUUTWCfMK9R6l4mgJmPr6JYJVMk4/XyW wIRcY+BqA+FJOPolpznlMXG2nhFW4DEJiwdxy890MSEa5gHZoEmo5jzpretn otBwLjMqahKyQxNyckwmBOuk9ru8mAS7VVc9eZKJZ5+N5sj2TEJddzLltRAF k9D/XkX9ncTYm7l6d0QocAwcrfl4WDB28C0yFqdwoDag5OdKFoQ79MlTKQrM 6jceUYdYML/rP35FlULMrb1yfCdYuLFkgXnpZgpa+l+/nz/HAv+eXT3jGhTu Vg2p7Q9kQeZUZb7CbgoqnySZvO9YWCZmGvThMAXXCn/r87JTWB2c5vvciYJk 9765/9Sm4B6gtfypC4UavgUZnmQKyq88GiMuUFhPQkeCj05BRSxraIcHhR+F 0T6pt6dQ3aJW+NOPQuAP83UKsVOoWP0rwyqQgtqkxKec1CmUR5xf1nyTQujm pMUlRVMoWN50IyaUwq7sx0k/qCko6ka32cdw3/fFfvcpzhRsqT0lHrEU4ofl e3vns8Hc6+7iGUdhXP6F4thaNkb5vM6YJ1FI0XNtuKrERqLWxWLlhxQM7dXc eXewce6hzOKpZArpafnvhE3YIGy59zZpFMzKPU5Fn2LD7Vi+xpwnFPi7dgis dmKj+7pX472nFI7TSvdvCGRjYNoyNjKTgkj8p1btN2wwep9E9GZTKC645VVd zobVHyUdiZcUzrUYSB9uYGOLd8QFrVcUKpY1OJwYZIPy4pw4lUfBTT1yUc8/ NmzjwtSOv6YgZWyac46fAxPr1ZkG+RQ8wn5MXlnNwfFNxs/5CyjIvIhPmJXj QOPSQ8MaLjd+Pk4CN3PwKGdDSUAhBR+GVLfQbg5G3lXMU3tLQVGwMyjyIAe5 kQfUG7ncuiFVYeUxDn5rJRjavqMQpGtb99COG7/kjg2Dy+p2chdkL3KQOMnv daaIwu+AQfHnPhxci29/3MDlO6nPCtVDOVglwh5QKaaw44Pzibf3OdC01Tby 43L/bxW+3Y85MN8SP/iJy9E8o2mfXnIgfW+giLeEwm6pPD3DEg6IwPJmRS5T Oy8Pf6vhYFh/0a4DXE6w1Ai3bOGA454/9xSX9a6x1bu6OZgt4FWz5fK/+0Ut DiMcHLD6UX+Sy4/eeHv+meYg/83GIQMuH2reRbu8cBo/2YMh/48/Pc5fPi0+ jcldAmX/Pz9j6Uc7f/o08s86RFRx72eudlNQUGUaJoJCQgFcFjDSfxGuOY3b x35tU+dyjouQ8Qq9aWylN9Kbue+vjRPzyDKbxpV/W+1suNxbvvLBbptpCN9v PtbF1Y+HWlvR7DoNa8P0xSZcXimxYcjRexr+b1PDXnP1V9dWEeELnYb2+zLG Qi4bOm3dei9uGvEuk6qHufnzL9vrV5Y3jUDpyBev3lBIGjJIN/swjRur+/jr uX54s8ykbqh+GsaX1T1+cf0y7GC9SpwxjWvLY2cacinMj3LYlcmahlFwvHw+ 12/SxS52ZN4MVP3cXtzh+tFM1PvVWekZmP5zYi/l+tVFM/DHrPIMlr72+PXh OYVbtqGzUTtnUGwha3Qmi0JJYfz+kiMziNNVoPtkUJA7/aZL7O4MhKjfI+Kp 3HyGlixIT5jBWq0lHcdSKFjmf1TWyphByPzdXyK59RYu+O2afcUMttXt6mxP oDD1akSsiD0DV0rL6VsUhaW/JjWMFszCZJl0x6sICkrzeU71ic9CYXq8LCCM wmlL4Wcim2ZhyyhcIBDC1V9AYY+t/SyUc1U3Ovpy9VfadJbtPouxDevu93lz 9T+qERbmNwuL/WZdZtcpbM7SaS9MmsU8N4d9Ile4epraXFz8bRYJ99ZX/nPk 6ul9Li61cxZ5XwWSRM9y6yndrVTjzywWnckqkbbj+sGbzH05h4dUUe0SNCsK 2xoPGrXTeMj0E7fHYSYUkq+dG1Qx5yE/tx9kmXD7qUrpgsmg4zyk1LPNmsXt t6UCT+f8d5qH1IwPG0dtotAR2k0LdeEhKyXok1kK3H768Lj5QDAPmRN784rr Ggpx5Yblye94yE6Ljurds0xELFJPEpXmJSnVBReOvmNC2uhrpoMcL8k6W3mv K5+JnBiXglIlXnIk5ve9M6+YqJfKanLewUs0TbNMD2cwIbxJRrDGhJe4qxf2 f7rHxC2zFVf8gnjJPkbrmV2uTPg+4BweY/CSFQ69/knceXlI5Y2rwigvmTtQ JmMswYRk2YVwaxYvueBtqcC7lDu/Ogfr6+fwkW9x3jf0FjDxd/0PwyxJPvKk VtMqZJQ7n5/lHbA9xEdO2Uu3d34cxq4CZ72WV3xk+796mojDMHgaO8i7q/zk vtW8UpNEBvwHipOv3uAnkA+4uSyGgQU8iXwaN/mJXEuOYMMdBkQVj5bnRfOT k3sUzm7zYWB9UIPOi2x+8mDkclKVNQP6O94fTOnlJxem5/jOyDAQ+eiR5U0j AfL+jkXIeOYQZC7aXjGRn0O2d1gJr8wYRPf4PTPBornkw2DG7OHMfuj3nL0e 4TqfiNkzDpQ79uJgd5iCpORC0nfGLs5coxuDH6x9PmUJErmI5Myi7Z1QEvm+ RvvkInLIWU93SqEDCzFu1T4qTFYVWD6zLW2HzrDFhLTpEtI+TZMb3/ADLe9t eC02ihBfrTSbqn/fkHez/ARtXIScTlJqd93TCNs57h1fvoiSSLqolvLjepx2 u5YnFCdGUuoKWcZjtVC2U/hiYLWUHDa9pHtwYxXqRDcKumssIyqU8+DGsAq8 fe4bv5FfnAwrD5ZEJ77HNV75Q7U/xYl/70kaO6MEC9uv6jrnLif1t38e+Tha iJ7Ha6MeeK4gdm2lm0bW5SNKTkKgwFSCbKtevVQs+hXC4mwrrWgrydOFKoZv C7JhEXX8i1DfShIX+CBnQ9IzTO5JYz0oXkVGdW0YN6Seoqtn95X3QavJJR1j qUu3UpGyU3XVZ6s1xH6v7EKfHcnICnAXsVOUJHeVLGYitiYiyPT0fv5xSbKx 7O7NuK+x2NyenB70WYpMRCqJjX6MQuyG+KzP+2kkm//HpuaocIyN7kvzO0Aj PvqOoStuhsOw+G+ChiGN7GmvbbW+Fo65xvohaUY0kiLPs0XUOhzunqyz14/S yDyio9OmHA6jOnM5RTsaeRKgmCHyOQxC7ksfhfjSSL7N/ObeRWHwLg2N3V9A IyG0oC2jhqEY/FkaxSqkEV+2ozBreyjM2KNhT97RSN/fzR6LZEKxcYtFMH8p jXwdetZhxQlBS6bM1bcfaWR55tqB/PQQbLpXckyhiUYupBj7LZkXgl6nEUlB ikYaVj9U2FR7CwdWmaZVr1tLziudj9b0uoldzpXHRILXEob9aedXL/3xYLX1 utrxtUR/7pOwse03sO7Dk5iDx6RJcLbutTMC1xGm+F7+a7E0MeraVbnU5wps RwUaquTp5HFdnefdUxdxImPPF8uNdLIpvT4g2OgizKz8ayhFOqGEyvhD91zE vjr+j8tU6WQ07dHebLmLkMnke2u1lU4CF+eo241cQI81TxpLm07ETDJsw/0v wOYr+8qG49z4p6+vyMpxg3XOX1rwXTqJbMttLFrvCkdfY45+OJ2oBn5PCVzh Cnfj3GahSDrp6Gk6f1TQFTfH3e+ExdAJbWKqZ/WIC55rsNj3EumEr1L80soi F7DKZr8/zqQT+ZLmugEzF4R9FQotr6QTNU5TqCH9POIeOdkHVtFJdtG9rj2C 5/Ho4hdt3Ro6iZh94Wow6ozX4mFTNV/oRKVRkDfigzPaLcTsG7/RScm6PPdx G2fIdklod3bRiZXJWppophNUcq9KpvZw939PlKyLcsL2gDbWmT46OdO2qkL3 uhMMZBOzBwbpJNyroabc0Alu52iSIyN0EtYbb3N73BGemjdYL0fpxMZu7yfZ /xwRsKiz6eI4nRzYv1nh2ydHxL54dHtykk7me4e/s05wRIqPgF3hFJ0cH+9v 2B3oiMzDZ3Z7cujk1uLjuWoujsiV/rhGa4ZO9ld7mG+2cETxqAyL+2Eip4Sb nuvsccT/AEUAelM= "]]}, Annotation[#, "Charting`Private`Tag$138658#2"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->250, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}], GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV1nk0Vd0bB3CXOxnSSxGS6RoyNadS2jtz8kqSJFQoGRJKSYpEKAoRyRgq c8Y3km245qHLvSczyTxeojLmd37nn7M+a5+1ztnP8332OtI2N02ucnJwcNgS ODj+f49/aEPea/fsuBPH/685QGdKGZ6XcgD6yf4dRNwbteWPpaTugWtjg4Qt uPkjij/ydPqBl48nfivijq8IlSRJBQO1B0/3nMStwrZ7vmH/AiCDJiVX3H38 CX/XOiJA5J9q2wTcsu+41VZWowAyj7nIxO2s4XHjj+RrkGnkHslPmAMFrO+p