$\label{eq:2} \mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L$

 u_{u} to functionally separate mass of \mathbf{r}_{u} of \mathbf{r}_{u} of \mathbf{r}_{u} of \mathbf{r}_{u} $\frac{1}{\pi} \int_{\cosh(\pi t_0)}^{\pi} \int_{\$ of body size. This is most often done by using one of two $\int_{\alpha}^{1} e^{i \int_{\alpha}^{1} \tilde{f} \cdot \tilde{f}} \cdot \tilde{f} \$ $\mathbf{f} \cdot \mathbf{k}$ \mathbf{Z} $\mathbf{f} \cdot \mathbf{w}$ $\mathbf{f} \cdot \mathbf{f}$ of $\mathbf{f} \cdot \mathbf{f}$ $\mathbf{f} \cdot \mathbf{k}$ \mathbf{k} \mathbf{f} $\frac{1}{3}$ $\frac{1}{9}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{9}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{1}{10}$, is $\frac{1}{2}$ calculating the residuals from a regression of $\frac{1}{2}$ regions $\frac{1}{2}$ regions of $\frac{1$ $\mathbf{Z} = \mathbf{I}^{\mathbf{F}}$, $\mathbf{f} \mathbf{k}_{\mathbf{q}}$, $\mathbf{f} \mathbf{w}_{\mathbf{f}}^{\mathbf{q}} \mathbf{k}_{\mathbf{f}(\mathbf{q},\mathbf{q})}$ or $\mathbf{f}^{\mathbf{r}}$, $\mathbf{i}_{\mathbf{q}}$, $\mathbf{q}_{\mathbf{q}}^{\mathbf{q}}$, $\mathbf{q}_{\mathbf{q}}^{\mathbf{r}}$ $\frac{1}{2}$ b $\frac{1}{2}$ $\frac{1}{2}$ and \vec{r} and \vec{r} is computed indices in \vec{r} and \vec{r} is \vec{r} and \vec{r} $\frac{6}{3}$ Z ks $\frac{1}{6}$ f $\frac{1}{2}$ against measured values of $\frac{1}{2}$ $\frac{1}{2}$ is more than the unit protein body of units $\frac{1}{2}$ $\mathcal{V} = \mathbf{k}_{\text{max}} \mathbf{r}_{\text{min}}^T \mathbf{r}_{\text$ $\begin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}$ to the set of unversion indices, where indices, we can also indices, $\frac{1}{2}$ researchers have a point $\frac{1}{2}$ respectively. \mathbf{r} f $\cos \theta$ of indices and provided in the providence in \mathbf{r} $\int u \, dv \, dv \, dv \, d\Omega$ for the indices were contributed from the indices were contributed from the indices were contributed from the indices $\int u \, dv \, dv \, dv = 0$ \mathbf{a}^{T} and \mathbf{b}^{T} and \mathbf{c}^{T} and \mathbf{c}^{T} and \mathbf{c}^{T} and \mathbf{c}^{T} and \mathbf{c}^{T} t_1 to provide a more precise in the providence in the set of \vec{A} use $\frac{1}{2}$ b ike alone. The integration $\frac{1}{2}$ is a summary that any $\frac{1}{2}$ contributed f^{or} the sense of f_0 in $\frac{1}{2}$, $\frac{1}{2}$ $\frac{1}{2}$ k $\frac{1}{2}$ k $\frac{1}{2}$ k $\frac{1}{2}$ mog k $\frac{1}{2}$ k $\frac{1}{2}$ mass. $\frac{1}{2}$ various published predictive equations, which are based on regressions of \mathbb{F}_2 of \mathbb{F}_3 of \mathbb{F}_4 of \mathbb{F}_4 is fatigues of \mathbb{F}_4 $a_1^2 - 1$ $a_2^2 + b_1^2 + c_2^2 + c_3^2 + d_1^2 + d_2^2 + d_3^2 + d_4^2$ \mathbf{i} \mathbf{H} , \mathbf{j} \mathbf{k} \mathbf{q} \mathbf{k} \mathbf{r} \mathbf{q} \mathbf{r} \mathbf{r} \mathbf{r} (ϵ ii) \mathbf{r} \mathbf $\frac{1}{2}$ in the species of $\frac{1}{2}$ for $\frac{1}{2}$ and $\frac{1}{2}$ the species of $\frac{1}{2}$ the species of $\frac{1}{2}$ and $\frac{1}{2}$ is $\frac{1}{2}$ or $\frac{1}{2}$ and $\frac{1}{2}$ is $\frac{1}{2}$ and $\frac{1}{2}$ is $\frac{1}{2}$ and $\frac{1}{2$ \mathbf{K} in dependent \mathbf{K} of \mathbf{K} . The \mathbf{K} s of k under z_{th} the feck $p \in \mathbb{R}^3$ s $\sum_{n=1}^{\infty}$ $\int_{\mathbf{B}} \rho \hat{f} k_1 \cdot \sigma$ i $\int_{10}^{1} \rho k_1 \cdot \hat{g} k_1 \cdot \hat{g} k_2 \cdot \hat{g} k_3$ $e^{\int \frac{1}{2}a-1}$ ket $\frac{1}{4}a^2$ complies z s f_{eff} ket $\frac{q}{\sqrt{2}}$ $\int_{0}^{\ln(1-\ln x)} \mathbf{p} \, \phi \mathbf{r} \mathbf{k}_1 \mathbf{r}_2 \mathbf{i}$ in the set \mathbf{r} is $\int_{0}^{\ln(1-\ln x)} \mathbf{r} \, \phi \mathbf{r} \mathbf{i}$ $\begin{bmatrix}u_1&u_2&u_3\end{bmatrix}$ of $\begin{bmatrix}u_1&u_2&u_3\end{bmatrix}$ the use of unversional the use of unversion $\begin{bmatrix}u_1&u_2&u_3\end{bmatrix}$ ik ϵ ϵ of $\int_{0}^{1} k \, \tilde{Z}$ k^{00} $\int_{0}^{1} i^{1}$ $\int_{0}^{1} e_{10} e^{-s}$ $\int_{0}^{1} e_{1} k$ against the $\frac{1}{2}$ use $\frac{1}{2}$ use $\frac{1}{2}$ use $\frac{1}{2}$ is $\frac{1}{2}$ is $\frac{1}{2}$ if k_1 e^{a} i¹¹ s k e^{a} s k f^{0} k_{ne} f paper, $\left(\begin{array}{cc} 1 & 0 \\ 0 & \text{otherwise} \end{array} \right)$ species dependent in ∞ $\frac{1}{\pi}$ $\int \ln \frac{1}{\pi} \int_{0}^{\pi} \int_{0}^{\pi$ k_f and i_f in \mathbf{F} lipid \mathbf{F} and \mathbf{F} is r is \mathbf{F} and r is \mathbf{F}

