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mortality rates with age (Dorshkind et al., 2009). Immunosenescence has mainly
been studied in humans and laboratory rodents, but also in some free-living verte-
brates (see Palacios et al., 2011). The mechanisms underlying immunosenescence
are, however, still poorly understood (Agarwal & Busse, 2010). There is some evi-
dence that such an age-related decline is not uniform across all immune indicators
(Palacios et al., 2007), possibly because with increasing age, an individual may
allocate fewer resources to self-maintenance while investing more in reproduction
(Cichoń, 1997). Optimal resource allocation thus dictates that an energetically more
expensive trait should be down-regulated more rapidly with increasing age than a
cheaper trait, and this hypothesis may also apply to immune indicators.

The vertebrate immune system can be divided into two arms: innate immune
function is immediately effective against a broad range of pathogens, whereas ac-
quired immune function is pathogen-specific and takes longer to develop (Shanley
et al., 2009). Innate immune function can be further divided into constitutive (con-
stantly maintained) and induced aspects, the latter being energetically much more
expensive (Klasing, 2004). Here, we used captive ruffs Philomachus pugnax, a mi-
gratory sandpiper, to assess immunosenescence in constitutive and induced innate
immunity. Immunosenescence for a cell-mediated trait has previously been found
in this population of ruffs (Lozano & Lank, 2003).

To assess constitutive innate immunity, we measured the antimicrobial capacity
of plasma using three different strains of bacteria, and complement-like activity,
which provides early protection against infections via cell lysis (Ochsenbein &
Zinkernagel, 2000). We also measured levels of haptoglobin, which is an acute
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