i1pxQHmrd8Rp3CtOhr3z9okg5E13TxRu7ZZwud8db8Fg54z7Hs45MB6jV7no kApWSUnfHuMOsVu3XFhNA2rLr/K6cTNXr0fOSaYDIS0+/nCuOXCnTmIPOy8D dNX6FbJxi71kNc1oZQHeMZq4MXEO2ChBrin7XOCOMkO2kuaAZxZvyc+OfODM e3wkiTwHDCJGyT+TCoBPe5MXJ2UOiHtWms47FAJG5GqJDe4Krbtz7NUi4Gdm 2rCDOgciFE2Os+nFIPh1yNhd3HabVUNmQ/8D+iv3T33FTen5oTAjWQLyfk2F 3+aeA50VXzymx0uAbPVyayXujHcx1VN5pWCDwiDz8swB75BbAlNen0GGuefk adxG7kaXJrXKQJ63h0oYbilzxewJvi8gix/5NuH+qUFcHce+AF6FL3EEXry/ tAH98YRyMP6P9qF9uF9xl74as0eAzR1GtcJdeNfA/ZZIBdjOd6LxEe64yUOi C94VoDrZ7FAS7gAruQr3wQqwja7M9wm3C0PQ/qdOJfCsdic34D6vxcHvnlEJ uo/sHWnHDYtnCuf5q4AKpew6hltRseei260qYHy+wISBWzCunnO+A1/P/3u1 Gvcqf3G667FqICrUcC0H9/CjFOO5pGrQKPRALBx3y2LYn5skOni3uVLPCXex /cMEtgMd/DC/VXwMd2K3k87NVjrw8Hu3m4Q76N8L07P7akBUUvwDOl4Ptwrd ly7RNcAzrt7JC7fF/gPqs6s1wOBFRa08bq130oM3LteCcTltywa8/iqim4Nm 6LVgedOB1Su4hULWdt1QrAMJTi9uzeH9+/t3ApsOrQOfzru+uo17zK3D2/ln HXCyp6rN4nlgDNNp02b1oPtovJwV7uTGRLcpyQbg8JymJ4bnaTGmSGkgpAHw aBxKM8fzpmvfNNS+3AAco5rSg/E8TnP9OVfKbAShYRv9VXieQTvf5hzYBN4n ncltxOchIkmmPjm7CezL8LlKx+fpsIaRenBgM3C6T00RXWeDZ7x2C96LzeBQ tp5t8Qob9Hfdy3K90gIMaoxjDi6xgf+dNAnzo61gr0GuXPdPNmDkrnEqsL+C IkHfTwWjbCAIuK037WKAm3d3L10cYoOj8pHqgXYMcOVp++3hATZ4vpi+4NXG ADIifQeiOtngU88BxiKlDXCOFJC+sNhgsApluRxvA8q/DXfRGWxwIBy7apPZ BraXbim5Wc8G1p6XNXsH28C7qZclW+hsEHhpSsJMpB1QCM5GrxAbdKsSOk8G tAPuF0OBasVs4NOoYrD3EhO8dHeY6E9mgw95/8lnRjFByhBh1604NmiP0eSS a2aCTUGdfcOv2EDW3rxM5AgLRB24sunyMzZo5PLfxbEFA7H8ebP57mywOMnP 63USA1/ZftW7ndlgR/vrsQUfDIxkvDoVfJUNXJNyk8amMbDuse9w+3k2ENbo Efxa+w0cM8pSKlVnAyh7ja2//g2sbJ84uH0/GzjwzjdV7e8AVF/rJHNlNijr IgcUJ3WAosmfj69vZwObO/v+xHt1AmaxjH3v8izIyQ3ucd7VDRivexu3fZwF k4KTIQZXusFQ3BR97N0sULhjcHxnZDcYJ3EsxcTPgqRjvMlDy93Apz9IPfHp LIhoCLlmUdMD6r9YFB2znQV3hl7M61n2AelkXmoj/yzI1517K/eiDwxk7xks 5JoF7HRjU66qPpAYqs/ntzQDrrsK/Feu0A9yH4QUVQ/OAIv1CO+DC/0gqf4e YSx/BiTyNj0W0PkOJBTG8+inZ8BxjfuWvta4V+rLvmvOgF4X5YPsu9+BLJvW 8v3gDBBpfzbanPEdqJqreodunwHhMYYng/4ZBElajnFxI9PgsVwr/0bPINjh 3XIn9/Y0sAdtr6fdh0DOG2ehdz5TgOPt79KeZ0PgB3llsuPmFIghivc2pg6B qNxPOguXpkB9wzWJ9G9D4MkmovwYmAI7TdfeXlUfBn+Hh7rq/k6C8esKWf2E EXBee6n1heckcIx4UM4IGwX5ikx9M6sJ4DKiOFSYMwH2CDOVOhdHAY+0v8LA 4Tnwud524JDKIHj+T5NS8uUFMH9byPvA4Q5g02OKuJp/g3ubDrtsq6oDPG8G b7h1/QaZqXFscZc6kG/hIj4w+htcPuptYCxWB7i6A++VEv4AuzK+Rydu1YLU ztL9bof+AN3EfE9ThRowikl96H/7B4gvqQW4xFQBR8Z0WMm9JTB2R9itHHwG bjX+NjcVVsD0ybXVn/uTgcSwLvn3/hWw31/Ls00pCTRxcmd4wxVQf6rQYlQ7 AcjB0PngCytgJr+iinNnLOgqjfJNfbYCrJa3zyRxRIATH98ldLFXQC3Fr1Cg /BIQeFPfrfVpFSTZyrUX/ohD5SVPHzbSV4HrjYWTp6oTkFOnocyZtlUwG9vh oXAmCdUItTlYT66CU+MSzq2qb9G9sK4lT/E1cPpGBvf7vjQ0GDApnOO7Bvq+ nRJ235aN8lz5zoqcXAe+IXxXXt4rQs2xW+5lm62DbS9zBKVni9AoXSxR024d nLfYVH7IphiJiSpOOfusg7zTy+IcJ/9D/pU6jyuL1oGewuLA+j8lyEzQp8BR 5i8w5rs3WPy0DK0UzG/5svoXYKOG2rURlWhr/9IRE+4NEO4H49JrKtEuKsfl MeENkPgt9YHJUiWyteTPEti3AZTZAYK/LKtQM1FZ+9r1DaBO0eLzoVWjhHN2 tzdjG4Dk++5CQRodJd93mtxzngPabQXHtvjUoT0V3EuBVhzwfk8QZfB9Haog fiAN2HLAV1+Xyh8w6tD30GGpUFcOqPA8VU1Wuh5JJFmdnwjmgGZiInsUKupR LP00PbkMXx+R/bv1VwOK2HQgQVCGADd2Yd1bjzYjGZP2TIedBJikSfw9ZNWM 8l65llTsIsBA3jxbf99mxJDMZrkcJcBVx9fPjtQ0I/598rxNpgSotF/X/q5h C3pqJuL5OJAANfT03E1NWpFf4tqZxWkCLL7wlEtUgoGM93xyU14gQCyMIGaj wkASlbfCbZYJcM2OU+qVOgOV/phkMEicUFRIbicyY6Cfcl2nsyU4oXfaFQfh 5wxkk1X07zVjTth/O6JlaImBTpS4nOws4ITa/N+CDVEb4jdQcthcygk7KjNU eZraUG/3SJBuBSccI0kcLfzWhjzXLOsLmzkhj/aX6paZNvQRnNILH+GEH54s /di2vR1J1SroGGzjgrv1SNJb3NsRB/M7LPPigpGese/WBJjIf6I82esRF2zb yB5WEmcibo54ziNBXFBKemVCS56JBFUv0IuiuGC/WM9TNXUmkgts08v9yAXt UrMmJa8wkcHRKqO3o1zQWdjmjEAmE7WeScq9PMMFO5R8YxcKmOjs9Yf/SC5y QelF45zKMiayjFJvf0Mgwo8aUnelW5nIhZ1/LkqcCH/tUj83z2ailykplkEm RLjbiOfx990sJFL66IvuBSL8oMkhGniIheIYlyRIl4mwMHzXQzHAQu/Wt39/ dIMIK+uM/1CMWOjT+Ujb+0FESOjRcd5wZKFe3gBHl3Ii3FcjFeuSzEKXZWyb VGqIUCW6tWriPQuNHD6hMtVEhDWdieUmOSw0e3V9xr6LCJVnb7jOlrIQocLD 7coiEbqe839kxGQh+dvXPE2VSNBLrfUu4sCQqvrA2cQ9JNgXW9hTTcLQAQ7z 3ZNqJLjTebdhCQ+GNENOjvpokWAvN/vJ3a0Ysk5VMc20JMEMuuVXTQUMvWL9 3M35ggQV6zcRpAwwFB/rxPtvFAmeFNmsedQIQ6mXh0ej35Dgpw8R1vomGMqf xuJVP5DgDS43q8MWGGollvBeqCRBPj1Cl6sDhkgHfcZyF0gw808K2ygAQ3yr f6pWlkkwooM8EhqEIcFK1wQdDjIcVY98hJ5hSOpfm3M9fGSoYxL1YyUcQ8eu 6lST5clQW0wylRmPIS3l8oQzKmQYVzuwLz0JQwbzal5x+8hw58iuFrcUDJk/ 2Ll3HyBDC9uLZr0fMHQ7ijfRypwMfZ/u2SZSgKH7F/29PliTYZZ1jXVgEYb8 pNfPLdiRYddNDaHJ/zAUlj3LF+xGhhsWqhxPyzCUVdPmVfiUDG+lX5M/WIOh gmcGZhthZCgv/ELjRB2GSs9U7zWIJsMU4le5Ew0Yqu8rHB9IIUNrS7NY8RYM Df+KNuP9Qoa/uj7ba7Ew9PbE/lt91WSYOSRaKfgNQ5dCW1/kNpKhC9w4xurA ULcsqeFsJxl+YmR1qfZgKMY1aURuAN+fMI9obS+GzMqOci6NkKFkucgn434M tZ11Pxq3gD8vqmCiMYih54mbzF1WyPDtw8dOiT8wZDj14TYkUKB3lIH04hD+ fX4D2cP8FBh8+nGCxyiGnrR6NRYLUWAGv4j/2zG8vmLCY0HiFLgvzUqzahxD 5XmGUqpKFHiYf96/exJD3utjxzb2UKC5poICcwpDR04+vtB2iAKLNvr7yqcx 9DtS4k7KcQqU7Fj+L34GQ4XfSyI8dCiw7dsZ+s1ZDLmrnMvVM8S/x69E4CAb Q7s955pEz1Lgr8bVnBncGZsVSOWXKbBjTGjrkXkMXb9YJR1mT4GWnlbLTbjl 