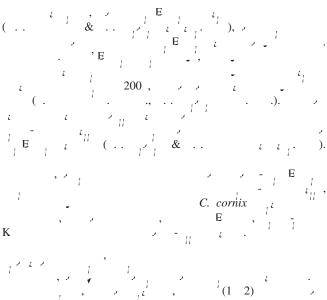
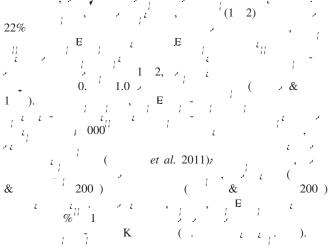

, - , , 1), , , _{||}

INTR ODUCTION

SE E GLE POPUL TION TR ENDS

()10()-2 0(/))10

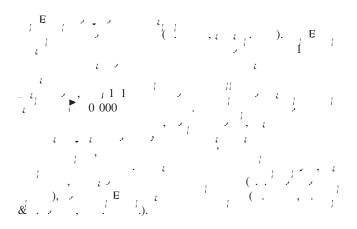

T BLE 1						
S & Z		Βι Ει	2. 2	w N	i(i)
S ८ (US)				%	M L L	
	L & ()	<u>م</u> د()	וע () ג	L	y (z	R
(C L L l)		ì	•-	ι.)	
1	, <i>t</i> ·	1		0%	· (1)	ι 1 0
	.(₁ .)	1	11	1 10%	· · (1)	, et al. (* 0%)100 0%


et al. _ E

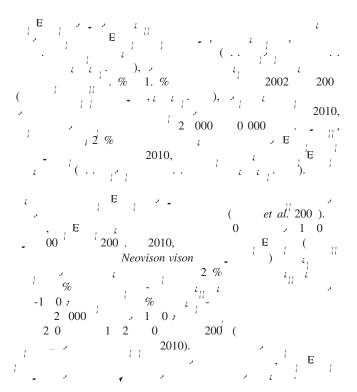
et al. E

 K_1 et al. (200) , , ,

Sterna Κ '₁₁ ' caspia, С. ι ₁₁ columba. 🧳 ι, ι l l Cathartes aura, ι С. C. caurinas, Pica hudsonia (C. caurinus, Corvus corax, brachyrhyncos, et al. 1 , 1 2, et al. 2001, 2002, i et al. 2011, . ιι. , *,* · · · · .).



ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε
 ε


1 I et al. (2001) E Е ί 1 ι ι, П 1). , 1 ι_1 П

Northeast Pacific

E () et al. 200) 2001, (et al. 200, et al. 200) et al. 2002, $\iota_{||} (\iota_{||} - et al. 2002, et al. 2001, et al. 2001,$, ί ι et al. 2010), et al. 2011), П έ ε , 200). 12 (E 1 L -Aechmophorus occidentalis et al. 200 , 200). (, et al. 200 , , , 2011) лi *et al.* 2002). () ί

Northwest Atlantic

et al. _ E

E , . . 200 . , 1 1 2. Wildlife Afield 1

- Е, .., Е, .., . ., , . ., КЕК, Е. & ЕЕ,, ر (Uria aalge 2001. L. californica). , . ., , . ., L ..& , . . '(.). 1 , ι..... ι., 1_2
- 200 120 / -2000-0012. . 1 2. E , . ., , , K. ., ,.& E,
- _. 200 .
- Afield _11 121. Wildlife
- E, ..., EE, ...& K, ...200. Wildlife Afield ____2.
- , K., , .., K , ., , . & , ..1 ._
- Management 22 22 . E , ., E , K. & E , . . 2010. K . 21 2 21 2.
- , . ., E , . . & E E , . . 2002. , I, I,
- Northwestern valuralist $(10^{-11} \text{ Leptonychotes})$ E, & E, 1^{-11} , (Leptonychotes)weddellii) (Pygoscelis papua). Marine Mammal Science 1 = 1. E E, .., K, E E, .., .. & K, .2011.