where $\frac{1}{100}$ is $\frac{1}{100}$ taxa to use full taxa to use for the third taxa to use for the third taxa to use the third taxa to use the t $kr\overline{r}$ in \overline{r} is \overline{r} in \overline{r} is \overline{r} in \overline f_1 k g_0 ut f_1 r_{ng} kkr \tilde{i} cing the \tilde{f}_1 $\frac{1}{a}$ and $\frac{1}{a}$ is $\frac{1}{a}$ is $\frac{1}{b}$ and $\frac{1}{b}$ $\frac{1}{c}$ $\frac{1}{a}$ $\frac{1}{d}$ $\frac{1}{b}$ $\frac{1}{d}$ $\frac{1}{b}$ $\frac{1}{c}$ $\frac{1}{b}$ $\frac{1}{c}$ $\frac{1}{b}$ $\frac{1}{c}$ $\frac{1}{b}$ $\frac{1}{c}$ $\frac{1}{c}$ $\frac{1}{c}$ $\frac{1}{c$ k in es h^{ave} Zk_{ao}lfk¹¹¹ aki tao $f_{\rm H}$ i₀ 15 \fe₁₁ i\frac{1}{0.9}\theng¹5 \con

 $[\forall q\,5\rightarrow\cdots,sZ-\cdots+\cdots]$ icinop $[q\,d\,15\,t\,q\,\infty]$