3lsdt3GhwPv8lxxMfmLox88liwMeFCish9ybcScdj7xL9qbAsXUxWfUFPN9P d0d2+lGgkC4l5A1u8W+NHzOCKXDDRqBkDne39LUW7zAK3F1ZXnJkEUPRNwiT RtEUaMAOibuD27QkjiydQIE7o+dvvsctSDpMW0ilwC13LTSbcTOMmaAmkwL5 L6rKjOB+HudiGZ1PgerC9Tt+4jYc577nUEKBj7x9tRZwcx9IizpaQYFEy9Tk cdy1PjB/Ux0Frt+5p9uO27+pp3WghQKfP9CAH3Frbrs7lceiwDSKfLwf7g0b Qap/DwUKvrjsdBJ3WU62rNkPCsx2ECwh4vZa0T+xc4ICw6rNIwvx/R3WHbZa YVPg5df6vBdw/wr38Wr+TYHL+bPKP/F65feJRSesU2BK/GmiL25XxeICVyIV /n5n/5YT9y6PMwxNXir06VDa6oXXf6pienqrIBWmzvjbj85h6ANfEPeYCBV6 mF/I0MN9zZwmXyJJhV/3PZ6Mx/spm1qu+UyeCh2PYwcn8P7/YF+4ZKVKhdsG RGMVcVsFhsUQjlLhiQdew8F4fsSYykXME1RI1SKMpuP56pSoa0vTp8I7csaH EJ4/0+J1HgMzKtSaLd9owPNpMOL4IMKNCtc5TVKuDGNI9wEtS9uTCvc/PWW+ H8+7plBv9++HVKhUKb1zFZ8PdZ1/D18MoULjtGmDGwMYUkrbvUB7T4UJgX/W erswJK8xLv0tmwolfLknLndiSAZLMg4qpEJZxmHTHnxexUiCOdOVVPhB9G5X ARNDvFcXrxf1UqGetu3SYjOGqOtZ0fZDVMjWDVbb1YQhYtTVWtFJKrQI4Daz xs+HNfo32sM/VDg+H+eQgp8n07Il/bqC3HCucPhA1RcMNQ8/MO3U44YND1u/ Wmbh8+qt9vipETds7lCt4s7AEH0rO+/YOW6o8knLNOc93n/ty5uTbbjhQCXP k/63+HmVqtno8IAb5ig+tO2NwVCoHQWu5nNDUb40svljDBkNhylLSPBAwf2S J+Lx87tZeZhlKcsDZ6Wnl0JOY+jUrUMP3yjxQFn/org7hhjS5+xniBzigd3a 0Y2HdPF6Sinf2WLMA5WFsnLcj2DooGVNBdWPB+Yo6K+1SeDzxVo+tzDCA/dG ZQe6jrDQZLWNb302L+Q8nzI2ZstCkuGdjs8LeeGdl3T9A5dYyNTa6JzpZ154 8UBX230LFipfOqL0vZ4X/k3v9FkzZqEIVQHWnyFeKKCor1OjwUJHo5GCghgf pH5tUvYWZqEQR/GvAU/4YH3sS+fPdCbaJfBth9alTfD0RHOzjjAT8YBfV3oX +OH90ifS9oVtSG/G4o/MuX+gDMcxrVn8f6mzyo5goSIAWTWVJ7pEW1BREN1a 6pcAbO1DCjHHGtE1ksf31lZBOEvh62nQqUO27veL+GK3QH21zcKEHDraba/c anhlKxSzuBvOc7YKfRVU4fU4IgSDJvtM5lcQ+pzj90aFSxi+3mBXVfGUofsE JePmPmHIeviFTTz8CfH0eum7FG6DdhLn0/uGC9HIO+nIRG8RWP7mySsf+XwU uVOUWHJOFO4Z0tayE8hFYbHX6q5IicG4xAO9W5szkEWkVSvfmBg8bLr4W1P6 PVrSTltOLN8OmQ6ndUYyU9DQiKZnVaA41KH8e0Z5MAm91di7veXKDjjVpIxe P41D2QEeAvaqEvBzzjPXLxdjUOA521NcvyRgmcLEifvtkehgb3J6YIsk7MhM D48MDkcxim+yW05JQUbBxYbbHaHIpyI05lSJFPQq7XKL4QpG/24/l9YoKw2v hWmocnAGoBMudRcFgqWhdNOY+1/WI5QobiPb/Esamg4pIQLzAZKtfv/K6KIM VKniojeq3UNhqlVK7eUycNN3X+UL1h7o2gKxrUGJBkOv57mrdrghm7yfUsEv aLAgw2UuVsoFOfudXTMIp0EZut4sk9sFeZwt7OB7ia8fFyncsXADBf3yeB72 igZ9Rlbsh2puoJwjy6vR8TT4nEiRU3O+gZYrN769y6TB5BX1j7OfnVFYO18o vY4GvSdW/C/aO6HYlBvXnzTQIHEglTPaxAml3G7V0m+iQYXDlO5BDSdULBy2 0tRKg8eclB3TtjqhXost15kYDYZp8A38qHJECkOiWj+GaPBHnVCWqowj2lPo JZE6QoPxrJ78C/yOSD2gZ/nqGA2ecgiwj1xxQIYK8R8nJvH38z/7eJDpgNyd pCTm52mwo1EuXj7AAXkfe7Scv0CD0bffzNa6OaCATT9Yt3/RoC6rLNbD2gHF 5KY8W1qiwd+Z013rhxzQW1+ifekKDdZGPTLvkHVAmWeuanqv0aD9P1+pSMAB FcrU7jj+lwaD/0v/Xvj3OipfkF/e2KBBiy0z2Kep6+h/uvke7Q== "]]}, Annotation[#, "Charting`Private`Tag$138715#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwVlnk4lN0bxxlm7BJtJNsk2SItluQ+kSX1VkQUbSJbFCW7yvKWSiRKJFta lOwVr5yxmyG7GVuRfd9V9t/z++u5Pte5rnOf+3u+9/c80jbXTO1IbGxsHuxs bP//xgfYUHbbPtTJcX8d5iOjc7CsSeqYhZQjvLevVYz0/6uzVlEUJCXlDbeH 2rPTTbaAYOTnTN7WQDgpm2MqragI8bQwSbJUKIy7ajufXlIHpUnbx2v24SB6 QK5sNVYXfgi+Wl1mRcJ3/eDq5Vhj2P6GZ//iUjRQwvduXV40gasHPVz+SL4A T9OL9rtMLSCnufv1nN5L4Nu2EmBx4hwsOh/rnLZPgKNtPr02fy5BIntn6B/9 JMiLDW93fGYHh78/kf3NSgZNzdjW2UBHGIoxLJ5zfA1sTwSWNP9zgUe2K9az S6ng6Nf+8puEGzQtOURNSb6HvUY8I0H8t+BWpYTqZFYaKO+aGr/1xQvEnjZX j+t9hL05ettIwb5go4A4Ru0z4K7J3gP/4Dvg9ZEvf4aVDUaP01aL3O6BceQA ZSYxB5R22tfZ6oaCuFex2bRjLlhwce/JkXoIND3PqcmlPChdp82q5wwHro4e uXHJfFjL9ZkIynwKrbRvHmND+aBKHcPXGVGQ9iamdDSrAKbAT5I+HA3H3Y9f GNErhDNT/yaJaMTAM56CZ4P2GMIsvuY9EYwH4ZdVpGlWCVwaf13+kJYCSYwE t1FJOqCpnElvvQyYi8lT6HpEB8M6RnkpTyYY2Ff3Ni7QwbZWeU3SPRPGOP6Y FzQxYJ/nWfUvelmgcfC4Vui9GliSO3kgYDgb6jOWSXKTddCtV55bo/EZbjOU jHdfaIJrMeMRK18K4V3Wlx0foptAuGtv/Yz4N2iM0eWQrWkCIW79O9fufoPt 9paFWzSbIUCtdXjMqAgYHMG72ERawPClr6Z/A4ZNBzuE6yqYUHeeLzXPphg+ ZYR2XN3VDq2/13GbCZXBiPDII+NL7SAvNOW5YV8ZyN0y1tkZ1Q5Tzg657mfK IFGbL6l3oR289a0OkpPKIJL+6MrZ8g7Qroh7cFWxHG71hk8bWv8ALNlIfqtU AdkGU8my4T8gbNzi/JhxBUy+P2nGUfIDrnIdYZQ5VIDD9fVfiuR+QvUtrxGl lAo4uxLpt2+WYP1m2nfhSkjgqw5ar98NFb/c65c7K0HnoK/1nfPdsGfeh6k7 Vwmdror7Jj274TXbkN4mvirY0vhwoCatG9J8t9y1Va+CJzHHjtwX+gWKaotR Lx5UgSpjWfqP/C/Y/4xG139VBbVLHxft9H6BxWk9mYCsKuC9IPBR79Yv6H02 3RPJrIIg2VrBtY5fcEm7rM94Kx1kLAIGXeZ/gXVey4XTinSg3d9F6xTsgTv5 FxPHteiwPPrYreBQDyy3b7yLLekQuw2M5a16ANbiVBev0EHjxKRMzM0e4FU7 UEa7SQeP7BPNHm97wHpbHGv6MR029K197KP1QN9oRIB1HB2yN2aGnGrvgZ83 ZyxOvaXDhJeQ+m6BXlC84bVu4BsdHqXR1iXu6IWsCTXFwCo6KHReHxJEveD5 yXUurZEO9tDwYsy9F/az58ul9NOBLfl3QcfDXmBuomLDCTrEcIp3Ml73gr9X mnjAbzqo2h9ayf/WC+/bVq8arNKhin5F4j2zFwq+8HYlkhlwUekRxEz2Apob TgnjZ8Dfx1kX73H3QcSj7gl+EQbsNFtOttPqg4BDeROlEgygfZYuMzvVB/+m PdmwTGWApahhv97VPuCQvZ5cuZMBU75XKXtC+sDdsqVlhzID7v98Iifzqg9E z2tMiO5mgNShL0brv/QB345FpaS9DPia0unIVt8HWbPWLYXqDDhJIT2cHOoD mPVVctFiwJCD3Mef7P3QNqDrna3NgDvVx75/F+uHriE7zjAdBmzZ5T5RuKcf FozObFkBBmRGPF/38Vg/RPkfYec4xACj2ULVOLt+UFESEUgguNu8x+RBQD9s OHrgYQPBXl+5bng/74c588GaWIKFtipHOWT2w/iLlu1LiAHv/U3zLOj94PjC