- , ... 200 . 1-1 ..&E , . .1 . Corvus Uria lomvia corax i 1 ι 11
- -. Ibis 1 _ 2 . 1 ,..& Ε,..1 . , ι . , K.
- E Е E , . 2001. . ι -(Phalocrocorax auritus) , , , , <u>, , ,</u> ,
- 12 Е .1 . $2 - \frac{1}{11}$ Uria lomvia . .1 1
- I . Biological Conservation _21 2 . . . 2002. *L* • ۱۱
- ۱^۲ 1 2 1 1 - 1
- ..,E , .., E , .. & E , .2000. , , , . . Evolution _1 E L 1.
- ..&EE,..1.__
- ,_., E E , ., , ., ___, ., K E , ., KE, ., ,.&EEE,.200.
- · -· · · ۲ | . Biology Letters 2_1 1.
- Е,.., E, ., E KE, K. ., K E, ..., E ,_.., '
- 1¹ 2. 11 . Science
- E , . & E , . . 2011. L -. Science 11 _ 2011.
- E, ...EK, KE.& E, ... 200.K
- NINA Rapport $2 = 1^{1} 1$. <u>E</u>,.&EE , . .1 . (Cerorhinca *monocerata*)
- Behavioral Ecology _ 2 . <u>E</u>,., , ..& E,..200. .
- 2000 1 1 1 1 1 1 , E 1
- , .K. &E , E. 200. , . ., ι, -
- (Phalocrocorax auritus) (Phalocrocorax pelagicus) , 1 0 2002. Ecotoxicology 1 = 0 = 2.
- E,...,E,.K.&E,....2010. \cdot . Waterbirds -1^{\prime} . 1 ,..&_ ,.1 . , . ., Auk 110_1 1 . ι,

- ..., , ... & E , ... 2010. E . Journal of Raptor Research _1 2 . 1 E , . ., E , . . & , ._. 1 ^د ال , . Auk
- , ... 200 . ι Е L (Phalacrocorax varius)
- . Marine L Biology 1 _2 . E E , ., , .&E E , .1 2.
- L ٤ 611 ٤ ,
- . Holarctic Ecology Haliaeetu's albicilla E E , ., E , ., , . 200.
- -
- E Haliaeetus albicilla . Ambio 2 1. E E , , \mathbf{Q} , & E , . \mathbf{E} .).
- , ,
- ι

- , . ., , . ., E E , . . & K, Κ . . 200 . _ . Marine Ornithology ,
- , . ., , . . . & Κ, . . 200 . ι Κ
- tridactyla. Marine Ornithology . K K, ..., , ... & _E , ... 200 .
- . Marine Ecology Progress Series 2.2 2 . K , .K. & K , . . 1 .

- , .к. « К , . . 1 . Е . Auk 100 . К , . ., , , . ., Е , . ., , . . & E , . . 1 0. leucocephalus, , . ., Е , . ., , . . Naturalist 10 . 1. К Е , ., К
- - K, . 1 .E , K_ / .
- , K. & KE , . . 200 . , ., , ., E (Phocarctos hookeri) (Phocarctos hookeri) (Megadyptes , Biological antipodes)
- Conservation 1 _2 2 . E , . . 200 . ι,,
- L / 1 , . Wilson Bulletin 11
- E , . ., E E , ., , , . ., E , . 200 . . Condor 10 , ί .
 - ,..& E ,.1 .
 - Journal of Field Ornithology
 - Ε,..1 . . ι , K.
 - E E E _ _ E E E . 2010. 2010. // . . / / //

- E , .., E , .. & , .. 200.
- E

- E , .K., E, . . & , _ . . . 1 . , E , . . *Living Bird* 1 _ 1 1 2.
- E , . . 1 . , 'Journal of Animal Ecology 2^{i} . 1 .
- E, 1, 1, E, Haliaeetus E K, ... 2000. Ieucocephalus, , Canadian Field Naturalist 11 _ 0 11.

- , . . 1 ¹. E Northwestern
- , . ., , . ., E ., . . & , . . . 1 2. _ E . Journal of Wildlife Management .
- E E,E., -_ E, . & E E , . . 200 . E (Tyto alba)
- (Tyto alba) Southwestern Naturalist 2.2 2 0.

- E = E, ... E, ... $200 = 1^{l}$
- E EE K, . . . 1 2E
- E EE K, . . . & , . . 1 . . $u^{l}_{l} = u^{l}_{l}$, . . 1 . . Murrelet 2. 2 . .
- E = EE , K. 1 2.
- cirrhata E EE , K. & E , K. 1 , c_1 , LundaC Lunda , Lunda ,
- $\mathbf{K} = \begin{bmatrix} c & c \\ c &$

, ._. 1 1. , , - Haliaëtus albicilla