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FIG. 3. Effect of prior photo-experience, (A) before and (B) after adjust-
ing for body mass, on oviduct mass, ovary mass, and diameter of the
largest ovarian follicle (mean 6 SEM) 4 wk following onset of photosti-
mulation (Week 36) in female European starlings. Ovary mass is depicted
at 10 times the estimated total. Sample sizes refer to the number of ex-
periment units.

experience, and they were similar between groups at the
start of the time period of primary interest, Week 32 (post
hoc contrast, P 5 0.14; Fig. 2B). Photo-experience affected
how plasma concentrations of vitellogenin changed over
the remainder of the study (Week [32–36] 3 photo-expe-
rience effect, F4,56 5 3.13, P 5 0.021). By Week 34, al-
though all individuals were under identical conditions, vi-
tellogenin in the naive group rose to concentrations reliably

greater than both those in the experienced group at that time
(post hoc contrast, P 5 0.026) and those in the naive group
at the onset of photostimulation (Week 32; post hoc LSD,
P 5 0.0004). Thereafter, however, vitellogenin in the naive
group declined while it increased in the experienced group.
By Week 36, vitellogenin concentrations in the experienced
group were higher (post hoc contrast, P 5 0.10), on aver-
age, than those in the naive group and reliably higher than
they were at the onset of photostimulation (Week 32; post
hoc LSD, P 5 0.0004). In contrast, the difference between
Week-32 and -36 vitellogenin concentrations in the naive
group was not particularly reliable (post hoc LSD, P 5
0.13).

Photo-experience affected how plasma concentrations of
LH changed over the course of the study (Week [24–36]
3 photo-experience effect, F6,84 5 12.66, P , 0.00001).
At the onset of the photo-experience phase of the study
(Week 12), LH concentrations of the experienced group
were nearly identical to those of the naive group (Fig. 2C).
However, by 2 wk later, LH concentrations were substan-
tially greater in the experienced group than in the naive
group. By Week 18, LH concentrations in the experienced
group had returned to the low levels of the naive group.
Both groups remained similarly low through to the onset
of the phase of primary interest at Week 32 (post hoc con-
trast, P . 0.2). Immediately following onset of 16L:8D at
Week 32, LH concentrations in both groups increased, but
the increase in the experienced group was substantially
greater than that in the naive group, although all birds were
under identical conditions. By 1 wk into the onset of this
phase, LH concentrations in the experienced group were
much higher than both the concentrations in the naive
group at this time (post hoc contrast, P 5 0.001) and the
concentrations in the experienced group at the onset of this
phase (Week 32; post hoc LSD, P , 0.00001). The high
concentrations in the experienced group then decreased to
the moderately elevated levels of the naive group at Weeks
35 and 36, when levels in both groups were reliably ele-
vated above levels at the onset of 16L:8D (Week 32; post
hoc LSD, P , 0.037 each comparison).

Oviduct Mass, Ovary Mass, and Follicle Diameter
At the end of the study, 4 wk after onset of photosti-

mulation in all individuals, oviduct mass (photo-experience
effect, F1,14 5 11.52, P 5 0.004); ovary mass (photo-ex-
perience effect, F1,14 5 7.48, P 5 0.016); and follicle di-
ameter (photo-experience effect, F1,14 5 14.68, P 5 0.002)
were all reliably greater in the experienced group than in
the naive group (Fig. 3a). However, some gonadal size dif-
ferences between groups may have been the result of the
greater body mass of experienced individuals at the time of
sacrifice (see Fig. 2a). When Week-36 body mass was in-
cluded in the model as a covariate, the effects of photo-
experience on oviduct (photo-experience effect, F1,13 5
3.37, P 5 0.089) and ovary mass (photo-experience effect,
F1,13 5 2.39, P 5 0.15) became somewhat less reliable
(Fig. 3b). The effect of photo-experience on follicle diam-
eter (photo-experience effect, F1,13 5 6.34, P 5 0.026) re-
mained quite reliable when we controlled for body mass,
indicating a high likelihood that the larger follicles of ex-
perienced females were, at least in part, independent of
their larger body mass.

GnRH-ir Cell Count, Cell Diameter, and Fiber Count
At the end of the study, 4 wk after onset of photosti-

mulation in all individuals, the GnRH-ir cell count was
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fiber should increase with GnRH sequestration, with in-
creasing secretion, fiber relative to cell-body content of
GnRH should also increase as the result of the one-way
movement of GnRH molecules from cell bodies to cell fi-
bers to the extracellular portal vascular system. In other
words, with increasing secretion rates, we would expect
relatively greater intracellular distribution of GnRH away
from cell bodies and toward fibers and the portal vascula-
ture. This is indeed what we found, and together with our
results on LH concentrations, vitellogenin concentrations,
and follicle size, this suggests that females with photo-ex-
perience have higher photo-induced GnRH secretion rates
than females without such experience. However, confir-
mation of these findings awaits more direct measures of
GnRH secretion.

We have found that photo-experience elevates the rate
or magnitude of some of the initial stages of photo-induced
reproductive development in a temperate zone, female
songbird. We suggest that in free-living females, the ele-
vation of these initial stages would give rise to laying ear-
lier and more eggs and would explain, in part, why repro-
ductive performance is often higher in older than in youn-
ger birds. Certainly other experiences, such as feeding
young [55], may also enhance reproductive performance.
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