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Quantifying temporal variability in population abundances
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and consistent across a wide range of scenarios. Many of
these issues have been succinctly reviewed elsewhere
(McArdle et al. 1990, Pimm 1991, Gaston and
McArdle 1994).

Here I propose a technique for quantifying varia-
bility which is based on a conceptual approach of
simply comparing all numbers in the time series.
Statistical approaches first assume a particular form of
distribution (e.g. ‘normal’), calculate a measure of
central tendency (e.g. mean) and subsequently calculate
variation as average deviation from this ‘central’ value of
population abundances (or the log transformation).
While these statistical measures can also be calculated
without using the time series mean (i.e. by using mean
sum of squared differences), the proof of the equiva-
lence of these approaches indicates that average devia-
tion from the mean still underlies the metric, regardless
of how it is calculated. I propose issues of non-Gaussian
behaviour can be alleviated by simply comparing all
numbers in the time series, and calculating average
proportional difference. That is, instead of calculating
variability as average deviation from average population
size, variability of biological populations may be better
described as average difference in abundance among
years. I begin by discussing why standard statistical
approaches are problematic for situations not meeting
Gaussian assumptions. I then present the proposed
method, ‘population variability’ PV describe several of
its mathematical characteristics, and quantitatively
illustrate that it behaves as desired: for ‘normal’
(Gaussian) time series, PV tightly corresponds to
current statistical techniques (CV and SDL). However,
instead of evaluating variability based on deviation from
an arbitrary mean, PV more fairly treats both ‘rare’ and
‘common’ events by simply comparing all abundances
relative to each other. Therefore, unlike standard
statistical techniques, PV allows comparisons across a
range of different dynamics and is robust to non-
Gaussian behaviour, which I illustrate quantitatively
using spectral analysis and simulation models.

Biological poulations and Gaussian assumptions

Temporal variability has been defined as ‘average
deviation of a time series of abundances from an
average value on a proportional scale’ (Gaston and
McArdle 1994). Both SDL and CV therefore assume
that an average value of population size, and deviation
from it, appropriately describe features of the popula-
tion we are attempting to measure. While potentially
suitable for some analysis, the validity of this assump-
tion in reflecting stability/variability of biological
populations is not clear. With the possible exception
of populations driven by a stable equilibrium, deviation
from an average abundance may not represent the

underlying dynamics which biologists are trying to
capture when measuring variability. This could be
particularly true if populations undergo cyclical dy-
namics or more complex behaviour. To properly
facilitate comparisons among populations undergoing
different dynamics, an index of variability should be
robust to both ‘normal’ and non-Gaussian behaviour.

Even for relatively stable populations, deviation from
average may not represent the variation ecologists are
interested in. For example, consider a stable population
that undergoes rare perturbations (e.g. a crash due to
extreme environmental events, followed by quick re-
bound to carrying capacity via local production or
emigration). In such scenarios, the mean will not reflect
population size in ANY year, and variability calculated
using SDL or CV will indicate deviation from the mean
and therefore variability in ALL years (Fig. 1). As I will
illustrate, if variability is measured by simply comparing
abundance among all time steps (circles in Fig. 1), then
like all events, rare events are naturally compared to
every other event, rather than to an arbitrary Gaussian
mean. This is intuitively appealing as rare events are by
definition not Gaussian, but are expected to be
important components of ecological systems, whereas
most statistical approaches treat them as outliers and
devise ways to exclude them. We can therefore consider
‘rare’ and ‘common’ as parts of a continuum of the
underlying dynamics, rather than being discretely and
arbitrarily defined (e.g. as a cutoff threshold for ‘out-
liers’, based on the inappropriate assumption of a
Gaussian distribution).

As a further thought experiment, consider a stable
population at a carrying capacity of 100 for 25 years
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that undergoes an sudden shift, due to some abrupt
environmental change, but subsequently remains stable
at a new carrying capacity of 10 for the next 50 years.
Following this, it then returns to the old carrying



value of abundance relative to every other value of
abundance, similar to metrics like Kendall’s test for
trend, we consider all possible combinations of abun-
dance (C) which can be calculated from the number of
time steps n in the time series as:

C�
n(n � 1)!