fHCG2F+325Np0NMP7wORUyBRv103/s++pX64UTTNmUaczz21ZIvshgFoiwQh J+L8vNxDmhuUB+B0+42BEqK/ZCcBKw6DAUhrOtybS/Sv9V3Nb+b8AJxhr72M CH0aVSzjf3kOQLB0aIUdoZ9TpH9RfcQAHNM0dJaVZwBpPrkLvx8AUo58zu3t DIi1qGLLKBmAD5FxbB6SDFArGJd+1TEAvYXGX8hiDGCIi+iFzQ1ApIm0ttoG Btjc1rD1ExiEAVGYXxRgwOKvcyHOOwZBhG/2yEUuBii+fVd5xHIQ9N9KOJKI nCvjqR3ScBuEq5kDXGiaDtZXZ3l2PhiE7TvaRrYOE37drXOMUjgICaJfdmey 6DD2X1N9ieQQHAm6M3o6kw7BEgvTWRpDkKquUhOZSgfxuxIiSSZD8EYj48b1 WDocM3A0vx00BOont4wIB9EhvX617cDgENSJyTuwn6SDwZ7tSwpswyB4I+Oq pS4dfkYfERcTHQZFni2zZnvpIGgVdf6v8TA8r77rhjbTwbVfvjf30zD4CO6t nWitgu7zbdzF9GF4vND5c1NlFZxqvb/re98wBJv4ibXlVoFG9aB3v9gIWM75 J+4KrwKOrFShTfdG4O3pa9MqUAUxftI6nhdGocS4YKNEWCXw/q6/HOQzCuHK Pqz9HpXgf+1OaHj0KCxeE9efs64EG5uu5rfVo/DcarHlgmIlKBnFO7eqj4E1 13PMX1YBxSKiLzSFxuFiG3336f5y2BtWVaSvOA5bmQq7+KrK4Q3Fq8/EYByW 0sKKrqWVw6MFpoqT3zjMqMZaGbuWw+muqIrYoXEg9zRWW84Q+Z4mNLdEm4D6 96+yb46VAq90sFyXxhSQDggmeqQXQ5X2E5UA/SnICaLULocWw7+Wr9S3mU7B F/WKqZNXioEU8dXQynkKfjbGH7KRKIbF1TF7VvwU2IRWa2s8osFop/m7OtI0 7OO3FjIrKoKaGDl5Ws00fPB4nvapOh8eC1UrJF2cBYu9Jj0xxp/ApsMMc9T8 hhERB5lv5BTsVh5sc01uEb6469z65UvDEn0GlN97FkFJaSH9aCoNV5N40vzQ IpTsP7UxsZaGZVHYdOiZRRjeaVNDkS7GbQXRd14/XISngxl2lWXF+FDmm1dt k4sQl708NsNVitfHVbXrfV0Ckc6GV/O+5TjrOv+pLUdWgOmXZrMkwsA1sSLe 6adXoG2zaVmbJgMPlIkl6NquwH1aQ0X0BQYWE5UfvXp7BT78MjF5k8bAwcX6 QcV5K5AyOsktB9X4tPDtHCeZVdAZKCmPulSDF3OmRb4trUJmiWfK64e1eMPP v5qmPGuQ3XSWsT69Fu/iZrs4uGkNvL/KuJ6trcWXrQU/rldbgzSqCHuAUB2u 4VQ8fMVhDV4MFGkIPK3Dr8xtb65rWQOZot2bk43qcZKv84iqBRsiJ356OavR gFVpPH/vnWNDmW8Tta4YNGAa5zty12U25PLzW3zVqQbcHdYnFXadDXnvEc22 dm3AEonnLIZD2dC66fvrSpIbcGzZibKkQjYUU1DQfJe7EUcK7H0lLMOOFPy/ 2XRWNmIZ08YPjjvZEZUt+odRUyPOenY9n7aLHTEXDXRTfzbiesn0ZtcD7AjW 2pqU5xuxoNoOvmozdqShmX4lQLoJPzi9xSvoHjuSjHYiS3k24cCEZZO5MXa0 roBjJmBTMz6p+tVNcZYdSchz9GDJZixRfOOJzQI7Ctvs3DC9sxkX9IzU15NJ KCpTsXjngWY8I9t2Il2ChDSuvXbqPd+MbT7m/XPlJLH+I0E/IqUZqx50c4k/ TUKBqmq+vR+a8ep3pbBmaxJC/i7sO3ObcexkSo2uIwmdBM5NIWXNuFEt8qhk IAllj95cCe9rxofyXY+05pCQlt2xjnHpFixorOC4roCEHhRIfreUb8Gd7f33 DWgklPPwnUueagv2Wrauyq0hIYWQ8SY9aMGZcNTwST8Jvfu8dTDPqgVLVcjp G2/mQNOFV1rnnrRgtqZuVOjDgcrfiF4UmGvBwcNFST53OdAQzWdp32IL5mGL J2ne50Cq9y4VHWdjYmHlM2V50Rzoj/Tj7pP8TCx7r8EwI5MDCXfuS4qhMrHx gZLjyQMc6FJeUqjOCSauNUnMuDjOgcKEb0u6mjHxKYcAIck5DvSv+WWvx2eY 2DpaqzGOnRM5/jKJS7rMxK6T2ebR4pxo9tccFvZk4qcpKdb3TTmRyr0FF/k4 Jt5ScPebwRlOpGzNmHdMYOKX9RckyBc5kWnJ/r64FCZ+s7K1+64LJyp9nyHR /IGJv1pEXfa9z4kWRzlVn//HxNqu7mWa4ZzIZr+TsC1m4uLgk7J/o4n6515k yJQyMSOLf/BmCidaMGw87MFg4k6+ECfXIk60IVWR7NbKxBdlLlcrlXOipbMa QzUdTNyvcUhptJoTebKCO8S6mHjCbmXcvo0TveUe3xbWz8TsNA+3S3OcaGLO GNVMM/GOm1e8zBTIqPFPt3cRFwsra3WdSlAlo4dk6+GNvCy8l81SZWQ/GQWF nPl+iZ+FdR8dGbitR0aP9gZvYgmx8PnXSmYfrMloeTb2rYYoC9s5par8tiGj 5LpteXu3svBVVQm+Q45klKKVHCC7jYV9CteVMD3IKGQozLFfioWfNc+okMLJ SGDnidguORaOj3Xm+yeajDiOqAUFyrPw64t9A8/jCL4+d01MkYWzx1rild+R UWCiqLf8LhbOzz7u7fWJjP7W3nmbqMLCNK9Ks9JcMtJRqVvh383CtZz5fGeK yWiTjZpB+R4WbmHsHkypJCNbYxPj9ftYuDMirWTiOxmFuTvHmu5n4RHxl97B 7WSk+fWDbp4GC5P33R7MmCWj69wKmUvaLMy/9KdkcYGMTAfHhGYPsrBw8fVX +mwU9EdjiNytw8JS/9iYd/BT0MS1tPpYxMJyIh2qO0QoyPtG4FeHQyy8q+0U v5soBfnz5Vkq6bKwtp1+KWUHBRluPjoQpcfCeopFr0yUKMjxWVG/5mEWNp7e 7/NSjYLev/lY3EywyZcM80ENCvIMFw+y02dhS/+du9WAghT2bdwzRvAFvSR+ f30KusIf3+5gwMJXeMSGKo9S0COBgsAOgl3qIkuFTSnI8p3b3sOGLHwzmi/h nCWx35eqv8kE+1oF+7w7T0Hnbpa2/iE4UHrFfNaWgmSd7X7oGrFw6KDHbh1n oh/XrHXBBEekT/CHulFQxsP3Xv8R/PyG/VCTJwVNrR6XHib4lWZ3qUQABTnL JQsLHGHh1DXLBMdgCirzTTaXI/hjeYNP7gMKCgo4PqtOcM5D49NrERQUkp0y p0NwgUnpbuPnFJQd/spGm+DizdoC0fEUVO+pZaBKcNWP3KGuFAra9sHtnRjB dSnKZQppRL2DByOXiPpMxzcJHpkUNMsbzd9E8A8VSV/aZwoqSL8mlURw3/zz 03zfCL3dS5h2BCcf2nPjRykFSWrK8Wwl+EJYbXgGg4Loak4nywk9xNscP95t oKCwjxNfbAlu306mn2qloJcjG48uEPrGXE/sl+0i7n8LbAwi+HThAdLffgoq PVApTSK44ZT7gZezFNRx/JxKN3GfjxMELF0XKch2QdQQCD42+u4mYudC3pOR tU8JP1QFdqX3CXIhWtbymW2EX/6t9WF83siF6t7ev2lK+ElPbNPgfXEuFCHF peRP+K0o65iUsgIX6p2be5VD+NFvZVB7TZULiUmPXMeEXzWPBJ1pUOdC38x/ 8BcTfs7tzo/00OdCg1JpdalaLOyuZJ5heIwL2XnO8IdqsrCK11S16CkuxKe9 6ZANMQ9p6+TIRRe5UPbEh4LfxPw4WJVIR9hzodb+G5uy97Kw7NtzOjauXEj0 cGn0ZWLeEnWiPCl+XAh73FF8r0r4w4V95PhzLnRr5voIVmBhs/yXFOlXXChJ 9N4LZWLehcka1NnXXGhPZUfZEyIPHr90tX6ezYU6YywLD25n4eDqjtqu71zI yd7D5v95orvZczSrmQvp2rvKGRF5s2YjzB3cQegx7067ROSRz6LRoZ3DXEhu QivWeyMLX5f/nHOdkxtxr+7YdlCAmEcPk3pdPm50ovtv9mY+Fh6ljY1tEOZG flYpN4a5ifmxpO7Il+RGsftiEt05WfjcvYgY9gPcqOH8mxbxJeJ96Xfyj3Tj RoVb80jtA0xs4E/9eNiLG0m93D2g0cfEuhs7238HcKNaP/uR8F9MrKX/j4bV I27EJ/rRb0cnEyukqsxS33IjtimTH7/rmZjPbs4hr5Mbvcx6Kqucz8Q1ff5m rYY86ChbeOieYCau8tsf9OA4D9qY5Gnz/g4Tl22YzNI250HPOc9GbPFn4sLD F9cl2fAgbi9doV4PJv74Wpfh6M+DLiz/TpG3Z+IwWy60lM2DpIVEtocYMfHx vghFCQleNJtKycmlEPUU+5qtt/Oim0IFWlkkJj56Qz0gToEXFdbJTb5bbcFG pJ/1W9R5kfObnYuhv1uwrpTiLZGTvOiP1QMrkYEWvM+6nMYdyIvKxgZOHSlr weLNC+az/bxoxET1lpt/Cx4ptblTlc6HtvP3NEkQ/xO71jO36V0QQC5bZW/m