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INTRODUCTION

Sound management and conservation decisions for bird

populations require accurate estimates of demographic

parameters (Sillett and Holmes 2002, Sandercock 2006).

Robust estimates of annual survival are particularly

important because rates of population change in birds

are often sensitive to the mean and variance of juvenile or

adult survival (Oli and Dobson 2003, Stahl and Oli 2006).

Adult survival of nongame birds is often estimated from

encounter histories of marked individuals at fixed-area

breeding study sites, using mark–recapture techniques.

The Cormack–Jolly–Seber (CJS) statistical model provides

estimates of apparent survival (/) adjusted for the

probability of encounter (p; Lebreton et al. 1992, Sander-

cock 2006). Estimation of apparent annual survival from

recaptures and resightings at a single study site is only

possible if some proportion of a population exhibits site

fidelity, which we define as the probability that a marked



A second approach is to increase the size of a study area

or add a buffer zone to detect longer dispersal events



long-distance movements because the probability of

observing a dispersal event is inversely proportional to

dispersal distance (Koenig et al. 1996). Analytical methods

for correcting dispersal distributions are based on the

premise that the expected number of dispersal events

within a range of distances is the observed number of



Calculation of Site Fidelity Based on Dispersal Model

A breeding adult with a nest located at distance r from the

center of a study area with radius R will disperse the

following year in a random direction h if habitat quality is

homogeneous (Figure 2). The distance x from the nest to

the edge of a circular study area is given by:

xðh



by summing P(X . x) for every possible point in the circle

and every possible dispersal direction at each point. Site

fidelity (F), or the probability of a dispersal event resulting

in a nest remaining inside the study area, is the

complement of the probability of leaving the study area,

such that:



madj ¼
m=pFpair

m=pFpair þ ð1�mÞp2FcfFcm
ð6Þ

Our adjustment accounts for the differences in site fidelity

among birds of different social class, as well as the higher

probability of detecting one joint nest of a reunited pair (p)

versus the probability of detecting 2 separate nests of a

divorced male and female pair (p2).

We calculated overall sex-specific site fidelity for all

social classes combined. If the mate survives, the site

fidelity of females will be Fpair with probability madj and Fcf

with probability (1 � madj). The site fidelity of all females

combined is given by:

Ff ¼ SmmadjFpair þ Smð1�madjÞFcf þ ð1� SmÞFcf ð7Þ

and the site fidelity of all males is given by:

Fm ¼ SfmadjFpair þ Sfð1�madjÞFcm þ ð1� SfÞFcm ð8Þ

where Sf and Sm are the adjusted survival probabilities of

females and males, and the 3 terms correspond to

reuniting pairs, divorced individuals with surviving mates,

and widowed individuals with dead mates. The available

estimates of apparent survival from CJS models are a

product of both adjusted survival and site fidelity due to

local movements:

/f ¼ SfFf ð9Þ

/m S/ðfÞ



DISCUSSION

We present a new quantitative approach for estimating and

adjusting mark–recapture estimates of annual apparent

survival (/) and mate fidelity (m) for variation in site

fidelity (F). Using distributions of within-study site

dispersal distances and estimates of mate fidelity for

different social classes of birds, we estimated the

magnitude of local dispersal beyond fixed site boundaries

and adjusted our estimates of apparent survival accord-

ingly. Our method reduces bias in apparent survival such

that adjusted estimates for different sexes are less biased

relative to one another and all estimates more closely

approach true survival, an important parameter for

demographic models.

Our approach still faces one fundamental limitation

with respect to estimating true survival. Use of a dispersal

kernel accounts for some movements beyond the bound-

aries of a fixed-area study plot but may still fail to account

for long-distance permanent emigration (Schaub and

Royle 2013). Our approach will thus be most useful when

most breeding dispersal distances are short relative to the

dimensions of a fixed-area study plot and larger-scale

movements are rare. Local movements are common in

field studies of territorial birds, as shown when effective

study area has been expanded by increased search effort, or

by use of genetic or radio-telemetry methods (Cilimburg et

al. 2002, Hansson et al. 2002, Hosner and Winkler 2007).

The limitation could also be addressed if long-distance
dispersal data were available from dead recoveries, radio

telemetry, or other sources. If the probabilities or

mechanisms of long-distance movements and permanent

emigration were known, simulation models could be

developed to estimate the degree of bias remaining in

estimates from our model or others. Unfortunately, such

mechanisms are not currently known, but could follow

with development of new tracking technologies. Another

limitation of our approach is that it does not include

adjustments for temporary emigration, when an individual

disperses outside the study site for one or more years but

then moves back inside in a future year. In a 4-year study of

short-lived birds, we expected that the probability of

temporary emigration events to be negligible, but they

might be important to the calculation of site fidelity in

long-term studies of vertebrates with intermittent breed-

ing. With a large number of temporary emigrants in a

sample, our method would underestimate site fidelity and

should be extended by adjusting for the probability of

temporary emigration, a parameter that can be estimated

with robust design models (Kendall et al. 1997, Ergon and

Gardner 2013).

One advantage of our approach is that it can be applied to

previously published studies if movement data are available,

or if a dispersal distribution can be estimated from

independent sources. Our method thus does not require

that spatial information be associated with specific encoun-

ter records, as do spatially explicit CJS models (Gilroy et al.



in several ways. Following Barrowclough (1978), we made
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