

Jason C. van Rooyen¹, Centre for Wildlife Ecology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada

Joshua M. Malt, Environmental Stewardship Division, Ministry of Environment, South Coast Sub-Region, 10470-152 Street, Surrey, British Columbia V3R 0Y3, Canada

and

David B. Lank, Centre for Wildlife Ecology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada

Relating Microclimate to Epiphyte Availability: Edge Effects on Nesting Habitat Availability for the Marbled Murrelet

Abstract

1

Ba a 24 / 24 a 24 a /),

M 41993, **42**005). historia inche ilificio diatit S **tali2**1006). **(116**) **Maij** 6 **Lunfills** il talinge tillijin **dip Gilli**h Ba a 2014 / 2014 a /), da **lí**n didistatab bixigensfin **1602**004). M (jabli) **i hi** £16(£2002, FL 2002, Kith 2004). jie **BARKER** eh 2010). **Month** hat lia this pterlipie (B 2002, **2**009). **J**in **bilijie** B

550 **RM**

bhillipfed(þ. jálhfilgs H eð 11 þl, fél (júl 7-39 þlata q250 🗴

 HT.
 Julian High High High

 julian High High High
 julian High High

 idea to the set of the set

oicya nagaya ny - 6. Angele i - Nagaya

Variable		Hard			Soft		Natural	Р	
Bin		57.57 -	1.74	60.89 -1	.89	60.37 -2.	10	0.368	
a∯ I b∰ n		29.15 -0.5	0	29.19 -0.49		30.01 -0.70		0.498	
ä∰u Mari	1 () n	<5		27.70 -0.4	0	43.50 -0.40)	-	
ā≸ ≸āī (%)		40.47-0.41 24.12 -0.41	15.76 -0.42 9.53 -0.42 8.47 -0.41	<i>T.</i> 284 .	39.85-0.41 25.67 -0.41 10.51 -0.42 9.05 -0.42 13.45 -0.41	A. aðha. T T. ðh .	44.72-0.47 T. 31.35-0.47 A. 12.71-0.47 T. 4.62-0.47 T. 6.27-0.47 C.	a B ta.	0.876
E)n		680.43		837.16		509.16		-	
B pai (%)		2 57.5	5 W 15 W 12.5 W 5.0 W 5.0 M 2.5 W 2.5 W 2.5 W	68.4 W 2.6 W 13.2 W 2.6 W 10.5 W 2.6 W	3.	NO.501 3.0 NV 12.1 NV 0 NV 3.0 NI 6.1 NV			

10000748 77#F14/8(700%))-8626(12.5 EC4(.)0()1 Bal 5(301 Bal 0%))11(3.0 BAT -0.6 0)#F 0.754 Ba W

552 RML

Methods Microclimate Sampling Aliboobtesa **beleibio feiste**la **difficient**h ilmilmle en14 issip18114 st 631 \$430 Hell \$1-31 \$to * P = 0.764). **etteniisti**n **11**25.68 m3.22 naga25.69 m3.12 mais life A silv HHH (C HC H(%), d **bb**h%) . **Dh**n tal 800 la**kibab**i bog 15 isb 0600 hole 5 CHARTER . dillatio **fië**n**bb**o b6bb6bbb **Fin** 115 dado h P > 0.122). hibilia linibyh **Hittic** ia Hia manda tilibi diff tib(etv tit ()

iself (66) **epeipei**to ababbabb for Hipfold **1**0.5 **6**2.5%. **F 111116**40 **68**5 CHELLOGO C to 50 Catalitado 0-100% **k**h Habitat Sampling **₩**5 🐞 tableddio(elo 6ekibili NV hap edd10 that q10 **cibib** B(**difi iii** delie ab **The f**n $abc(0 = a_1 = a_2 = 1 - 33\%, 3 =$ 34-66%, 4 = 67-100%), **1111**2003. **2**005,**2**005), **det film b(BR**004). **H**6 <u>eitilite</u>p tefisite(fin ciji Kabad **b6jadabla** bhfelsicide hilit il **uil d**h HidioH **18**2005, 2007), **M** eh (2003) cheku 994) **dijint**d izobial6iben A contract a state of sa, N a state a state Ι $F \dots a \dots a \dots a \square P$ øä ..a a. ..a. ; bib **hu**h

		H 6	<u>N</u>		₿⁄1										
V	Ē	b	Ē		Ē	þ	N	Р	ħ						
15.47	7-0.44	15.03 -	0.45	15.48 -0.5	2 15.47	-0.52	14.72	-0.54	15.14	0.53	156	0.005	۹.		h
5	2.32	-0.74	1.91 -	0.74 1.	.38 -0.87	1.68	-0.87	1.92	2-0.83	2.76	-0.83	143	0.009	酏	h
al Z	19.68	0.61		2	20.02 -0.7	1		10	.84 -0.7	,	1	.56 0.	062	æ	
ñ	19.08	-0.01		2	.0.02 -0.7	1		18	.84 -0.7)	1	.30 0.	005	en	
6	78	.30 -2.1	7		81.31 -	2.65			78.42	2.63		143	0.179	F	

-0.71 C loquit	
Einahlikila v	

d

 $F_{2.72} = 1.83, P = 0.18; \mathbf{B}$).