2
(1)

We can then define z as the list of these possible pair-
wise comparisons; therefore z�/1 . . . C). Each z there-
fore represents a pair of time steps zi and zj to be
compared by the difference function D(z). This func-
tion simply calculates proportional difference between
each z pair of abundances:

D(z)�

0 if zi�zj

ABS(zi � zj)

MAX(zi; zj)
if zi"zj
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(2)

Using absolute value of the difference between zi and zj

divided by the larger number simply ensures the
proportion is the same even if we switch the values of
zi and zj. That is, if zi�/10 and zj�/100, D(z)�/90/
100�/90%, and likewise if zi�/100 and zj�/10, D(z) is
still 90/100�/90% (and not e.g. 90/10�/900%). It is
established that comparisons of absolute values, such as
mean absolute deviation, provide more robust estima-
tors (Press 1989). PV similarly uses absolute compar-
isons of abundance, however instead of standardizing
using deviation from the mean, Eq. 2 standardizes by
calculating the proportional difference between each
value of abundance, i.e. the difference over the
maximum. In fact, although Eq. 2 represents
the framework in which PV was developed, it can be
algebraically transformed to:

D(z)�1�
min(zi; zj)

max(zi; zj)
(3)

indicating that it is based on a ratio comparison of each
value in the time series. In this manner, abundance at
every time step is compared with that at every other
time step, yielding a distribution of proportional
differences D(z). While it may be interesting to
investigate frequency distributions of D(z) scores,
most often an average will provide an adequate
summary of population variability PV:

PV�

Xz

D(z)

C
(4)

We can therefore calculate variability based on a simple
but thorough comparison of all abundances in a time
series. Equation 2 calculates proportional difference, so
the domain of D(z) and PV is [0, 1] in contrast with

SDL and CV, which, at least in theory, is [0, �).
A score of zero represents complete stability among
years (i.e. 1/PV measures stability), while a value of 1 is
approached as differences in population size approach
infinity.

Like SDL and CV, the chronology of abundances is
irrelevant and in fact, the PV approach quantifies
differences across all time-lags. As chronology is
irrelevant, autocorrelation structure will not influence
the value of PV; the same time series could be randomly
reorganized and lead to the same value of PV. However,
it is noteworthy that sorting time series by abundance,
rather than by time, can provide some insight into the
behaviour of the different variability metrics. In this
manner, trends in the ranked abundances can reflect
underlying variability; for example, if sorted abun-
dances exhibit no trend (constant abundance), then PV
is equal to zero. In contrast, if the sorted abundances
progress geometrically, then PV will approach 1.
Intermediate between these extremes, PV will approach
0.5 when the sorted abundances approach an arithmetic
progression, where the common difference of the
progression and the lowest abundance have the same
value. This can be understood by realizing that, in such
cases, the frequency distribution of pair-wise propor-



measure of variability precludes direct testing of any
metric, making example analyses using real or popula-
tion model data a relatively uninformative exercise. For
this very reason, it is useful to have several different
metrics in our toolbox which allow us to characterize
different things about a time series, and a comparative
approach can provide significant insight. As an im-
portant first step, it is desirable that PV behave similarly
to CV and SDL for ‘well behaved’ Gaussian time series.
PV, CV and SDL were calculated for 100 time series
simulated with random mean [100,1000] and standard
deviation [0,100] over 100 time steps. Correlation
coefficients were calculated to evaluate concordance
between PV, CV and SDL. This entire process was
repeated 1000 times. PV was strongly correlated with
both CV (mean r�/0.9979/0.001 SD) and SDL (mean
r�/0.9679/0.012 SD). Therefore, PV behaves the same
as CV and SDL for ‘normal’ (Gaussian) populations, as
desired and expected. However, the necessity for an
additional approach and a major advantage of PV is it’s
robustness to non-Gaussian behaviour. I herein discuss
how PV addresses and resolves several issues of non-
Gaussian behaviour associated with CV and SDL.

The issue of zero counts

The presence of zero counts in biological time series is a
major issue, and prevents using SDL as (Log 0) is
undefined (Taylor 1961, McArdle et al. 1990). A first
step is to consider the appropriateness of including
zeros. Including data when the population is absent is
uninformative if variability of the population is of
interest but rather indicates variation of animals at a site
(McArdle and Gaston 1993). In meta-population
contexts, including local extinctions in sub-population
variability could be important, particularly when
evaluating local demographic differences (e.g. source-
sink dynamics; Howe et al. 1991). When including
zeros is important, often an arbitrary constant a is
added (i.e. SD[Log(N�/a)]), however this means
variability is no longer on a proportional scale and is
severely biassed at low abundances (Gaston and
McArdle 1994). PV calculates proportional differences
using Eq. 2 which keeps D(z) defined when either zi or
zj equals zero. Such comparison between ‘extant’ and
‘extinct’ years is the only situation where D(z)�/1;
otherwise D(z) approaches 1 as the difference ap-
proaches infinity. The if condition ensures D(z)�/0
whenever zi�/zj including zi�/zj�/0. If including zeros
is important to the research question, then zi�/zj�/0
can be biologically defined as ‘‘stabily extinct’’. It is
important to note that I have been discussing true zeros:
zeros due to sampling error will require careful
consideration (McArdle and Gaston 1993, Gaston
and McArdle 1994, McArdle and Gaston 1995).