proxy for $z \mapsto z + i z$ by i $\sum_{i=1}^{\infty} \frac{1}{i} \int_{0}^{\infty} \frac{1$ $\frac{1}{10}$ enter the spilling to $\frac{1}{10}$ $\mathbf{Z} = \begin{bmatrix} x^{\alpha} & y^{\beta} & z^{\alpha} & z^{\beta} \\ z^{\alpha} & z^{\beta} & z^{\beta} & z^{\beta} \end{bmatrix}$ $\mathcal{L} = \mathbb{Z} - \frac{1}{4} k_{\text{0}}^2 \mathbb{E} - \frac{i_{\text{0}}}{2} \mathbb{E} \left[\frac{i_{\text{0}}}{2} k \right] - \frac{i_{\text{0}}}{2} \mathbb{E} \left[\frac{i_{\text{0}}}{2} k \right]$ \mathbf{g} , \mathbf{g} , \mathbf{k} , \mathbf{k} , \mathbf{i} , \mathbf{f} , \mathbf{k} , \mathbf{k} , \mathbf{k} , \mathbf{k} , \mathbf{k} , \mathbf{g} , \mathbf{g} , \mathbf pintail, scannelated with p is correlated with p in $\frac{1}{2}$ \int_{1}^{1} measures (*i*) measures (*ranges of loadings 1.370.55, in the loadings of loadings 0.370.55, in the loadings 1.370.55, in the loading 1.370.55, in the loading 1.470.55, in the loading 1.570.55, in the loading 1* $0.27 - 1.02$ k -5.0 and 0.32 in a_{11} k and a_{22} $45 - 1010$ is of k^T of the $n²$ if n^T and $h_{\rm c}$ iarck_t measures in $h_{\rm c}$ in $h_{\rm c}$ and $h_{\rm c}$ in $h_{\rm c}$ is correlated with measures of culmental $h_{\rm c}$ k_{QQ} r k^ampick^{and} in each is of k^2 k e ki \int ik climate \int is \int independent and \int $c_{1\alpha}i_{\alpha}^{\dagger}$ the a $\alpha^{\dagger}Z$ described a negative correlation in the set of Z $\frac{1}{2}$ culment culments and 80 and 86% of the 80% and 86% and 86% and 86% of the 86% o ivariance for i density \mathbf{r}_0 is \mathbf{r}_0 \mathbb{R} estimated to the solution of \mathbb{R} and ask-free leads \mathbb{R} . \cdot expedited protection $\frac{1}{k}$ is the protection $\frac{1}{k}$ in $\frac{1}{k}$ i c_1 \mathbf{r}_1 \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_4 \mathbf{r}_5 \mathbf{r}_6 \mathbf{r}_7 \mathbf{r}_8 \mathbf{r}_9 \mathbf{r}_9 \mathbf{r}_1 \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_1 $\frac{1}{2}k^2$ k $\frac{1}{2}k$ is $\frac{1}{2}k$ to $\frac{1}{2}$ and $\frac{1}{2}k$ if $\frac{1}{2}k$ perified ether in a society of Ze^{-a} . $\frac{1}{2}$ τ $\frac{1}{2}$ \sqrt{fk} dec¹_ie₁ $\frac{1}{2}$ *z* of $\frac{1}{2}$ of $\frac{1}{2}$ $\frac{1}{2}$ in a music for $\frac{1}{2}$ proportions of proportions of \overline{k} and \overline{k} and \overline{k} and \overline{k} $\frac{1}{2}$ 1988 $\frac{1}{2}$ of $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\mathbf{k}_{\text{tot}} = \frac{1}{2} \int \mathbf{p}_1 \cdot \frac{1}{2} \mathbf{f}_1 \cdot \mathbf{k}_{\text{tot}}^2 = \mathbf{r} Z \cdot \mathbf{j}_{\text{tot}}^2 \cdot \frac{1}{2} \int \mathbf{r} \cdot \mathbf{f}_{\text{tot}}^2 = 0$ μ_1 μ_2 $\frac{1}{\epsilon} \frac{1}{\pi} \int f k = \frac{1}{\pi} \int f \cdot \frac{1}{\pi} \int f \cdot \frac{1}{\pi} \cdot \frac{$ Z r fk $\frac{1}{\mu}$ in L_{max} s of k in $\frac{1}{\mu}$ in $\frac{1}{\mu}$ $\cot \theta_1 + \sqrt[3]{16} = \frac{1}{2} \sqrt[3]{16} = \frac{1}{2} \sqrt[3]{16} = \frac{1}{2} \sqrt[3]{16} = \frac{1}{2}$ $\int_{1}^{1} \frac{1}{t}$ figure $\int_{1}^{1} e^{k}$ is a set if k if $\int_{1}^{1} \frac{1}{t}$ of \int_{1}^{1} aft of \int_{1}^{1} k_f $f \left(\frac{1}{2} \right)$, $\frac{u}{1}$ is, the case is, the case is, the $\frac{1}{2}$ is $\frac{1}{2}$ that $\frac{1}{2}$ and $\frac{1}{2}$ in the data is $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ is $\frac{1}{2}$ $\frac{1}{2}$ have $\frac{1}{2}$ have $\frac{1}{4}$ h $\frac{1}{4}$ h $\frac{1}{4}$ k $\frac{1}{2}$ efge $\frac{1}{4}$ er fge $\frac{1}{4}$ fge $\frac{1}{4}$ k $\frac{1}{\sigma}$ $\frac{1}{\sigma}$ i

Predictive equations

We developed predictive models of absolute fat and pour f_{max} f_{max} f_{max} f_{max} f_{max} f_{max} subjects of f_{max} squares (OLS) r_{11} r_{12} r_{13} r_{14} r_{15} r_{16} r_{17} r_{18} r_{19} r_{10} r_{11} r_{12} r_{13} r_{14} r_{15} $\mathbf{f}_{\text{1.100}}^{\text{u}}\mathbf{f}_{\text{0.0}}^{\text{u}}$ \mathbf{g} $\mathbf{f}_{\text{0}}^{\text{u}}$ $\mathbf{f}_{\text{0}}^{\text{u}}$ $\mathbf{f}_{\text{0}}^{\text{u}}$ $\mathbf{f}_{\text{0}}^{\text{u}}$ $\mathbf{f}_{\text{0}}^{\text{u}}$ $\frac{1}{2}$ independent variables. To satisfy assumptions of $\frac{1}{2}$ and $\frac{1}{2}$ as $\frac{1}{2}$ and $\frac{1}{2}$ k_{e} , l_{e} is π of π in l_{e} and π is π in π k_i is the i_i in $\frac{1}{4}$ and $\frac{1}{4}$ and $\frac{1}{4}$ and $\frac{1}{4}$ and $\frac{1}{4}$ and $\frac{1}{4}$ is if $\frac{1}{4}$ $f_{\rm{rad}}$ is $\mathbf{r}_{\rm{rad}}$ ϵ ^k $F_{\rm tot}$ pintageon with $F_{\rm tot}$ and $F_{\rm tot}$ with $F_{\rm tot}$ and $F_{\rm tot}$ with $F_{\rm tot}$ and $F_{\rm tot}$ $\frac{1}{2}$ include include $\frac{1}{2}$ include $\frac{1}{2}$ in $\frac{1}{2}$ \int_{-1}^{1}