uzZhXpi/1DkriKxmnxytnWnAhuNn/8iYC6Gz7gz8/Eg9bi2xZT+rtB6dUT4s ecvsO867X3Zean490vxgrV9vx8BXyB7dtbXCKHHdAeNflyrxZXffPP5YEVT4 o6j5ZXEZVrFXrD12aQM6Qa9Iqr1YguuElfg8NDci0wxVXSaFhv/7FBinxLEJ fVhs2tO4uRD7siucrPmxCcWYP1tloa+Yt9PHyDV3MyKpq2n/GMnF/W+koxL8 tqALu4bq0xWycdROUc58c1H0a8K1lWdzBo6IvVJ5SUoMGbrGiq3WpeGzUedq +QfFEBvnjpll6lv893DqQkLRVjS2dbGoMD0F9/brepXcE0erGwR53HsScfLB 3Vu/X9qGfIMCfU8+eonTQzzW2ytLIDrLNmvUOgbfM798lGNeAg2aa/cea4rC +zqT3t/7Loky51ddpR88wTHycenfj0qhqWlHEfXWMHybFhZzNF8KFW1Gh8Q4 Q/E/W81TGdulkez87tsWpBB8yLXSan2oNJJfp1Wk1XIXJ4jbbK+Zl0Z85184 mjb54+2lb58dt5JBDw/IypPUvXGEcolCY5EM4jyi7XP7vAe+MsvZQFegIpv5 E+KGLDdskzUjFRpORZ1WcweLpFzx1cBTy8ZPqMivaIHtD48r9jiVy+J/SkWT hpaP0KwLvj/v8TjiGRU9YHrXkCtc8CfNhaXn8VQ07OH/xuKqC14oXmO++UBF 3NWrfoKFV3FEI39YWSUVrcmVynvZO+PYFBeHf+lU1BHywTPH1Bmn3KzVM6qm osLsOMnVg87486aIxepaKooqrjQp3uCMO8+KODS1UJHYyFnB1RInLNcrqtfT S0WKuM/LUMYJq+b6SLzup6IqttdmNwSdsFZIx4LdIHG+c49/pi864mNy8ZnD I1T0j/tI4/EmR+zuLCUxPU1Ff4u8RCHEEftp313InqUidbvNul1ujjhEoKf5 5jwVjeWkloedd8QxGSkP//6lIvJt79yNGo44+Q6nfcEisR52mG9yuyP+YGKn 67dMRdGXeKOY6x1xrkzFNp1VKmqRSzhcs+qAi2Z3LKytUdGXpR/C9aMO+H9i Wn08 "]]}, Annotation[#, "Charting`Private`Tag$138715#2"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->250, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]} }, AutoDelete->False, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{4}}}], "Grid"]], "Output", CellChangeTimes->{ 3.8756434188126163`*^9, {3.875658034679768*^9, 3.8756580590272217`*^9}}, CellLabel-> "Out[1636]=",ExpressionUUID->"ba8c82a2-ab19-4e7f-bb4e-7a376ad45986"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"{", RowBox[{"closedLoop", ",", "G1ss"}], "}"}], " ", RowBox[{"(*", " ", RowBox[{ RowBox[{"dynamics", " ", "are", " ", "the", " ", "same"}], ";", " ", RowBox[{"what", " ", "is", " ", "considered", " ", "an", " ", RowBox[{"input", " ", "/", " ", "output"}], " ", "is", " ", "slightly", " ", "different"}]}], " ", "*)"}]}]], "Input", CellChangeTimes->{{3.875640497420508*^9, 3.875640507402492*^9}, { 3.875640541559565*^9, 3.8756405566731987`*^9}, {3.875641059138962*^9, 3.8756410592541723`*^9}}, CellLabel-> "In[1637]:=",ExpressionUUID->"eeb4d523-6589-461b-9a6c-df10b8ca4c55"], Cell[BoxData[ RowBox[{"{", RowBox[{ TemplateBox[{"0", "1", "0", "0", "0", "1", "0", RowBox[{"-", "2"}], RowBox[{"-", "2"}], "1", "4", "0", RowBox[{"-", "4"}], "1", "0", "5", "0", RowBox[{"-", "6"}], RowBox[{"-", "2"}], "1", "1", "0", "0", "0", "0", InterpretationBox["\[InvisibleSpace]", None], { StateSpaceModel, { False, False, { False, False}}, {$CellContext`stname1, $CellContext`stname2, \ $CellContext`stname3, $CellContext`stname4}, {{Control`CommonDump`$DUMMY$}, { Control`CommonDump`$DUMMY$}, { Control`CommonDump`$DUMMY$, Control`CommonDump`$DUMMY$, Control`CommonDump`$DUMMY$, Control`CommonDump`$DUMMY$}}, Identity, Automatic, 1, 1, 4, 1, {}, {False, False}, False, Automatic, None, Automatic}, {}}, "StateSpaceModelFull", BaseStyle->{NumberMarks -> False}, DisplayFunction->(TagBox[ SubsuperscriptBox[ RowBox[{"(", GridBox[{{#, #2, #3, #4, #5}, {#6, #7, #8, #9, #10}, {#11, #12, #13, \ #14, #15}, {#16, #17, #18, #19, #20}, {#21, #22, #23, #24, #25}}, AllowedDimensions -> {5, 5}, GridBoxDividers -> {"Rows" -> {False, False, False, False, Directive[ GrayLevel[0], GrayLevel[0.6]], {False}, False}, "Columns" -> {False, False, False, False, Directive[ GrayLevel[0], GrayLevel[0.6]], {False}, False}}, DefaultBaseStyle -> "SystemsModelGrid00"], ")"}], #26, ButtonBox[ GraphicsBox[{ RectangleBox[{0, 0}, DefaultBaseStyle -> "SystemsModelSuperscript"], InsetBox[ StyleBox[ "\[ScriptCapitalS]", DefaultBaseStyle -> "SystemsModelSuperscript"], {0.5, 0.5}]}, ImageSize -> 20], ButtonFunction :> Control`Typesetting`SystemsModelTypesetToggle[ ButtonNotebook[], FE`CMObj], Evaluator -> Automatic, Appearance -> None], MultilineFunction -> None], EventHandlerTag[{"MouseEntered" :> {FE`CMObj = MathLink`CallFrontEnd[ FrontEnd`Value[ FEPrivate`Self[]]]}, PassEventsDown -> True, PassEventsUp -> True}]]& ), InterpretationFunction->(RowBox[{"StateSpaceModel", "[", RowBox[{"{", RowBox[{"{", RowBox[{"{", TemplateSlotSequence[{1, 4}, ","], "}"}], ",", RowBox[{"{", TemplateSlotSequence[{6, 9}, ","], "}"}], ",", RowBox[{"{", TemplateSlotSequence[{11, 14}, ","], "}"}], ",", RowBox[{"{", TemplateSlotSequence[{16, 19}, ","], "}"}], "}"}], ",", RowBox[{"{", RowBox[{"{", TemplateSlotSequence[{5, 5}, ","], "}"}], ",", RowBox[{"{", TemplateSlotSequence[{10, 10}, ","], "}"}], ",", RowBox[{"{", TemplateSlotSequence[{15, 15}, ","], "}"}], ",", RowBox[{"{", TemplateSlotSequence[{20, 20}, ","], "}"}], "}"}], ",", RowBox[{"{", RowBox[{"{", TemplateSlotSequence[{21, 