and the second second

1987, . & . 1982, . s 1997, s -E . 2003, 2004). -\$ <u>-</u> s; , , « , s 1997). A« , , , , « , s . , . , s 1989, & 1989).

- + 15 St. (1. 54) S. (1. 55) . (1. 22) . (5) . (5) 5 . (5) 2 . (5) 51 5 . (5)

$\mathbf{A}_{\mathbf{A}}$, $\mathbf{C}_{\mathbf{A}}$ and $\mathbf{C}_{\mathbf{A}}$ and $\mathbf{C}_{\mathbf{A}}$

1.8 2 1 No. N. 11. N. 11. 11 Sec. 55 11.21 - 4 . * , 1 \$ • 1. * H is (1, s) = 2004; s = G(s) = 2004; s = 1000 M = 2004; s = 1000 M = 2004; s = 1000 M = 20004; s = 1000 M = 20004; s = 1000 M = 20004; s = 10000 M = 20004; s = 10000 M = 20004; s = 10000 M = 20004; s = 100000 M = 20004; s = 100000 M = 2000000; s = 1000000; s = 100000; s = 100000; s = 100000; s = 10000; s = 1000; s = 1, (، , بن درم ۲۰۰۰), 2001; s 🕨 • 5 S 12650 0 12 12 0 0 1-1999, 2001; ≪& C 2005; Е, «& ... 1. \$ 2007.).B., s., H. 21.8.1.8.1 1 2 1 1 2) 5, 5 1 1 221 1 15 21 1 15 5 1 2 1 1 5 5 (11 1 THE MENT OF THE FIRST TO STATE OF THE METHOD STATE . 54 55 . , . 4

. S. . S. . S. - -\$. * • + + + + \$ + + = . . (2000), (2000), & G (2005), (F) (2005), (1996). & H . . 5 .55 _ • 2 · 1. 2/1. • 15 · 1. · 15 51. * 1. · (. · 2 · ·). 5 · . * 5 • . * . * . * . * . * . * • .* 2006, •••s)•••[*s s, 2 . 27

It for you is site of the second of the seco $() \quad \mathbf{HE}, \quad \mathbf{HE}$ 1.8 and the second state of the second states and the second states an B. S. S. S. S. S. Markers -• H. (*, * (*) , * (..., * (..., * (..., * (..., * 1992)), The set of ss & & . 1995, x , & . 2006).

. 81.8 s (15. 55 1.41 -2007). • **s**, • . . . **s** . x (. 1.8 \$ 2 1.8 1 _4 \$**•** 5 2 4 .58 y1 -, 15 4 1 .8 1. 2 2 1 1 1 1 1 1 K \$ 1 1 1 1 1

1.5 IZ INTERNET (M.L. 182), 5.5 I INTER (M.M. 18485 • (B & F * * * 2007, 1996, 1.5 . < (1, 2, 3, 5, 5, 4) (2007). 5 (4.5. (4.5 21.51 • 5 . . < 5 5 .55. 2 . -. < • \$. • • . • -1 (* (* (* j. 5 S) 4 .* . 55 . in the second 151.5 5 . . 4.8 147 . S. S. 4.5 S. -- 4 . * 1. * 1 -5 5 .* •, 2 • • • <u>,</u> . 2004). 2 **1**. S.S., 82. (125

.* 1.* . -5 . 2004). , • · · \$ · . * · _ · \$ \$. . . * · _ _ · . * 5 i Size 5 i () (* 14,*** (* 4,1,1,**),2 = 14, (*5, 5,1,(*)) - 14 55 . 1 1 . 55 54 SS . S • . × . .