 $\arg\dot{r}_i$ 2i $\arg\dot{r}_i$ k ii \sin 2i $\arg\dot{r}_i$ cases, in \mathbf{p}_0 fin Z_1 in \mathbf{r}_1 on \mathbf{F} and \mathbf{p}_0 is \mathbf{p}_0 if \mathbf{p}_0 if \mathbf{p}_0 is \mathbf{p}_0 portion tissue values. The prediction of k in $\frac{1}{2}$ in $\frac{$ \cdot π ²K k π ₁k_{te} e e^{-1} k ϵ k₉ π ₁ an ϵ ₁kt_e Z c_1 k fift $K Z_1$ it a lotter of the $\frac{1}{2}$ of the theories for ϵ_1 ich ϵ_2 interest. We are ϵ_1 interest. We repeated our analyses in the set of ϵ $\int_{0}^{1} \frac{1}{k_1} dx$ deato $\int_{0}^{1} \frac{1}{k_1} \frac{1}{k_2} dx$ is a $\int_{0}^{1} \frac{1}{k_1} e f e f$ c_1 ^U, $k_{\text{ne}} + r_{\text{ee}}$ from other a though r_{ee} in k_{ee} is r_{ee} . $\frac{1}{4}$ k filk $\frac{1}{4}$ k $\frac{1}{2}$ $\int \frac{1}{4} \int_{0}^{1} k \sin \frac{z}{2} \cos \frac$

Table 3. Relaie mea e fm delⁱ (²) fm ege in f%FAT (al liid ×bd ma ⁻¹) and %PROT (al ein ×bd
ma ⁻¹) again indice (bd ma , ai eid al) fⁱe aef lecie . Rai indice inclole bd ma diided b cal mea e .Re idalindice aebaed nhe! fam delf %FAT %PROTb he eidal fam del fbd ma a afncin fhe
ai cmbinain fc almea e .Vale hnin bld eden e highe ² am ngindice cnide ed ihin a ecie and i e e.

M del ^a	S ecie											
	he n in ail N		Le e ca		Ame ican ige n			Hale ind ck	g Idene e Pа			
									Female		Male	
	%FAT	%PROT	%FAT	%PROT	%FAT	%PROT	%FAT	%PROT	%FAT	%PROT	%FAT	%PROT
Ma	0.46	< 0.01	0.19	0.08	0.18	0.11	0.78	< 0.01	0.16	0.12	0.19	0.01
Rai :												
Ma $/Ta$	0.43	0.08	0.21	0.10	0.31	0.18	0.50	0.02	0.01	0.02	0.10	0.01
Ma /C Imen	0.43	0.06	0.22	0.05	0.13	0.22	0.66	< 0.01	0.04	< 0.01	0.2	< 0.01
Ma /Wing	0.45	0.02	0.14	0.16	0.23	0.15						
Ma / g d	0.44	0.04	0.12	0.12	0.31	0.22						
Re id al :												
Ta	0.49	0.02	0.22	0.10	0.20	0.12	0.52	0.02	0.24	0.12	0.11	< 0.01
C Imen	0.49	0.02	0.20	0.08	0.18	0.10	0.75	< 0.01	0.19	0.11	0.18	0.01
Wing	0.48	0.01	0.18	0.12	0.24	0.15						
₽ d	0.48	0.02	0.14	0.11	0.28	0.19						
Ta $+C$ lmen +	0.52	0.05	0.16	0.13	0.24	0.12						
Wing + \mathbf{p} d												
PC ₁	0.53	0.05	0.19	0.14	0.29	0.22	0.75	< 0.01	0.25	0.12	0.14	< 0.01
$+C$ lmen Ta							0.42	0.03	0.14	0.10	0.10	${<}0.01$

a
Abbeiainf model aamee: Massbod mas, Tassediagonal as, Chmen = chmen lengh, Wing = ingchod, ped = bd leng h, PC1 = fi inci al c m nen.

 F_{10} in f_{10} f_{20} f_{31} f_{32} f_{33} f_{34} f_{35} f_{36} f_{37} f_{38} f_{39} f_{30} f_{31} f_{32} f_{33} f_{34} f_{35} $\frac{1}{2}$ greater precision of $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ or $\frac{1}{2}$ $\frac{1}{2}$ \bar{z} in the state of \bar{y} is interested in part and \bar{z} in part \bar{y} in part \bar{y} in \bar{z} $\frac{1}{2}$ ck, π o $\frac{1}{2}$ a o at cost of $\frac{1}{2}$ k $\frac{1}{1}$ i $\frac{1}{2}$ i $\frac{1}{2}$ o $\frac{1}{2}$ $\mathbb{E}[\mathbf{r}_n^{\text{max}}]$ is the improvement of \mathbf{z}_n . $\frac{q}{r}$ of the $\frac{1}{r}$ is a rotations and $\frac{1}{r}$ the $\frac{1}{r}$ of $\frac{1}{r}$ of $\frac{1}{r}$ is $\frac{1}{r}$ of $\frac{1}{r}$ $f_{1,1}^{T}$ \overline{k} \overline{t} \over $f_{\rm eff}$ in $r_{\rm eff}$ $\frac{dI_{\rm F}}{d\theta}$ in $r_{\rm eff}$ in \bar{Z}_{net} can k \bar{p}_{out} ϵ k \bar{p}_{out} $\bar{\epsilon}$ is a \bar{p}_{out} ϵ ϵ \bar{p}_{out} is a $\bar{p}_{\$ m ick¹ l_1 or a efter α k₁ ic defined pour ϵ ^k of \mathbf{r} and \mathbf{r} and \mathbf{r} and \mathbf{r} and \mathbf{r} is the exception of \mathbf{r} $\frac{1}{2}$ arck $\frac{d}{dx}$ ching the inclusion of $\frac{1}{2}$ and $\frac{1}{2}$ of $\frac{1}{2}$ morphometrics in prediction \int_{1}^{1} i α_1^2 k α_2^2 ki $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ or $\frac{1}{2}$ of \int_{0}^{1} ki \int_{0}^{1} $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ s, k_f fig. $4k_f$ k_f at k_f $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ proteing protein is p_{015} in p_{015} in p_{015} if f_1 is the figure $v_{\rm g}^{\rm H}$ \overline{Z} \overline{Z} _{1, 10} \overline{k} _{4t} \overline{k} ₁² \overline{k} ₁ \overline{k} ₀³ \overline{k} _{1, 10}² \overline{Z} ζ is ζ and ζ and ζ and ζ and ζ or the variation in ζ

