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INTRODUCTION
Although physiological mechanisms underlying ‘costs of
reproduction’ remain poorly understood (Zera and Harshman, 2001;
Harshman and Zera, 2007), this trade-off between current
reproduction and future fecundity and/or survival has traditionally
been assumed to involve reallocation of resources among different,
competing physiological systems (Stearns, 1992). More recently it
has been suggested that the reproductive process itself or the
regulatory (physiological) networks controlling reproduction (e.g.
Partridge et al., 2005; Harshman and Zera, 2007) might induce costs
of reproduction. Hormones are particularly strong candidates for
generating as well as regulating such trade-offs because hormones
can have pleiotropic effects, both positive and negative, on multiple
physiological systems (e.g. Finch and Rose, 1995; Ketterson and
Nolan, 1999; Williams et al., 2005; Zera et al., 2007). Here we focus
on one potential physiological mechanism that might mediate costs
of reproduction: the development of anemia during egg production
in birds (Williams et al., 2004a; Williams, 2005). Anemia – a
reduction in hematocrit, hemoglobin and red blood cell number
(Campbell and Ellis, 2007) – during egg production has been
documented in numerous studies [(e.g. deGraw et al., 1979; Jones,
1983; Morton, 1994; Gayathri and Hegde, 2006; Wagner et al., 2008)
and references therein], and may persist into later stages of
incubation and chick rearing in some cases (Williams et al., 2004a).
In addition, Kalmbach et al. (Kalmbach et al., 2004) showed that

experimentally increasing egg production in female great skuas
(Stercorarius skua) increased anemia, in terms of a greater reduction
in hematocrit and red blood cell number compared with control
females. Since anemia should reduce total oxygen carrying capacity
of the blood and compromise aerobic performance, this might
explain negative effects of increased egg production effort on
subsequent reproductive stages (i.e. incubation and chick rearing)
that have been widely reported in birds (e.g. Monaghan et al., 1998;
Nager et al., 2001).

Several potential mechanisms have been proposed to explain the
development of anemia during egg production. Decreased hematocrit
might be an indirect effect of estrogen-dependent hepatic production
of yolk precursors and mobilization of calcium ions (Morton, 1994;
Salvante and Williams, 2002), osmotically active compounds that
are transported in the blood at high concentrations during egg
production. This in turn may trigger an increase in plasma volume
due to osmotic movement of water from extra-cellular spaces into
the blood (e.g. hemodilution) to maintain plasma osmolarity or
viscosity at a constant level (Reynolds and Waldron, 1999), which
would decrease hematocrit (red blood cells per unit plasma volume)
but not total cell number. Some authors have proposed that the
reduction in hematocrit reflects a transient suppression of
erythropoiesis (e.g. red blood cell production) during egg production
in order to redirect energy to meet the increased metabolic demands
of the reproductive organs (Ronald et al., 1968), or because essential
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factors required for erythropoiesis are preferentially allocated to the
production of egg components (Jones, 1983; Gayathri and Hegde,
2006; Kasprzak et al., 2006). Alternatively, development of anemia
might represent a direct, negative pleiotropic effect of estrogen,
which is present at high levels during egg production and has
essential reproductive functions (Kalmbach et al., 2004; Williams
et al., 2004b; Williams et al., 2005). Estrogens inhibit the
differentiation, proliferation and survival of white and red blood
cell precursors in the bone marrow (Blobel and Orkin, 1996; Medina
et al., 2000; Perry et al., 2000). Blocking estrogen receptors using
the anti-estrogen tamoxifen inhibits the development of anemia in
egg-laying birds supporting a role for estrogen-dependent
suppression of erythropoiesis in anemia (Wagner et al., 2008). The
candidate mechanisms that have been proposed involve very
different predictions about (1) the time-course of development and
recovery from anemia, (2) whether specific changes would occur
among a subset or all hematological variables (hematocrit,
hemoglobin concentration, red blood cell size and number,
proportion of immature red blood cells or reticulocytes; see Table1),
and (3) the extent to which development of anemia should be
influenced by resource availability or diet quality.