🔺 🖉 🖉 🖉 🖉 🖉 🖕 🖉 🖕 🖉 🖌 🖉 ی ا 👝 ا 55 (5 1.5 St. 1 .1.55 St. 5 ... St. 55 ... SSI ... 1.55 ... 155 ... 155 ... 155 • .* .* (2006)& .. SS HISISS IN ISS STATIST د د ۲۰۰۰ من _{۱۱}۳۶۰ ۲۶۰ ۲۶۰ ۲۶۰ ۲۶۰ ۲۶۰ ۱۰۰ ی رئی کاربر به م 1.5 1.1 5 • . 5 . 1.8 (.,≪__4....) + S ∧ , , , _ ∧ S ∠ , S ∧ ∠ , 4∧ S , 4∧ ∧ ∧ ∧ ∧ ∧ ∧ (×1.8 .8 25 .1 5 5.5 . . • • 2 \$1.21.8 · 2 · · · 2 1 . 5 . 2 51.1 . 1 . 5 . 1 . 5 × × × 5 • · · · · · · · . - 5 1990, 2007.).

 $\frac{1}{2} HE = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} +$

5 5 . 5* 2006, $_2$ S = S = S $_2$ (14.4 $_2$ = 0.5 (8.5 $_2$ $_3$ $_4$ $_4$ $_4$) = 0.4 $_4$ (1 2003. WI I'M (2006), * * * * * * * * * * * * * * * * *

Garage 1, 48 . Sea 21.45 . mig ing So • • 5 .55 HE . . . S. S. 44 - - -. $() \bullet_{2} = \dots , \$\$, \$\$, \$\flat , \dots , \bullet_{n} , (a) \bullet_{n}$ y¶ →_# (& H , * , 1999). E, * , 1. · · 1.5 .4 1... , **S** 12 . < "HEs 1.8.1. 1.8.5 .8 . HE. 85 1.1.8 HE - "HE III I SD AS STILLS ... HE* S. 15. 55 1,5 5. 1,55 ,54 55 1 51.5 15,8,8 1.8% . \$ 20

I.S. 182 S. 18. (1) S. 18. (2) (1) (1.18. (1.8.

Annu. Rev. Ecol. Evol. Syst. 2007.38:793-817. Downloaded from arjournals.annualreviews.org by Simon Fraser University on 07/17/09. For personal use only.

$\mathbf{A}_{\mathbf{x}}$, $\mathbf{v}_{\mathbf{x}}$, $\mathbf{C}_{\mathbf{x}}$

I E A E CI ED

- B. * , , s -Es , 2 · , B , 2 , H, 2. 1999. A -* s , * 2 · , 2 · , CHIC , (1999. A -I . 1997.865 75

- $C = C, G = is, s_2 E, D, \forall \forall, z_1 = s_{2*} 2003, F = 2 \dots s_{1*} s_{1*}$

Annu. Rev. Ecol. Evol. Syst. 2007.38:793-817. Downloaded from arjournals.annualreviews.org by Simon Fraser University on 07/17/09. For personal use only.

G (is , C C. 2005. A (is single sine is a set of the s

- 1.* , C. * , H C. 2004. H I Z I I K * S S . * 2 251.* 2 s. s s s - 4 for ni 15 in - 4 4 - 264:143 47
- ..., B , s F. 1996. E s ... s ... s s. ... s ... s ... s A2:223 30
- 80:146 56

- and the second second and the states second with a second second **48:44** 52 کړ
- A, .. HF. 2002. D
- 4:252 64 303:1870 73 رسيزند، ١٠٠٠ ٢٠٠٠ ٢٠٠٠ ٢٠٠٠ 303:1870 73 • • • H • H, D'A • • • 2003. • • • • • • • •

- $DA, \quad \underline{a} \in G, F_{1} \in \mathbb{Z} \setminus D_{p} 1997, \quad \underline{a} \in \mathbb{Z} \setminus \mathbb{Z}$

- ... *-B. 2000. 44- 18 1 4 14 14 4 44 40 54 14-1 1 1440 12 -
- (182.18A, D.S., Wilkers, 18D, 2005. (182.18A, 185.18))
- c.κ
 B. 1999.
 φ. (*s.)
 (*z.)
 (*z.)
- $a_{1} \ll B, D$ D. 1996. C s s $a_{2} \ll a_{3} \ll a_{4} \approx a_{5} \approx a_{5}$
- $(\mathcal{A} = B, D = \mathbf{1}, \dots, 1996, \mathbf{1} \times \dots \times \mathbf{1}, \dots \times \mathbf{1}, \mathbf{1} \times \mathbf{1}, \mathbf{1} \times \mathbf{1}, \dots \times \mathbf{1}, \mathbf{1} \times \mathbf{1}, \mathbf{1} \times \mathbf{1}, \dots \times \mathbf{1}, \mathbf{1} \times \mathbf{1} \times \mathbf{1} \times \mathbf{1}, \mathbf{1} \times \mathbf{1} \times$

