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Abstract

The role that the marine environment plays in the distribution and abundance of Marbled Murrelets (Brachyramphus mar-
moratus), a seabird which nests in old-growth forests, is not well understood. Therefore, we investigated how Marbled Murrelet
marine distribution and abundance is related to the abiotic and biotic components of the marine environment. Data on the marine
distribution of Marbled Murrelets in British Columbia (BC), densities (birds/km2; 1972–1993), counts (number of birds per
survey; 1922–1989), and pertinent environmental variables as identified from the literature were compiled and then organized in
a Geographic Information System (GIS). On a 10 km scale, count surveys were not correlated with density surveys (r2 = 0.01,
P = 0.46). This suggests the interpretation of count survey data (relative abundance) should be done with care; and it is not
further used in this study.

We built a parsimonious model to explain marine densities with marine predictors. First, significant predictors were identified
with multivariate Generalized Linear Models (GLMs) by evaluating the shortest distances from survey locations to predictor
variables. Murrelet density is higher close to sandy substrate, estuaries and cooler sea temperatures, and lower close to glaciers
and herring spawn areas. Model predictors selected by usingP
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of 170,500 birds for the marine habitat of coastal BC. An additional, a posteriori predictor, the shortest distance to old-growth
forest, explained much of the remaining residual variance. This model result led us to a hypothesis of how Marbled Murrelet
distribution and abundance relates to proximity to old-growth forests, and it makes an initial basic link between the marine and
terrestrial aspects of Marbled Murrelet habitat. Our approach presents the first predictive abundance and distribution models
applied to Marbled Murrelets on a large scale (British Columbia coast). Our approach is robust, and the statistical algorithms
compared here are fully described and are known to perform well. Our findings are crucial for decision making and consider
conservation management on a scale pertinent for the habitat protection of this species.
© 2003 Published by Elsevier B.V.
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1. Introduction

The Marbled Murrelet (Brachyramphus marmora-
tus) is an endangered species in North America that
has already been studied intensively (for detailed
species account seeRalph et al., 1995; Nelson, 1997;
Hull, 1999), but its elusiveness leaves significant gaps
in many aspects of its biology. Although approxi-
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Fig. 1. Map of compiled density data for Marbled Murrelet density (birds/km2) from 1972 to 1993.

and distribution in British Columbia (density:Fig. 1
andTable 1).

We georeferenced all survey data using BC Geo-
graphical Names Information System (http://home.
gdbc.gov.bc.ca/) and assembled these in a database
(EXCEL and transferred to dBASE); they were dis-
played with ArcView 3.2 (ESRI, 1996). The count
surveys (relative abundance) cover a time period
1922–1989 with the majority of the surveys con-
ducted from late 1960s onwards; the density surveys
(absolute abundance) cover a time period 1972–1993.
When duplicated surveys at the same location oc-
curred, the averaged survey was used. The two types
of surveys, density (n = 244 locations surveyed) and
counts (n = 384 locations surveyed), were generally
independent of each other, and each was conducted by
different observers. Surveys on ‘confirmed absence’
were seldom collected and occur only in the density

data set (as zeros). Confirmed absence differs from
survey gaps in that this locale has been investigated
and no birds were found. Absences potentially repre-
sent regions of low oceanographic productivity with
adverse effects on Murrelet survival. Due to the un-
equal survey effort, counting efforts and differing

http://home.gdbc.gov.bc.ca/
http://home.gdbc.gov.bc.ca/
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that such a correlation may exist). For this reason, we
regarded the count survey data as too unreliable for
analysis and thus excluded from further investigations.

2.2. Abiotic environmental data

We compiled Geographic Information System (GIS)
data sets to investigate and describe the productivity
of the marine environment within the study area. The
environmental features (Table 1) were selected based
on existing knowledge of Marbled Murrelets’ ecolog-
ical requirements. All data used apply to the Marbled
Murrelet breeding season (April–August;Table 1).

Data on tidal current (cm/s) were generated from
a three-dimensional predictive model constructed by
Foreman and Henry (1993)andForeman et al. (1995).
This model has been tested in the field, was found to be
very reliable and forms the basis for tide table calcu-
lations and marine navigation applications (Foreman
and Thomson, 1997).