Epiphyte Habitat

 $F_{2,101} = 6.36, P = 0.003;$ (III) m Ę dipos 110 bbb (1.78 -0.25) db (2.03 -0.25) state **g**(1.90 −0.46) **ds**(2.00 −0.27). M2.43-0.29) d (2.21 -0.29) 8 **Miljegia**

	$F_{1.96} = 10.40, P$
= 0.002; H)	$F_{2,101} = 6.50, P$
= 0.002; H). H (3.76 -6.72) d	_,

is(15.70 –9.29) **b** odbeëk tbb5g(16.02 -5.14) da (26.80-6.6) **dd** 31.45-6.8) **d i**(33.02 - 6.6).

Discussion

Patch-Level Variation in Microclimate and Habitat Variables

f

```
fby
6n6a6baB
hGhBhhB
inbelleten
ille,
dahiy Di
diligeh
```

556 **R A**

ijbiliji ijdibeM

xbibb6 **ba F16 jitad**inja j. 2004). in h dili **1112**7 fn **AND** for **Khinkleb Trip**n **distatist**y s0.11 sh(gaa 2002). # i**philij**i β**B j**n (12009). <u>fif</u>h **bluin** <u>áub</u>ik linki i ₩**9**99,₩ th 2002, **1** A 2006). f**ylkfilkf**n ie **ditta**el bb66bbb ijili(ng Bi **800**9).**F**n the bijohnifi da€ Conclusions lith **H**B

558 **BM**

Rdijula kilojika pisiki ojekatoren kittipien kittipien kinikatoren diakatoren

Literature Cited

BLK dGEB 2005. B illab ian piakan 6466 **#\$**5:580-592. BLK dGEB2007. B polimpia i de B **3**6:408-422. BRWF6CL.Wei alWS **B**2004. **B**48b din bilib ib **1**8:318331. **dfiff**1998. **EKDJERIALHE** 1997. W BAE2001. battap **dilidia**n **b 1 5**:696715. BAE2002. ill ill **. b#50**387. ft **in the** 6hb//x6abby HIS. BAE abb2004. His ille V **D \$**75:53-66. BAE MMMARIGAR 5 MF aMJ K2004. **Chiefe** n**el ideale** 6 2004 16, 2004, 18 **6P**1-19.

t **a life**lli 68 668 DBhatany t **₽₽₽₽**2007. ₩ th (2006). **#2**2:1273+281. BAE dFLW2009. B **jalaha biy** d LAND 6h6Fh4 10:101+12.44/.4 **\$\$5**0/\$0<u>\$\$4</u>0.\$ (db31 (bb2011). **EXE** RABINES 52.6669 **ID**.0142 **ID**3**b**2009. **E**0.n .6669 MD.011 009. Ht (.)0(- [ve(K011 21.24) [P.)30(W) 20)30 Ht 8 ND 5() 4741-19 s5 h 5 [PB

I .TD

Jun

D/MAD2008. M 1:345-354. EPA2006. Hendelay ilh a a 🕅 a inda A **#**7:185-194. FNJ, dKAF2005. Km atviana pin**glé (jit**é 122:417-430. FIF DEBDAHEd Cip 1997. Map jar big bio **h**n I KAMIHA (), 60021 ۶ **£ HANOP**111-139. ₩HJ 1956. i HØidi 2:6074. **bKAdSE02**002.61 **a** 3:535-546. INA SEMPLAI DI QA KURSCHESE DRMShaPAE2005. **T** 19:768-782. LIB CBb2007. H . din**b**in**6**g **Unit**itev Moladini 248:163-173. MK2005. (1986) **1**2:518-525. #KBChd \$2002. E abiahan 12:797-806. LES EJ FSLMIDAIG 1999.**Ji**n öllöhh 19:368378. KKJ BADAN 1991. R \$5:32-47. MM M DE 12007. 100 **Guildi**h **bi** 40:160-173. MJ MaDBk 2009. Min tijki diji diath **1**9:1274-1287. M A1999. Bbb6 Hight

NTEF55555 NCR1993. MCR1993. MCR199. MCR199. MCR199. MCR1993. MCR199. MCR1993. MCR1993.

560 **RAME**

DMCF2000. ig inB6(ii) jB3 igB(ii) j225-247. kD4.db2008. ign igB2:259-268. kD4.db2009. jin igC2:259-268. kD4.db2009. jin igD2:259-268. kD4.db2009. kD4.db2009. jin igD2:259-268. kD4.db2009. jin igD2:259-268. kD4.db2009. kD4.db200. kD4.db2009. kD4.db2009. kD4.db200. kD4.db I JA