 $\frac{1}{2}$ interferent the footo of the literature are when t_1 the as $\frac{1}{2}$ is a the indices. The indices in the set value t_{c} if \mathbf{k}_a and \mathbf{k}_a is independent and protein, and are a set of \mathbf{k}_a \mathbf{m} is der the assumption that a stark \mathbf{Z} is \mathbf{Z} $\int_{0}^{1}r_{0}$ in an in an arbitrary manner results in a contrary manner results in a contrary manner of r_{0} in a contrary ma \int_{10} more precise in $Z = 0$ k $\frac{2}{3}$ condition that $\frac{1}{\sqrt{6}}$ is $\frac{1}{\sqrt{6}}$ respectively. Our results in the summary is assumption in the summary is assumption is a summary in the summary is a summary in the summary is a summary in the summary in the summary is a summ $f_{\rm eff}$ at \int_{0}^{1} is $f_{\rm H}$ is \int_{0}^{1}

 $k₁$ in $\frac{1}{2}$ in the further and investigations, where $\frac{1}{2}$ is $\frac{1}{2}$ gator $\frac{1}{2}$ in $\frac{1}{2$ $\frac{1}{2}$ in $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ of $\frac{1}{2}$ in $\frac{1}{2}$ $\$ $\lim_{n \to \infty} \frac{d}{dx} \lim_{n \to \infty} \frac{d}{dx$ A_n is $\oint_{\mathbb{R}} \mathbf{k} \cdot \mathbf{r} = Z_n$ in $\int_{\mathbb{R}} \mathbf{k} \cdot \mathbf{r} = Z_n$ in \mathbf{p}_{old} is $\mathbb{E}_{\mathbf{a}}$ is \mathbf{b} is \mathbf{c} is \mathbf{a} is \mathbf{a} is \mathbf{a} if \mathbf{b} is \mathbf{c} if \mathbf{a} is \mathbf{c} if \mathbf{a} is \mathbf{c} if \mathbf{a} is \mathbf{a} is \mathbf{a} if \mathbf{b} is \mathbf{a} if \mathbf{b} is e^{-k} indee $f^k f^{\ell}$ in differential behavior in Z $\frac{17}{\pi^2}$ c $\frac{1}{\pi}$ $\frac{1}{\pi}$ \mathbf{r}^{u} is of \mathbf{k} from \mathbf{r}^{u} protein predicted percent protein poorly protein protein points. k_{\perp} fe $\frac{1}{2}k_f$ considerably more variable variable. of \vec{k} is not predict as \vec{k} in \vec{k} in \vec{p} of \vec{k} can effect of \vec{Z} constant with \vec{E} in \vec{E} is the best all \vec{E} of \vec{E} is the best all \vec{E} or \vec{E} is the best all \vec{E} is the best \mathbf{u}_1 in \mathbf{v}_2 in \mathbf{v}_3 in \mathbf{v}_4 in \mathbf{v}_5 in \mathbf{v}_6 in \mathbf{v}_7 in \mathbf{v}_7 in \mathbf{v}_8 $\frac{1}{\pi}$ $\int_{\mathbf{B}10}^{\pi} \vec{k} i \text{ for } \infty$ of $\int_{\mathbf{B}10}^{\pi} \vec{k} i \text{ or } \infty$ protein, and \vec{r} and $\vec{$ $r_{\rm{eff}}^{\rm{H}}$, $r_{\rm{eff}}^{\rm{F}}$ in a few cases $r_{\rm{eff}}$ $\frac{1}{r}$ in the ratio $\frac{1}{r}$ is the ratio or respectively to reduce the correction or $\frac{1}{r}$ in the ratio or $\frac{1}{r}$ is $\frac{1}{r}$ in the ratio or $\frac{1}{r}$ is $\frac{1}{r}$ in the ratio or $\frac{1}{r}$ is $\frac{1}{r}$ is \sum_{i} rick ut o k_uresidual index were negligible when compared to just using the just using the just using the just using the second term of t figlies body mass. Thus, i.e. $\int_{0}^{\pi} \frac{d^2 u}{dx^2} \cdot \int_{0}^{\pi} \frac{1}{h} \cdot \int_{0}^{\pi} \frac{1}{h} \cdot \frac{1}{h} \cdot \int_{0}^{\pi} \frac{1}{h} \cdot \frac{1}{h} \cdot \frac{1}{h} \cdot \int_{0}^{\pi} \frac{1}{h} \cdot \frac{1}{h} \cdot \frac{1}{h} \cdot \int_{0}^{\pi} \frac{1}{h} \cdot \frac{1}{h} \cdot \frac{1}{h} \cdot \frac{1}{h} \cdot \frac{1}{$ r $\iint_{\mathbf{R}} f(x) dx$ or $f(x) = \iint_{\mathbf{R}} f(x) dx$ $\mathbf{p}_0 \in \mathbb{R}^{\mathsf{T}}$ is \mathbb{R}^{T} for $\mathsf{I} = \mathsf{T}^{\mathsf{T}}_0$ is $\mathsf{I} = \mathsf{T}^{\mathsf{T}}$ is not universally in \mathbf{r}