In the present study, we tested predictions generated from these
different, non-mutually exclusive hypotheses for the causal
mechanisms underlying anemia associated with egg production
using female zebra finches (Taeniopygia guttata; see Table1).
Specifically, if hemodilution is solely responsible for the observed
decrease in hematocrit, we predicted that, (1) red blood cell number
and hemoglobin per unit plasma volume would also decrease during
egg production, but that these changes would be reversed at clutch
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chicks were weighed and marked with non-toxic dye to indicate
hatch order, and then individually banded at 8days of age. The mass
of each chick was recorded at 7, 10, 14 and 21days post-hatch to
monitor growth rates. At 30days of age, final brood size for each
nest was recorded, and weight, tarsus length, and bill length of each
chick was measured. After a 3month rest period, the same matched
pairs were bred again under the opposite diet regime than previously
assigned, such that repeated measures data was obtained for 23 pairs
that initiated egg-laying on both diet regimes (of the original 29
females two died in the intervening rest period (both from the high-
quality diet trial) and four females either did not lay eggs or laid
only one egg and were eliminated from the second low-quality diet
trial).

Blood sampling and hematological analysis
To monitor hematological parameters across the breeding cycle,
female birds were blood sampled at five intervals. (1) pre-breeding
– at pairing (N=29); (2) egg-laying – day of laying of first egg
(N=29); (3) clutch completion – after two consecutive days without
laying an egg (N=25); (4) hatching – the day the first chick hatched
(N=18); and (5) fledging – on average 21days post-hatching (N=12).
For the diet-quality analysis we used blood samples obtained for
23 females at prebreeding, the 1-egg stage, and clutch completion
only. All blood samples (~50μl) were collected within 3min of
capture from the brachial vein (to avoid potential capture-related
stress effects) between the hours of 09.30 and 11.30.

Hematological variables were measured with standard techniques
developed for human blood and commonly used on birds (Campbell
and Ellis, 2007). Hematocrit (Hct; %) was measured with digital
calipers (±0.01mm) following centrifugation of whole blood for
3min at 13,000g. Hemoglobin (Hb; gdL–1 whole blood) was
measured using the cyanomethemoglobin method (Drabkin and
Austin, 1932) modified for use with a microplate spectrophotometer
(BioTek Powerwave 340, BioTek Instruments, Winooski, VT,
USA), using 5μl whole blood diluted in 1.25ml Drabkin’s reagent
(D5941 Sigma-Aldrich Canada, Oakville, Ontario, Canada) with
absorbance measured at 540nm. Intra- and inter-assay coefficients
were 1.7% and 3.9%, respectively. Erythrocyte counts (RBC;
number of cells�106μl–1) were determined from duplicate samples
(1μl blood diluted 1/200 with modified Natt and Herrick’s solution
(Natt and Herrick, 1952; Robertson and Maxwell, 1990) with an
improved Neubauer hemocytometer (Fisher Scientific, Ottawa,
Ontario, Canada). The average variation among duplicate RBC
samples from the same bird was 6.9%, and measurement error
(determined from repeated sampling) was 8.9%, which is to be
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expected with this technique (Campbell and Ellis, 2007). From these
measurements we calculated mean red cell volume (MCV;
femtolitres or fl) using the formula Hct/RBC�10=MCV (Campbell
and Ellis, 2007). The proportion of reticulocytes (%Ret=number of
immature red blood cells/total red blood cells�100) was estimated
from whole blood smears after supravital staining with new
Methylene Blue (R4132, Sigma Aldrich Canada, Oakville, Ontario,
Canada). A total of 1000 red blood cells were counted per slide,
and reticulocytes were distinguished from mature erythrocytes by
their relatively larger size and less condensed chromatin (Campbell
and Ellis, 2007). Red blood cells were classified as reticulocytes if
at least five reticulum (RNA) aggregations were visible in the
cytoplasm or if a distinct ring of reticulum was surrounding the
nucleus (Fernandez and Grindem, 2006). The same individual
counted all blood smears (E.C.W.), and slides were randomly coded
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wise comparisons (P�0.10). After removing the interaction term
from the model, the main effects of diet quality (F1,22=1.24, P=0.28)
and body mass (F1,100=2.30, P=0.13) were not significant, but
reproductive stage had a highly significant effect on hematocrit
(F2,38=35.14, P<0.0001). The between-individual variance
component estimate associated with the model was 8.55±3.56
(Z=2.40, P<0.02) and the within-individual variance component was
0.52±0.09 (Z=5.55, P<0.0001). Among females on the high-quality
diet, mean hematocrit decreased significantly from pre-breeding
birds to the 1-egg stage (t43=5.12, P<0.0001), and remained
significantly lower than pre-breeding values at clutch completion
(t52=3.76, P<0.005; Fig.1D, Table3). On the low-quality diet,
hematocrit decreased significantly from pre-breeding to the 1-egg
stage (t42=7.05, P<0.0001), and again remained significantly lower
than pre-breeding values at clutch completion (t46=7.13, P<0.001;
Fig.1D, Table3).