Information on ‘sea surface temperature’ was ob-
tained from the National Oceanic and Atmospheric
Administration (NOAA Coastwatch, 2000) website
as point data (for methods see alsoHuettmann and

Fig. 2. Maps of (a) known glaciers and (b) known old-growth forest distribution in British Columbia (Inforain, 1998; Ministry of
Environment Land and Parks, 1999).

Diamond, 2001). It consists of monthly long-term
temperature averages, with a spatial resolution of a 1◦
of latitude by 1◦ of longitude grid cell. The average
sea surface temperature from April to August was
used to describe the sea temperature of the study area.
The point data were smoothed as an interpolated sur-
face by creating a contour using the inverse distance
weighted (IDW) method in ArcView.

Fjords that receive glacial run-offs have enhanced
marine productivity (e.g.Dunbar, 1973; Shaw, 1989)
and thus could attract Murrelets. Glaciers of BC are
mapped and available in GIS format from the BC
Watershed Atlas (Ministry of Environment Land and
Parks, 1999). This GIS data presents known glaciers,
as identifiable from satellite images (Fig. 2a).

Estuary locations are also important where river
discharge mixes with seawater. This mechanism has
been known to increase primary production (Yin et al.,
1997), but visibility could be affected for underwater
foraging birds. In some cases, the productivity occurs
at the frontal zones that form when river and tidal
flow are in opposition (Dustan and Pinckney, 1989).
Estuary locations are derived from the BC Watershed
Atlas: ‘Watershed Group Rivers, Lakes, Wetlands and
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(http://gis.esri.com/arcscripts/). We measured the dis-
tance in meters from every point (evenly spaced
and surveyed points) to the nearest feature for some
environmental themes (glacier, sandy substrate, estu-
aries), and prey type theme (herring spawn). This was
done in ArcView, using the Script ‘Nearest Features
v. 3’, downloadable from the ESRI internet/WWW
(http://gis.esri.com/arcscripts/). For the same points,
sea surface temperature and tidal current speed over-
lays were extracted.

2.7. Multivariate model construction

For selecting the model predictors, we used a Gen-
eralized Linear Model (GLM), family= Poisson,
link = log. In general, we followed the approaches
described byPreisler et al. (1997)and Huettmann
and Diamond (2001). Poisson distribution was used
due to the right-skewed distribution of the density
survey data (Preisler et al., 1997). Our parsimonious
model included predictors that had a correlation with
each other of less than 0.4. We used chi-squared
ANOVA (order-dependent) to obtainP-values, and a
null model to obtainCp values (quasi AIC, more or
less order-independent) for an alternative evaluation
of the predictors (Venables and Ripley, 1994, 2002;
Burnham and Anderson, 1999, 2002; StatSci, 2000).
The predictor that explained more of the deviance of
the pair replaced pairs of predictors correlated above
the threshold, 0.4. This method reduces correlation
within the model and selects the most predictive
variable. Significant predictors for the parsimonious
model were also evaluated by AIC allowing for a
sound model inference (Burnham and Anderson,
1999, 2002).

In order to fill the gaps on Marbled Murrelet
abundance and distribution due to unequal or miss-
ing survey efforts, we applied additional modelling
algorithms known for their strength of fitting and
predictive power for wildlife distribution data (e.g.
Verner et al., 1986; Huettmann and Diamond, 2001;
Scott et al., 2002). The algorithms used besides GLM
(Venables and Ripley, 1994, 2002; Meyer, 1999)
are Classification and Regression Tree (CART from
Breiman et al., 1984; Bell, 1996; O’Connor and Jones,
1997; Steinberg and Colla, 1997; Salford Systems,
2001), Tree from SPLUS (Venables and Ripley, 1994;
StatSci, 2000; Huettmann and Diamond, 2001), Mul-

tiple Adaptive Regression Splines (MARS;Friedman,
1991; Steinberg et al., 1999; Salford Systems, 2001),
and Artificial Neural Networks (ANNs,Venables
and Ripley, 1994; Scardi, 1996; Özesmi and Özesmi,
1999; StatSci, 2000). Except for the GLM, all mod-
elsJ
-(Scardi,)-30Feadi,