 $\mathbf{w}_{\alpha\beta}$ f demonstration of $\mathbf{k}_{\alpha\alpha}$ of $\mathbf{k}_{\alpha\beta}$ and $\mathbf{r}_{\alpha\beta}$ h_{m} _p h_{m} ¹ h_{m} h_{m} ¹ h_{m} ¹ h_{m} ¹ h_{m} ¹ h_{m} ¹ h_{m} ¹ h_{m} $\frac{1}{2}$ $\int_{\mathbb{R}}^{\frac{1}{2}} \frac{1}{16} \int_{0}^{1} \frac$ $\lim_{n \to \infty} \frac{1}{n} \int_{0}^{\infty} \frac{1}{n$ prior $Z \overline{k} f k_1 \overline{k_2} i_1 + f e e e^{-r} i f \overline{k_1} i_1 Z_2 \overline{h^2} i_2$ relative to 12 at k often the performance to the performance t Z_1^{T} , Z_1^{T} , $\left\{ k \frac{1}{2} \right\}$ and $\left\{ d \right\}$ of $\left\{ d \right\}$ \bar{A}_0 the \bar{A}_1 \bar{A}_2 is \bar{A}_3 in \bar{A}_4 is \bar{A}_5 in \bar{A}_1 is \bar{A}_2 is \bar{A}_3 $\frac{a}{\alpha}$ def at $\frac{a}{\alpha}$ is $\frac{a}{\alpha}$ in $\frac{a}{\alpha}$ is $\frac{b}{\alpha}$ in $\frac{c}{\alpha}$ c_1 k fifthe collected condition using data condition c_1 is finite in the sufficient condition of c_1 is the sufficient of c_1 is th $\frac{1}{a}$ $\frac{1}{a}$ $\frac{1}{b}$ $\frac{1}{c}$ $\frac{1}{c}$ $\frac{1}{c}$ $\frac{1}{c}$ $\frac{1}{c}$ $\frac{1}{d}$ $\frac{1}{c}$ $\frac{1}{c}$ $\frac{1}{c}$ $\frac{1}{c}$ $\frac{1}{c}$ $\frac{1}{c}$ $\frac{1}{c}$ $\frac{1}{c}$ \mathbf{k} ¹ u get $\frac{1}{\mathbf{r}}$ o go at the post \mathbf{r} in \mathbf{r} in \mathbf{z} published to \mathbf{z} $\int_0^3 f \, dt = f^2 \int_0^1 \frac{1}{\sqrt{2}} \int_0^1 f \, dt = \int_0^1 \frac{1}{\sqrt{2}} \int_0^1 f \, dt = 0$ \mathbf{k}_{ne} or ϵ to α and α in index. Chappell and index. Γ ₁₉₈3 Γ is the a body mass-contractor \mathbf{k} un moth \mathbf{k} of \mathbf{k} of \mathbf{k} of \mathbf{k} of \mathbf{k} of \mathbf{k} of \mathbf{k} \mathbf{E} _{import}on to be related measure to be \mathbf{E} . $\begin{bmatrix} k i^{\text{T}} & e^{\text{T}} & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \text{if } e_1 \\ f_1 e_2 \end{bmatrix}$ is previously set the select the $\frac{1}{2}I\overline{Z}$ re \overline{f} use $\frac{1}{2}I$ $\frac{1}{2}I$ $\frac{1}{2}I$ $\frac{1}{2}I$ $\frac{1}{2}I$ $\frac{1}{2}I$ $\frac{1}{2}I$ $\frac{1}{2}$ rifk $\frac{1}{2}$ $\frac{1}{2}$ $\int_{0}^{1} k_{\rm s}^2 \, dk \, \epsilon^{1}$ and, $\int_{0}^{1} k_{\rm s}^2 \, dk \, \epsilon^{3}$ $\frac{1}{2}$ and $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ $\begin{bmatrix} 2 & 0 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ for $\begin{bmatrix} 4 & 0 \\ 4 & 1 \end{bmatrix}$ for $\begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix}$ for $\begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix}$ for $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\frac{1}{2}$ de $\frac{1}{2}$ k $\frac{1}{2}$ k $\frac{1}{2}$ c $\frac{1}{2}$ and $\frac{1}{2}$ c $\frac{1}{2}$ and $\frac{1}{2}$ k $\frac{1}{2}$ T_{eff}) k ¹ k $Z_{\text{ref}}Z_{\text{ref}}$ and T_{ref} if if in the specific indices $\frac{1}{\sqrt{1-\pi}}$ study populations and season $\frac{1}{\sqrt{1-\pi}}$ $\frac{1}{2}$ 1990, $\frac{1}{2}$ $\frac{1$ \overrightarrow{a} as \overrightarrow{b} \overrightarrow{a} summer \overrightarrow{a} size-adjusted indices. $\frac{1}{2}$ selection of an index developed for an index of $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ are species, such as index of $\frac{1}{2}$ and $\frac{1}{2}$ are species, such as index of $\frac{1}{2}$ and $\frac{1}{2}$ are species, such ϵ ⁴¹ if anas platyrhynchos $Z^{1/2}$ if ϵ ϵ ϵ \mathbf{v}_{eq} $\hat{\mathbf{k}}$ \mathcal{Y}_{1} ik $\hat{\mathbf{k}}$ of $\hat{\mathbf{r}}$ alternation factors $\hat{\mathbf{k}}$ at $\hat{\mathbf{r}}$ $\sum_{k=0}^{\infty} \frac{1}{a_0} \frac{1}{b_0} \frac{1}{c_0} \frac{1}{c_0} = \frac{1}{c_0} \frac{1}{c_0} \frac{1}{c_0} \frac{1}{c_0} \frac{1}{c_0}$ $\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(\frac{1}{\varepsilon} \right)^{-1} \left[\frac{1}{2} \int_{0}^{\varepsilon} f(x) \sin(x) \right] \left[\frac{1}{2} \int_{0}^{\varepsilon} f(x) \cos(x) \right]$ \mathbf{i}_0 is \mathbf{k}_0 in \mathbf{k}_0 in \mathbf{k}_0 in the measure collection of \mathbf{h}_0 π respectively is regarder to π $\frac{1}{2}$ region (Sedinger et al. 1997) is $\frac{1}{2}$ region (Sedinger et al. 1997) ar Z_i arguably the most common index in the literature, $\frac{u}{v}$, $f \overrightarrow{k}_{0}$ a f $f' \overrightarrow{k}_{0}$ in this is \overrightarrow{k}_{0} in \overrightarrow{k}_{0} in \overrightarrow{A} $\Delta \stackrel{\text{def}}{=}$ $\frac{1}{2}$ $\frac{1}{$ $h_s = \int_0^{\infty} \frac{1}{h} \int_0^{\infty}$ where $\int_0^1 \int_0^1 f(x) \, dx$ is $\int_0^1 f(x) \, dx$ for $\int_0^1 f(x) \, dx$ and $\int_0^1 f(x) \, dx$ $\Delta =$ $\sqrt[9]{\frac{4}{5}}$ $\frac{1}{10}$ $\frac{40}{11}$ $\frac{1}{10}$ $\frac{40}{11}$ $\frac{9}{10}$ $\frac{40}{11}$ $\frac{9}{11}$ $\frac{1}{10}$ $\frac{1}{10}$ h_1 is k_1 in ϕ p_1 fk fk $e^{\int \frac{1}{2} \int \frac{1}{2}$ $\frac{1}{2}$ in $\frac{1}{2}$ is data necessary to $\frac{1}{2}$ in $\frac{1}{2}$ if $\frac{1}{2}$ if $\frac{1}{2}$ if $\frac{1}{2}$ $\sigma_{\rm g}^{\rm TQCD}$ is the application of unversion of $i\epsilon_0^2$ f $i\frac{1}{4}$ in k fis dubious and investigation the p_{10} ket $i \in \mathbb{R}$ at ket $\frac{pq}{1-q}$ the set the q^2 ket