24}, ","], "}"}], "}"}], ",", RowBox[{"{", RowBox[{"{", TemplateSlotSequence[{25, 25}, ","], "}"}], "}"}], "}"}], ",", "SamplingPeriod", "->", RowBox[{#26}], ",", "SystemsModelLabels", "->", "None", "]"}]& ), Tooltip->StateSpaceModel], ",", TemplateBox[{"0", "1", "0", "0", "0", "0", "1", "0", RowBox[{"-", "2"}], RowBox[{"-", "2"}], "1", "1", "4", "0", RowBox[{"-", "4"}], "1", "0", "0", "5", "0", RowBox[{"-", "6"}], RowBox[{"-", "2"}], "1", "0", InterpretationBox["\[InvisibleSpace]", None], { StateSpaceModel, { False, False, { False, False}}, {$CellContext`stname1, $CellContext`stname2, \ $CellContext`stname3, $CellContext`stname4}, {{ Control`CommonDump`$DUMMY$, Control`CommonDump`$DUMMY$}, { Control`CommonDump`$DUMMY$, Control`CommonDump`$DUMMY$, Control`CommonDump`$DUMMY$, Control`CommonDump`$DUMMY$}, { Control`CommonDump`$DUMMY$, Control`CommonDump`$DUMMY$, Control`CommonDump`$DUMMY$, Control`CommonDump`$DUMMY$}}, Identity, Automatic, 2, -4, 4, 1, {}, {False, False}, False, Automatic, None, Automatic}, {}}, "StateSpaceModelFull", BaseStyle->{NumberMarks -> False}, DisplayFunction->(TagBox[ SubsuperscriptBox[ RowBox[{"(", GridBox[{{#, #2, #3, #4, #5, #6}, {#7, #8, #9, #10, #11, #12}, {#13, \ #14, #15, #16, #17, #18}, {#19, #20, #21, #22, #23, #24}}, AllowedDimensions -> {6, 4}, GridBoxDividers -> {"Rows" -> {False, False, False, False, Directive[ GrayLevel[0], GrayLevel[0.6]], {False}, False}, "Columns" -> {False, False, False, False, Directive[ GrayLevel[0], GrayLevel[0.6]], {False}, False}}, DefaultBaseStyle -> "SystemsModelGrid00"], ")"}], #25, ButtonBox[ GraphicsBox[{ RectangleBox[{0, 0}, DefaultBaseStyle -> "SystemsModelSuperscript"], InsetBox[ StyleBox[ "\[ScriptCapitalS]", DefaultBaseStyle -> "SystemsModelSuperscript"], {0.5, 0.5}]}, ImageSize -> 20], ButtonFunction :> Control`Typesetting`SystemsModelTypesetToggle[ ButtonNotebook[], FE`CMObj], Evaluator -> Automatic, Appearance -> None], MultilineFunction -> None], EventHandlerTag[{"MouseEntered" :> {FE`CMObj = MathLink`CallFrontEnd[ FrontEnd`Value[ FEPrivate`Self[]]]}, PassEventsDown -> True, PassEventsUp -> True}]]& ), InterpretationFunction->(RowBox[{"StateSpaceModel", "[", RowBox[{"{", RowBox[{"{", RowBox[{"{", TemplateSlotSequence[{1, 4}, ","], "}"}], ",", RowBox[{"{", TemplateSlotSequence[{7, 10}, ","], "}"}], ",", RowBox[{"{", TemplateSlotSequence[{13, 16}, ","], "}"}], ",", RowBox[{"{", TemplateSlotSequence[{19, 22}, ","], "}"}], "}"}], ",", RowBox[{"{", RowBox[{"{", TemplateSlotSequence[{5, 6}, ","], "}"}], ",", RowBox[{"{", TemplateSlotSequence[{11, 12}, ","], "}"}], ",", RowBox[{"{", TemplateSlotSequence[{17, 18}, ","], "}"}], ",", RowBox[{"{", TemplateSlotSequence[{23, 24}, ","], "}"}], "}"}], "}"}], ",", "SamplingPeriod", "->", RowBox[{#25}], ",", "SystemsModelLabels", "->", "None", "]"}]& ), Tooltip->StateSpaceModel]}], "}"}]], "Output", CellChangeTimes->{ 3.8756405079810553`*^9, 3.875640842766533*^9, 3.8756410744592333`*^9, 3.875642378848319*^9, {3.8756580348058653`*^9, 3.8756580591492453`*^9}}, CellLabel-> "Out[1637]=",ExpressionUUID->"cda8cd54-5cce-43b8-878a-bbbf90948f8a"] }, Open ]], Cell["Miscellaneous quantities for the problem:", "Text", CellChangeTimes->{{3.875581088590773*^9, 3.87558110230126*^9}, { 3.875631474034074*^9, 3.875631501856968*^9}, {3.875631588508267*^9, 3.875631594101198*^9}, {3.875643600386338*^9, 3.87564361073243*^9}}, Background->GrayLevel[ 0.85],ExpressionUUID->"ea17bfff-5375-4058-aade-27d9018e187e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"TraditionalForm", "/@", RowBox[{"{", RowBox[{ "\[Theta]", ",", "\[Theta]d", ",", "\[Theta]h", ",", "\[Theta]hd"}], "}"}]}]], "Input", CellChangeTimes->{{3.759171213031497*^9, 3.759171217062039*^9}, { 3.8756406393865557`*^9, 3.8756406685523252`*^9}}, CellLabel-> "In[1638]:=",ExpressionUUID->"295daa84-ad57-46e4-8dbc-9ad32cffa551"], Cell[BoxData[ RowBox[{"{", RowBox[{ TagBox[ FormBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "t"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"6", " ", "t"}], "+", RowBox[{ SuperscriptBox["\[ExponentialE]", "t"], " ", RowBox[{"(", RowBox[{ RowBox[{"9", " ", "t"}], "-", "14"}], ")"}]}], "+", "14"}], ")"}], " ", TemplateBox[{ RowBox[{"t"}]}, "HeavisideThetaSeq"]}], TraditionalForm], TraditionalForm, Editable->True], ",", TagBox[ FormBox[ RowBox[{ RowBox[{"-", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "t"}]]}], " ", RowBox[{"(", RowBox[{ RowBox[{"12", " ", "t"}], "+", RowBox[{ SuperscriptBox["\[ExponentialE]", "t"], " ", RowBox[{"(", RowBox[{ RowBox[{"9", " ", "t"}], "-", "23"}], ")"}]}], "+", "22"}], ")"}], " ", TemplateBox[{ RowBox[{"t"}]}, "HeavisideThetaSeq"]}], TraditionalForm], TraditionalForm, Editable->True], ",", TagBox[ FormBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "t"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"5", " ", "t"}], "+", RowBox[{ SuperscriptBox["\[ExponentialE]", "t"], " ", RowBox[{"(", RowBox[{ RowBox[{"9", " ", "t"}], "-", "14"}], ")"}]}], "+", "14"}], ")"}], " ", TemplateBox[{ RowBox[{"t"}]}, "HeavisideThetaSeq"]}], TraditionalForm], TraditionalForm, Editable->True], ",", TagBox[ FormBox[ RowBox[{ RowBox[{"-", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "t"}]]}], " ", RowBox[{"(", RowBox[{ RowBox[{"14", " ", "t"}], "+", RowBox[{ SuperscriptBox["\[ExponentialE]", "t"], " ", RowBox[{"(", RowBox[{ RowBox[{"9", " ", "t"}], "-", "23"}], ")"}]}], "+", "23"}], ")"}], " ", TemplateBox[{ RowBox[{"t"}]}, "HeavisideThetaSeq"]}], TraditionalForm], TraditionalForm, Editable->True]}], "}"}]], "Output", CellChangeTimes->{ 3.759171218386991*^9, 3.759172226624148*^9, 3.7591723068480597`*^9, 3.7591724551004953`*^9, 3.7646242644422293`*^9, 3.7646243441756687`*^9, 3.793328363537858*^9, 3.7938880853975677`*^9, 3.823230051476777*^9, 3.875581134519603*^9, 3.8755811822816153`*^9, 3.875631212244769*^9, 3.8756314019107723`*^9, 3.8756406689329*^9, 3.875640827133788*^9, 3.875641067306923*^9, 3.8756423803078947`*^9, {3.875658034839325*^9, 3.875658059187272*^9}}, CellLabel-> "Out[1638]=",ExpressionUUID->"3727dcf6-5d68-4442-9727-baaaf34b69e1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", " ", "/@", RowBox[{"{", RowBox[{"Ac", ",", "K", ",", "L", ",", "A"}], "}"}]}]], "Input", CellChangeTimes->{{3.759085041300096*^9, 3.759085052374837*^9}, { 3.759085082497389*^9, 3.7590850838775787`*^9}}, CellLabel-> "In[1639]:=",ExpressionUUID->"29e6a8da-3a1a-45e0-b37d-bcc2c67b0884"], Cell[BoxData[ RowBox[{"{", RowBox[{ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "1", "0", "0"}, {"1", "0", RowBox[{"-", "2"}], RowBox[{"-", "2"}]}, {"4", "0", RowBox[{"-", "4"}], "1"}, {"5", "0", RowBox[{"-", "6"}], RowBox[{"-", "2"}]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]], ",", TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"2", "2"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]], ",", TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"4"}, {"5"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]], ",", TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"0", "1"}, {"1", "0"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]}], "}"}]], "Output", CellChangeTimes->{ 3.759085084598147*^9, {3.759085175061933*^9, 3.759085180628386*^9}, 3.759118926785404*^9, 3.759119849610365*^9, 3.759120692293023*^9, 3.759121250369359*^9, 3.759121524776651*^9, 3.759155343970819*^9, 3.759156312352366*^9, 3.759169388566765*^9, 3.759170996161819*^9, 3.7591710740668716`*^9, 3.759172226940132*^9, 3.759172307167687*^9, 3.7591724555035563`*^9, 3.764624264690629*^9, 3.764624344417897*^9, 3.793328363747074*^9, 3.7938880855969887`*^9, 3.823230051660687*^9, 3.8755811861221867`*^9, 3.875631402084236*^9, 3.875640831466679*^9, 3.875641068815198*^9, 3.8756423820450773`*^9, {3.8756580348532257`*^9, 3.8756580592017307`*^9}}, CellLabel-> "Out[1639]=",ExpressionUUID->"85c3104f-afd2-4bc7-b86e-e09f851f89f4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"Kob", " ", "=", " ", RowBox[{ RowBox[{"K", ".", RowBox[{"Inverse", "[", RowBox[{ RowBox[{"s", RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", "0"}, {"0", "1"} }], "\[NoBreak]", ")"}]}], "-", "A2"}], "]"}], ".", "L"}], " ", "//", " ", "Simplify"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"KobTF", "=", RowBox[{"TransferFunctionModel", "[", RowBox[{"Kob", ",", "s"}], "]"}]}]}], "Input", CellChangeTimes->{{3.528598290031698*^9, 3.5285984008896837`*^9}, 3.528598843764246*^9, {3.759085117992198*^9, 3.759085124252722*^9}, { 3.759172199797667*^9, 3.7591722072277117`*^9}, 3.759172314673131*^9, 3.759172449428548*^9}, CellLabel-> "In[1640]:=",ExpressionUUID->"3ddaa5f8-c11d-46bc-8157-3963e69dbac0"], Cell[BoxData[ InterpretationBox[ TemplateBox[{ FractionBox[ RowBox[{"18", " ", RowBox[{"(", RowBox[{"1", "+", "s"}], ")"}]}], RowBox[{"14", "+", RowBox[{"6", " ", "s"}], "+", SuperscriptBox["s", "2"]}]], InterpretationBox["\[InvisibleSpace]", None], { TransferFunctionModel, { False, False, {False, False}}, $Failed, {{Control`CommonDump`$DUMMY$}, { Control`CommonDump`$DUMMY$}}, InterpretationBox[#, TransferFunctionModel[{{{18 (1 + $CellContext`s)}}, 14 + 6 $CellContext`s + $CellContext`s^2}, $CellContext`s], AutoDelete -> True, Editable -> True, BaseStyle -> "TransferFunctionModelMinimal"]& , $CellContext`s, 