--

n = 7)	-	\& −1		
(-25.9	0.14%, $n = 6$;	,	-	
	-8548 A			
(20.3	$0.28\%_{00}, n = 8$).	,	, 25.(82622

Isotope analysis

57% (95% : 44 70%) , 36% (23 7% (3 11%)	- 49%)
: 6 , 30% (13 47%) 49% (26 72%) , 47	51% (45 77%) ; : 7% (24 70%)
$\begin{array}{c} & , \\ (& ; \\ t_{42} = -1.27, \\ P = 0.2 \end{array}$	81, $P = 0.42;$ 21).
9% (3 15 3% (0 8%) .	
- (1).	-, -

$F_{1,25} = 15.22, = 2.74, P = 0.0007;$ (*1): $F_{1,25} = 7.15, = 0.33, P = 0.01$

,

 $(F_{1,25} = 12.88, = -2.65, P = 0.002;$ ^{eff} 1: $F_{1,25} = 8.21, = 0.95, P = 0.009).$

-

.

$$(F_{1,25} = 0.33, = -1.39, P = 0.57; e^{\mathbf{f}}$$
 1: $F_{1,25} = 7.68, = 1.14, P = 0.01$).
,
 $(F_{1,17} = 0.31, = 0.42, P = 0.59; e^{\mathbf{f}}$ 1: $F_{1,17} = 0.59$

RESULTS

	(<i>t</i> -	$t_{46} = -7.39,$
$P \le 0.0001$)		(
: 9.91	, 1.57;	: 9.87
, 1.93,	$t_{46} = -0.08, P = 0$).93)
(: 49.67 ,	4.78;
: 49.77	, $3.34; t_{28} = 0$	0.06, P = 0.94).

-

12.79, = 1.31, P = 0.003), $(F_{1,17} = 0.17, = -0.31, P = 0.67;$ f^{ef} 1: $F_{1,17} = 12.24$, = 0.36, P = 0.004) $(F_{1,17} = 0.33, = -2.25;$ $P = 0.53; f^{ef}$ 1: $F_{1,17} = 12.76, = 1.22, P = 0.003$)

(1). 15, $(1^{16}: F_{1,40} = 2.33, = 0.29,$ $P = 0.13, \stackrel{\text{ef}}{=} 1: F_{1,40} = 20.1, = 1.13, P < 0.001;$ $1^{15}: F_{1,40} = 1.78, = 0.21, P = 0.19, \stackrel{\text{ef}}{=} 1:$ $F_{1,40} = 19.9, = 1.19, P < 0.001).$

(1983,	&	1999).	-	
,	et al	. (2007	, 2008)		
-		-	-		

a u a a a ? Horm. Behav. : 489 502. 1. 1996. u a

- Behav. Ecol. Sociobiol...: 169 175.
- V u a a Da - U (Junco hyemalis). Behav. Fcol. Sociobiol., : 1391 1399.

- 137 159.
- a a a a . Proc. R. Soc. Lond. B. . : 1731 1735.
- V, 1 = 2008. Z a a u Lagopus lagopus scoticus. Naturwissenschaften ·: 125 132.
- 1993. a. aà au a a. a 🚬 a a Parus major. Nature , : 537 539.
- 539. N 2001. u a u a N Oecologia \therefore 171 179. 1996.a a a u a Stercorarius parasiti- u u A u a Stercorarius parasiticus. Ibis : 410 419.
- 1
 ✓
 2002.
 ∴
 `a
 ∴
 ·a
 ∴
 ∴
 ∴
 ·a
 ∴
 ∴
 ∴
 ·a
 ∴
 ∴
 ∴
 ·a
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
 ∴
- 2008. Identification Guide to North American Birds,
- Auk .: 549.

2003. u a a a u - a. Oecologia : 308 316. N N 2008.