 R_{e} a ppp if k_1 \in k_2 \in \mathcal{R} product \in \mathcal{R} \in ∞ c_1 k c_1 k f_1 k f_2 shown, indices can be interpreted in the interpreted interpreted interpreted interpreted in the interpreted interpreted interpreted in the interpreted interpreted interpreted interpreted in the i \int_{0}^{1} is Z_1 in 100 \int_{0}^{1} required protein and protein \int_{0}^{1} k \mathbf{f} is dependent of \mathbf{f} in \mathbf{f} is the set of \mathbf{f} is the set of \mathbf{f} is the se Z_1 ir, at k 66 to pound k k p_1 and k_1 k confounded. $\sum_{p \in \mathcal{P}} \mathbf{f}^2 \mathbf{Z}_{p}$ is $\sum_{p \in \mathcal{P}} \mathbf{f}^2$ is a protein and lipping $\sum_{p \in \mathcal{P}} \mathbf{f}^2$ c_{10} in the fk us it $\frac{1}{2}$ in $\$ $\frac{1}{2}$ relationships associated with the set of $\frac{1}{2}$ relationships associated with the set of $\frac{1}{2}$ relationships are $\frac{1}{2}$ relationships associated with $\frac{1}{2}$ relationships are $\frac{1}{2}$ relationships similarly confounded. For example, a positive relationship \tilde{Z}_{nt} is kes^tus one in the due the due to d t_1 Z_1 it at kft is the protein \hat{p} for \hat{p} the log there combination $\mathbb{E}_{\mathbf{a}}$, in $\mathbb{E}_{\mathbf{a}}$, in $\mathbb{E}_{\mathbf{a}}$ in $\mathbb{E}_{\mathbf{a}}$ both $\mathbb{E}_{\mathbf{a}}$ μ relative poorly relative to percent protein and the percent protein and thus are percent protein and thus are percent pr $\frac{1}{20}$ for $\frac{1}{2}$ in the percentage in terms of percentage in the percentage in terms of percentage in the percentage in terms of percentage in the percentage in terms of $\frac{1}{2}$ ik β frirk i r Z indepents a k balance i \mathbf{F} respectively. For example, the storage and maintenance of \mathbf{F} $\mathbf{p}_{\text{0.10}}$ \mathbf{p}_{i} in \mathbf{p}_{0} in \mathbf{p}_{f} of \mathbf{p}_{0} in $\frac{\log r}{\log r}$ i.e. $\frac{d}{dr}$ i.e. $\frac{d}{dr}$ i.e., $\frac{d}{dr}$ and $\frac{d}{dr}$ and $\frac{d}{dr}$ and $\frac{d}{dr}$ and $\frac{d}{dr}$ i.e. $\frac{d}{dr}$ \mathbf{u}_1 is \mathbf{u}_2 found that structurally larger generally larger generally larger generally larger generalised \mathbf{u}_2 carry larger lips in the same process lipid $\frac{d}{dr}$ in $\frac{d}{dr}$ in $\frac{d}{dr}$ or $\frac{d}{dr}$ in $\frac{d}{dr}$ or $\frac{d}{dr}$ \int_{0}^{x} finds \int_{0}^{u} finds \int_{0}^{u} individuals \int_{0}^{u} finds \int_{0}^{u} $\frac{1}{2}$ require corresponding increases in structural proteins in structural proteins in structural proteins in $\frac{1}{2}$ $\int_{\mathbb{R}^2}$ other words $\int_{\mathbb{R}^2}$ $\int_{\mathbb{R}^2}$ \mathbf{R} know \mathbf{R} and \mathbf{R} may vary according taxas taxa ζ_{o} ζ_{h} ζ_{h} ζ_{e} ζ_{e} ζ_{e} ζ_{e} ζ_{e} ζ_{e} ζ_{e} ζ_{e} ζ_{e} ζ_{e} researchers \mathbb{Z} to \mathbb{Z} or \mathbb{Z} or \mathbb{Z} \tilde{c}_1 k fift \tilde{k} fk σ_0 ^l to the $f^{\mu\nu}$ iⁿ \tilde{u} of \tilde{k} in the protein $f^{\mu\nu}$ \mathbf{f} $\mathbf{$ \mathbf{k} \mathbf{f} ² a physical state that is largely to a physical state that \mathbf{r} k \mathbf{r}