1, 1, Control`CountStates[ TransferFunctionModel[{{{18 (1 + $CellContext`s)}}, 14 + 6 $CellContext`s + $CellContext`s^2}, $CellContext`s]], 1, {}, { False, False}, False, Automatic, None, Automatic}, {}}, "TransferFunctionModelFull", BaseStyle->{NumberMarks -> False}, DisplayFunction->(TagBox[ SubsuperscriptBox[ RowBox[{"(", GridBox[{{#}}, AllowedDimensions -> {1, 1}, GridBoxDividers -> { "Rows" -> {False, {False}, False}, "Columns" -> {False, {False}, False}}, DefaultBaseStyle -> "SystemsModelGrid00"], ")"}], #2, ButtonBox[ GraphicsBox[{ RectangleBox[{0, 0}, DefaultBaseStyle -> "SystemsModelSuperscript"], InsetBox[ StyleBox[ "\[ScriptCapitalT]", DefaultBaseStyle -> "SystemsModelSuperscript"], {0.5, 0.5}]}, ImageSize -> 20], ButtonFunction :> Control`Typesetting`SystemsModelTypesetToggle[ ButtonNotebook[], FE`CMObj], Evaluator -> Automatic, Appearance -> None], MultilineFunction -> None], EventHandlerTag[{"MouseEntered" :> {FE`CMObj = MathLink`CallFrontEnd[ FrontEnd`Value[ FEPrivate`Self[]]]}, PassEventsDown -> True, PassEventsUp -> True}]]& ), InterpretationFunction->( RowBox[{"TransferFunctionModel", "[", "Unevaluated", "[", RowBox[{"{", RowBox[{"{", TemplateSlotSequence[{1, 1}, ","], "}"}], "}"}], "]", ",", "s", ",", "SamplingPeriod", "->", RowBox[{#2}], ",", "SystemsModelLabels", "->", "None", "]"}]& ), Tooltip->TransferFunctionModel], TransferFunctionModel[{{{18 (1 + $CellContext`s)}}, 14 + 6 $CellContext`s + $CellContext`s^2}, $CellContext`s], AutoDelete->True, BaseStyle->"TransferFunctionModelMinimal", Editable->True]], "Output", CellChangeTimes->{{3.528598391525778*^9, 3.528598401252359*^9}, 3.5285988489162607`*^9, 3.528598960207313*^9, {3.528629905407716*^9, 3.528629927012938*^9}, 3.528630078674286*^9, {3.5287451376955137`*^9, 3.528745167417612*^9}, 3.7590786918837214`*^9, 3.759084906591893*^9, { 3.7590851249163313`*^9, 3.759085129599317*^9}, {3.759085175230276*^9, 3.75908518080051*^9}, 3.759118926960855*^9, 3.7591198497702017`*^9, 3.759120692448937*^9, 3.759121250531334*^9, 3.759121524956016*^9, 3.7591553441486187`*^9, 3.7591563126085863`*^9, 3.7591693887839108`*^9, 3.7591709963303328`*^9, 3.7591710743162937`*^9, 3.759172227167542*^9, { 3.759172307367195*^9, 3.759172315276958*^9}, {3.7591724498178263`*^9, 3.759172455771068*^9}, 3.764624264806657*^9, 3.76462434452214*^9, 3.7933283639009533`*^9, 3.79388808573954*^9, 3.823230051727404*^9, 3.875643577026779*^9, {3.875658034940839*^9, 3.8756580592693853`*^9}}, CellLabel-> "Out[1641]=",ExpressionUUID->"a663de1b-47b5-42cb-b041-9fc9fbe578dd"] }, Open ]] }, Open ]] }, WindowSize->{747, 646}, WindowMargins->{{Automatic, 99}, {Automatic, 0}}, FrontEndVersion->"13.1 for Mac OS X x86 (64-bit) (June 16, 2022)", StyleDefinitions->"Default.nb", ExpressionUUID->"d0a24999-3cd6-4597-93c9-b68a11bc2397" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[579, 22, 536, 8, 143, "Section",ExpressionUUID->"b9813126-b4fe-4a9d-a808-32df250d877e"], Cell[1118, 32, 670, 13, 100, "Text",ExpressionUUID->"d8d3b0d8-d637-4b7d-8a6f-47145b823473"], Cell[CellGroupData[{ Cell[1813, 49, 8290, 233, 637, "Input",ExpressionUUID->"7d39ef6d-4e1d-440d-83ab-ca11540ce34e"], Cell[10106, 284, 32343, 571, 189, "Output",ExpressionUUID->"f2f1d91e-f64b-4600-b055-9dd2eab4deb9"] }, Open ]], Cell[42464, 858, 342, 7, 51, "Text",ExpressionUUID->"18d1ce66-586c-47a5-978b-dbaa204ec664"], Cell[CellGroupData[{ Cell[42831, 869, 2334, 68, 178, "Input",ExpressionUUID->"84cf7c05-c783-45ca-988e-d31b3a3d8dd6"], Cell[45168, 939, 31254, 556, 189, "Output",ExpressionUUID->"ba8c82a2-ab19-4e7f-bb4e-7a376ad45986"] }, Open ]], Cell[CellGroupData[{ Cell[76459, 1500, 651, 14, 54, "Input",ExpressionUUID->"eeb4d523-6589-461b-9a6c-df10b8ca4c55"], Cell[77113, 1516, 7005, 155, 121, "Output",ExpressionUUID->"cda8cd54-5cce-43b8-878a-bbbf90948f8a"] }, Open ]], Cell[84133, 1674, 353, 5, 51, "Text",ExpressionUUID->"ea17bfff-5375-4058-aade-27d9018e187e"], Cell[CellGroupData[{ Cell[84511, 1683, 374, 9, 30, "Input",ExpressionUUID->"295daa84-ad57-46e4-8dbc-9ad32cffa551"], Cell[84888, 1694, 2942, 98, 74, "Output",ExpressionUUID->"3727dcf6-5d68-4442-9727-baaaf34b69e1"] }, Open ]], Cell[CellGroupData[{ Cell[87867, 1797, 333, 7, 30, "Input",ExpressionUUID->"29e6a8da-3a1a-45e0-b37d-bcc2c67b0884"], Cell[88203, 1806, 2975, 81, 97, "Output",ExpressionUUID->"85c3104f-afd2-4bc7-b86e-e09f851f89f4"] }, Open ]], Cell[CellGroupData[{ Cell[91215, 1892, 824, 21, 68, "Input",ExpressionUUID->"3ddaa5f8-c11d-46bc-8157-3963e69dbac0"], Cell[92042, 1915, 3604, 74, 73, "Output",ExpressionUUID->"a663de1b-47b5-42cb-b041-9fc9fbe578dd"] }, Open ]] }, Open ]] } ] *)