- **★**D. 2000. **S** (: E) (**★**) (
- B, B s $(\mathcal{K} \cap \mathcal{C})$, C, S $(\mathcal{K} \cap \mathcal{S})$, 2007. A s \mathcal{K}_{2} $(\mathcal{K} \cap \mathcal{S})$ $(\mathcal{K} \cap \mathcal{S})$ $(\mathcal{K} \cap \mathcal{S})$, $(\mathcal{K} \cap$

- 142:347 56
- V
 - ss. 816 .
 - . • • • •
 - is the A. S. S. LAND A. LAND AND STRAIN AND A CONSTRAINTS AND A CO

144A:365 79

A

Annual Review of Ecology, Evolution, and Systematics

Volume 38, 2007

Contents

Evolution of Animal Photoperiodism Wi ia E. B ad ha a d Ch i i a M. H a fe	1
Virus Evolution: Insights from an Experimental Approach Sa iag F. E e a a d Rafae Sa j	27
The Social Lives of Microbes <i>S</i> a <i>A</i> . <i>We</i> , <i>S</i> e he <i>P</i> . <i>Digg</i> e, <i>A</i> g <i>B</i> c <i>i</i> g, <i>A</i> d <i>G</i> a d e, <i>a</i> d A h eigh S. G if	53
Sexual Selection and Speciation Michae G. Ri chie	79
Kin Selection and the Evolutionary Theory of Aging A d e F.G. B e	103
Climate Change and Invasibility of the Antarctic Benthos <i>Richa d B. A</i> , <i>S e Tha je, A d e C a e, L d S. Pec</i> , <i>Da ie B. B a e, Che D. Wi ga, a d B ad A. Seibe</i>	129
Spatiotemporal Dimensions of Visual Signals in Animal Communication Gi G. R e ha	155
Gliding and the Functional Origins of Flight: Biomechanical Novelty or Necessity? <i>R be D d e</i> , <i>G eg B e</i> , <i>S e be P. Ya ia</i> , <i>B e da B e</i> , <i>Rafe M. B , a d Ji A. McG i e</i>	179
How Mutational Networks Shape Evolution: Lessons from RNA Models Ma he C. C e h ai e a d La e A ce Me e	203
How Does It Feel to Be Like a Rolling Stone? Ten Questions about Dispersal Evolution O b ie R ce	231
Exploring Cyanobacterial Mutualisms Ka e M. U he, Bi gi a Be g a , a d J h A. Ra e	255

Terrestrial Carbon–Cycle Feedback to Climate Warming Yi i L
Shortcuts for Biodiversity Conservation Planning: The Effectiveness of Surrogates <i>A a S.L. R d ig e a d Th a M. B</i>
Understanding the Effects of Marine Biodiversity on Communities
$\mathcal{J} h \mathcal{J} . S ach ic, \mathcal{J} h F. B , a d \mathcal{J} . E e D ff$
Stochastic Dynamics of Plant-Water Interactions <i>Gab ie Ka</i> , <i>A i ca e P a</i> , <i>a d Ra O e</i>
Evolutionary Endocrinology: The Developing Synthesis between Endocrinology and Evolutionary Genetics
A b J. Ze a, La e ce G. Ha b a , a d T D. Wi ia
The Role of Behavior in the Evolution of Spiders, Silks, and WebsF iVa b a d PaSe de819
Applications of Flow Cytometry to Evolutionary and Population Biology
Pa K , Ja S da, a d B ia C. H ba d

Indexes

Cumulative Index of Contributing Authors, Volumes 34–38	877
Cumulative Index of Chapter Titles, Volumes 34–38	881

Errata

An online log of corrections to A a Re ie fEc g, E i, a dS e a ic articles may be found at http://ecolsys.annualreviews.org/errata.shtml