http://gis.esri.com/arcscripts/
http://gis.esri.com/arcscripts/
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Özesmi, 1999). The errors from the initial classifica-
tion of the first record is fed back into the network,
and used to modify the networks algorithm in the
next round, and so on for repeated iterations. The net-
work consists of several layers of neurons, an input
layer, hidden layers, and output layers. Input layers
take the input and distribute it to the hidden layers
(the user cannot see the inputs or outputs for those
layers). These hidden layers are required for all neces-
sary computations and transfer the results to the out-
put layer (Hastie et al., 2001). Our ANN model used
0 decay, 4 hidden units, enabled layer skipping and a
‘raw’ type prediction.

Overall, we followed general default settings of
the non-linear algorithms used to allow for algorithm
comparisons without special ‘tuning’. Our approach
using first a GLM for predictor selection followed
by non-linear algorithms modelling does not allow
for a valid comparison of the importance weighting
for predictors across all algorithms; thus, we did not
further report this metric.

The predictive models are utilized in two ways.
First, they are applied to the habitat features of the
evenly spaced points to predict a coastal distribution
and abundance of Marbled Murrelets. Next, the mod-
els were tested by reapplying each model on the input
data for which the Murrelet density is already available
(backfitting). The observed abundance was subtracted
from the predicted abundance for each survey case.
An evaluation of the model performance was based
on the distribution of the obtained error. Aside from
traditional backfitting, we converted the predicted
densities to a percentage of the total sum of predicted
density in order to obtain a second, standardized
measure of model performance across all predictive
algorithms used. Thus, we know the proportion of the
total predicted birds and which occur at specific loca-
tions. Based on the predicted abundance and distribu-
tion of Marbled Murrelets in coastal British Columbia
(defined as 1 km offshore), we can extrapolate an es-
timate of the overall population for BC. Because our
model extrapolates densities (birds/km2) to one loca-
tion every 10 km interval coastline, we multiplied the
predicted densities by 10 to obtain populations within
1 km distance off the coast (see alsoHedley, 2000).

To evaluate the findings from the predictions for
the marine habitat a posteriori, we applied an exter-
nal dataset, amount of old-growth forest, to the pre-

dictions of even points, and measured the nearest dis-
tances. This allows us to explain the remaining ‘noise’,
prediction residuals, from the GLM by the suggested
link with Murrelets’ known principal terrestrial habitat
(Marks et al., 1995; Ralph et al., 1995; Nelson, 1997).
This terrestrial dataset plays a considerable role in the
overall Murrelet distribution (Ralph et al., 1995). It
is not included in the model since the purpose of the
model is to determine the effects of marine produc-
tivity alone on Murrelet breeding distribution. This
approach still allows us to draw a preliminary associ-
ation between Murrelet’s overall habitat requirements
(marine and terrestrial).

3. Results

3.1. Compiled surveys

The general Marbled Murrelet abundance and
distribution patterns pooled for BC over the years
1930–1996 is shown inFig. 1. Fig. 3 describes bird
abundance and distribution by latitude; Marbled Mur-
relets were found in abundance along the entire BC
coast (density: average (S.D.); 7.24 (6.57) birds/km2),
with major concentrations between 52 and 53◦N.
However, apparent gaps, particularly on the north-
ern mainland coast, may be attributed to shortage of
survey effort rather than lack of birds. We pooled
data across years, because we detected no consistent
patterns within years. This may be due to averaging
affects when working with large geographical scales.
In contrast to findings byBurger (1999), we detected
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Fig. 3. Count and density surveys pooled over all years by North Latitude.

model predictions by being less parsimonious since
it allows for higher correlation among the predictors
(non-parsimonious model). However, using this type
of model did not improve the amount of residual de-
viance explained 1965 (best-fit) versus 1966 (parsimo-
nious) of an overall 2315 residual deviance (Table 2).
Therefore, this approach was not further pursued. The
parsimonious GLM is used to allow for the best infer-
ence on the determination of Marbled Murrelet ma-

Table 2
Significant predictors in the parsimonious GLM of the density
surveys used in the BC coast model (n = 244)

Predictors P-value Cp Intercept Coefficient

Estuary <0.0001 2969 −0.09
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Table 3
British Columbia population estimates (maximum marine carrying
capacity) from density models and rounded off to the nearest
thousands

GLM CART Tree MARS ANNs

Estimated
population

176000 179000 170500 183700 164000

All values corrected for backfitting errors.