Independent of average deviation from the mean

As mentioned in section 1, even though statistical
measures of variability based on deviation from the
mean can be calculated independent of the mean (i.e.
by using the mean sum of squared differences), the
proof of the equivalence of these approaches indicates
that average deviation from the mean still underlies
these metrics, regardless of how they are calculated.
While no such proof exists for PV, simulations can be
used to determine if PV is correlated with average
deviation from the mean (ADM). Of course, given it
has been demonstrated that PV behaves similar to CV
and SDL for ‘normal’ populations, we would expect it
to be correlated to ADM for Gaussian data, even
though, unlike SDL and CV, it is not fundamentally
based on deviation from the mean. However, for very
non-Gaussian data, such as the heavy tailed Cauchy
distribution, PV should not be correlated with ADM
unless ADM somehow some how underlies PV. (Note
that, although the mean and ADM can be calculated for
any set of numbers/abundances, the mean is actually
undefined for the Cauchy distribution). 100 time series
of 100 units were generated to fit the normal distribu-
tion (mean [1000�4000], SD [10�90]) and the heavy-
tailed Cauchy distribution) location [1000, 5000],
scalar [10, 100]). For each time series, PV, CV and
SDL were calculated, and correlation with ADM was
determined across the 100 time series. This entire
process was repeated 2000 times for each distribution.
Figure 3 indicates, that as expected, each metric is
correlated with average deviation from the mean for the
normal distribution. However, unlike SDL and parti-
cularly CV, PV is not correlated with average deviation
from the mean for the very non-Gaussian Cauchy
distribution. While indirect, and not as elegant as a
mathematical proof, this result indicates that average
deviation from the mean is not an underlying feature
of PV. As discussed previously, this is desirable for
considering ‘rare’ events and comparing populations
undergoing different dynamics, including those exhibit-
ing non-Gaussian patterns of abundance.

Rare events and ‘more time�more variation’

Extreme sensitivity of SDL and CV to rare events has
been recognized as a serious issue (for example, see
Pimm’s (1991) analysis of song thrush populations
which crashed following an extreme winter). While it
may be tempting to exclude such ‘outliers’, this is
undesirable as both rare and common events are
expected to be important in ecology (Halley 1996).
The remainder of this section and the next deal with
devising a quantitative way to illustrate that PV is a
more ‘robust’ measure than CV or SDL, in that it
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functions more appropriately across time scales, and is
not over-sensitive to rare events, but rather handles
them in a fair and desirable manner.

An exciting recent line of research is focussed on
investigating coupling between environmental and
biological variation with important implications for
understanding responses to environmental change.
Many physical processes show scaling relationships
with time, exhibiting more variation as time scale
increases (Steele 1985; this has been termed spectral
‘reddening’, with analogy to visible light, to reflect the
dominant importance of low frequency processes;
Schneider 1994, Halley 1996). It has therefore been
of interest to ask if reddened physical processes can
force more time�more variation effects in ecological
systems, in contrast to common assumption that
ecological stochasticity follows a white-noise model
(equal contribution across frequencies).

More time�more variation (reddening) of popula-
tion abundances has been observed across a wide variety
of taxa (Pimm and Redfearn 1988, Arino and Pimm
1995, Cyr 1997, Inchausti and Halley 2002) often
using SDL or CV to measure variability. However, rare
events can produce reddening in otherwise stationary
time series (Mandelbrot 1999, Inchausti and Halley
2002). Spectral analysis more accurately evaluates red-
dening and therefore provides a gold standard against
which to compare and evaluate the robustness of SDL,
CV and PV. Therefore, time series of stable populations
undergoing rare events were generated for 100 time

steps. Abundance at each time step was randomly
selected from normal distributions of known mean and
standard deviation. Rare-crashes (stable at 1009/5,
crashed to 109/5) were simulated for 1000 time series,
and rare-outbursts (stable at 109/5, outburst to 1009/

5) for an additional 1000 time series. Rare events were
set to occur at a frequency of 0.02, 0.05 and 0.1. An
additional 2000 time series were simulated to fit the
heavy tailed Cauchy distribution (random location
parameter [1000,5000]; random scale parameter
[10,100]). For each randomization (8000 time series),
variability was measured over all time scales from 3 to
100 time steps using variance growth exponents after
Inchausti and Halley (2002), with each of SDL, CV
and PV as metrics. Variance exponents g measure
increase in variability over time quantified as regression
slope of log variability against log time scale g�/0
indicates white noise; 0B/gB/1 indicates decelerated
increasing variance; g�/1 indicates a random walk; g�/

1 indicates accelerating increasing variance; see In-
chausti and Halley 2002 for details). Spectral exponents
(SE; zero indicates white-noise, greater values indicate
reddening) were calculated as (negative) regression slope
of log spectral density versus log frequency from
spectral analysis (Inchausti and Halley 2002). SE
therefore provided a standard to confirm simulated
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time series met white noise criteria (SEB/j9/0.1j), and
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