Variation in plasma hemoglobin concentration
Plasma hemoglobin concentration varied significantly with
breeding stage (F4,51=4.85, P<0.02; Fig. 2A); the between-
individual and within-individual variance component estimates
associated with the model were 1.86±0.78 (Z=2.38, P<0.01) and
2.27±0.27 (Z=8.25, P<0.01), respectively. There were no
significant differences in hemoglobin concentration between the
pre-breeding, 1-egg, clutch completion or hatching stages (P>0.1
for all comparisons), but hemoglobin concentration at the fledging
stage was significantly lower than all other stages (P<0.05) except
clutch completion (P=0.5; Fig.2A). By contrast, for the diet-quality
analysis, the diet � reproductive stage interaction was not
significant (F2,51=0.45, P=0.64; Fig. 2C). After removing the
interaction term from the model, the main effect of diet quality
was not significant (F1,32=0.50, P=0.48), but there was a significant
main effect of reproductive stage on variation in hemoglobin
concentration (F2,50=13.44, P<0.0001). The between-individual
and within-individual variance component estimates associated
with the model were –0.33±0.74 (Z=–0.44, P=0.66) and 0.44±0.10
(Z=4.44, P<0.0001) respectively. For the pooled diet groups,
hemoglobin concentration decreased from 16.19±0.35 mg dl–1 in
pre-breeding birds to 14.51±0.34 mg dl–1 at the 1-egg stage
(t47=4.49, P<0.0001), and hemoglobin concentration remained
significantly lower than pre-breeding levels at clutch completion
(14.33±0.36 mg dl–1; t51=4.69, P<0.0001).

Variation in red blood cell number and mean cell volume
Red blood cell (RBC) number varied significantly with breeding
stage (F4,78=11.85, P<0.001; Fig.2B). The between-individual and
within-individual variance component estimates were 0.31±0.11
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(Z=2.61, P<0.005) and 0.28±0.05 (Z=6.17, P<0.0001) respectively.
Mean RBC decreased significantly from pre-breeding to the 1-egg
stage (t76=5.01, P<0.0001), and remained significantly lower than
pre-breeding levels at clutch completion (t78=6.09, P<0.0001;
Fig.2B). This was followed by a significant increase in RBC from
clutch completion to hatching and fledging stages (P<0.006 for both
comparisons); mean RBC at hatching and fledging were not
significantly different from pre-breeding values (P>0.3 for both
comparisons; Fig.2B). For the diet-quality analysis the diet �
reproductive stage interaction was not significant (F2,52=0.85,
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in reticulocyte counts between pre-breeding, 1-egg, clutch
completion or fledging stages (P>0.05 for all comparisons; Fig.3B).
However, the reticulocyte count at hatching was significantly
greater than at the pre-breeding (t40=–2.85, P<0.05) and 1-egg stage
(t40=–3.31, P<0.02; Fig.3B). For the diet quality experiment, the
interaction between diet�reproductive stage was not significant
(F2,27=0.49, P=0.62; Fig.3D). After removing the interaction term
from the model, the main effect of diet quality was not significant
(F1,18=2.26, P=0.16), but reproductive stage had a significant effect
on variation in reticulocyte counts (F2,27=5.56, P<0.0085). The
between-individual and within-individual variance component
estimates were 34.52±10.83 (Z=3.19, P<0.001) and –0.23±0.14
(Z=–1.64, P=0.10), respectively. On both diets, the reticulocyte count
at clutch completion (15.5±1.3%) was significantly higher than at
the pre-breeding (10.3±1.3%; t37=–2.67, P<0.03) and 1-egg stages
(9.4±1.2%; t39=–3.2, P<0.008).

Effects of diet quality on reproductive output
On the 0.32lqp539 200.itG.5 0ut9 . 4 i v e  o u t p c  0 . 0 0 0 2  T w  8 o c y 3 3 1 - e g g  s t 7 8 e s
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of erythropoiesis. Finally, we found no evidence that development
of anemia associated with egg production was affected by diet
quality, i.e. exogenous lipid and protein resources available to the
laying female.

Of note, there were two key differences between experiments
regarding temporal variation in hematological traits. In the analysis
of temporal variation across the entire reproductive cycle, we found
that there was no significant difference in mean hemoglobin
concentration and reticulocyte counts between pre-breeding, 1-egg
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comments and suggestions that greatly improved the quality of this manuscript.
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