8.8). The Tree-SPLUS algorithm also better predicted
the real density than all other algorithms with a S.D.
of 2.9 (Table 4).

Fig. 5 compares the relative algorithm outputs of
the predictions. The magnitude of percent of predicted
output is expected to be similar across algorithms
used. AlthoughFig. 5 shows that this is not always

Fig. 4. The difference in estimates between the observed density and the density predicted by the tree algorithm. The classification is
divided into five quantiles.

Table 4
Model evaluation based on the summary of backfitting results from
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Fig. 5. A visual comparison of all model behaviours at the same locations. Each percent represents individual predictions divided by the
sum of the predicted densities across all modelling algorithms used.

Fig. 6. (a) Predictive Tree model output for Marbled Murrelet densities along the BC coast. (b) The distribution of GLM standard error.
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3.4. Predictive map and predicted population
estimates

Fig. 6ais based on the classification and regression
tree (Tree from SPLUS) model identified as the best
model based on criteria used. Besides predictions, we
also show the related standard error of the GLM with
the selected predictors (Fig. 6b). Doing so allows for
evaluation of the spatial prediction accuracy for indi-
vidual locations. For the predicted density model, the
areas Southern and North Eastern Queen Charlotte Is-
land, Discovery Passage, Southern Vancouver Island,
the fjords of Central Coast, Southern and Western
Vancouver Island and the fjords of Strait of Georgia
showed higher abundances. Predicted densities are
low north of Queen Charlotte Island, Northern coastal
British Columbia, Northern Vancouver Island and
Southwest of Vancouver Island.
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effort, this could have far-reaching effects for Mur-
relets and other seabirds that rely on herring as a food
source. Little has been done to quantify the effects, if
any, of commercial herring harvesting on Murrelets’
abundance and reproductive success.

Recently, there has been an increasing awareness
of nearshore developments, such as ‘log booming’ ac-
tivities, and mariculture establishments which could
affect water quality (Hay and McCarter, 1999) and the
spawning sites of herring. In addition, the large-scale
impacts of oil spills, fisheries and ocean climate
changes on herring spawn distribution should also be
considered as detrimental to Murrelet populations.

4.4. Glaciers and estuaries

Glaciers and estuaries have certain features in com-
mon. They both result in an influx of fresh water and
both lead to mixing of water bodies, yet estuaries are
positively correlated with Murrelet density, whereas
glaciers are negatively correlated.

We found that Murrelets tend to be found further
from glaciers. This provides a new aspect of stratifying
the marine environment relevant to Marbled Murrelets.
The further the distance from glaciers, the less likely
Marbled Murrelets will encounter run-off formed
by glacial meltwater (Dunbar, 1973; Matthews and
Quinlan, 1975).

Estuaries are unique aquatic environments that have
an additional source of buoyancy input derived from
freshwater inflow, and an additional source of mechan-
ical energy from tidal stirring. As a consequence of a
combination of estuary surroundings without glacial
meltwater, distinct bloom dynamics can be established
that are different from those observed in lakes and
open oceans (see alsoCloern, 1991).

The mechanics of this mixing are initiated when
the discharged water mixes with the saltwater, and
plume fronts often form. This mixing may take place
in an estuary, or directly in the open ocean where the
estuary itself discharges into the coastal sea. Due to
differences in salinity and temperature, a distinct front
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of a more detailed distribution scenario for Marbled
Murrelets is needed (e.g. finer spatial and temporal
stratification).
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tire Pacific. The establishment of centralized and high
quality databases for Marbled Murrelets and their ma-
rine and terrestrial habitats are crucial concepts to as-
sure effective conservation for this species of interna-
tional concern.
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