 $g_{\rm B}$ k. $i k_{\rm ine}$ $f_{\rm C}$ $f_{\rm D}$ $f_{\rm O}$ $f_{\rm C}$ $I_{\rm C}$ Z c_1 k fifth c_2 is a spectrum of spurious results? c_1 $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{\sqrt{2}}$ and $f_{e,i}$ d. D. f_{i} f_{i} f_{i} i f_{i} \overline{Z} k¹ li_ok₀ and \overline{z} tionship to hunting vulnerability. π ci i k, $5^{1.5}$ 1^{1} Heusner, A. A. 1982. Energy metabolism and size I. Is the 0.75 $\mathcal{F} = \mathbf{m}_1 \mathbf{k} \mathbf{k}_{10} \mathbf{r}_1 \mathbf{k}_{20}^{-1} \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{k}_{20} \mathbf{r}_1 \mathbf{k}_{30}$ πf_0 e $\frac{1}{2}$, 1 ². $\frac{1}{10}$ km $^{-1}$ $\frac{9}{10}$, $\frac{1}{10}$ for $\frac{1}{10}$ k $\frac{1}{100}$ composition of k $\frac{1}{100}$ can be $Z \cdot h$ fk in Louisiana: $\frac{1}{2}$ $\int f k^2$ k $\frac{1}{2}$ $\int_{0}^{2\pi} \frac{1}{2} f \int_{0}^{0} f \cdot \frac{1}{2} f k$ -4.5_{10} 37 -1 $I_{\text{S} \cap \mathbb{R}}$ is $I_{\text{S} \cap \mathbb{R}}$ in $I_{\text{S} \cap \mathbb{R}}$ and $I_{\text{S} \cap \mathbb{R}}$ is $I_{\text{S} \cap \mathbb{R}}$ $\frac{1}{\epsilon}$ kefijok $\frac{1}{\epsilon}$ measurements. $\frac{1}{\epsilon}$ wildle. $\frac{1}{\epsilon}$ is $\frac{1}{\epsilon}$ with $\frac{1}{\epsilon}$ is $\frac{1}{\epsilon}$ $\mathbf{k}_1 \cdot \mathbf{k}_2 = \mathbf{r}$ $\mathbf{E} \cdot \mathbf{k}$ \mathbf{E} \mathbf{E}