Migratory Connectivity of Semipalmated Sandpipers: Winter Distribution and Migration Routes of Breeding Populations

Cheri Gratto-Trevor^{1,*}, R. I. Guy Morrison², David Mizrahi³, David B. Lank⁴, Peter Hicklin⁵ and Arie L. Spaans^{6,7}

1

, & , ,115

,

,

WATERBIRDS

(1) 75). (1) 83),(1)84), (1) 87), (1)) 4),(, 2010), • . (a . 1)))).(**_** a . 2001, 2006) (2008 *a*. 2012). 1)7)). (BANDING AND BILL LENGTHS ((*a*.1))7). **a**. 1) 77. , 2004). . , 1) -21 (. (r 1-3). _ 2010), (1) (1) 8) 16-1) (1) 75 1%1))1). (**_***a* . 1) 7) 1))1). (1)77)1) 84 (1) 88). (1) 84). (1) 73, 1) 77) (1)7).) . . (BILL LENGTHS AND BREEDING DISTRIBUTION

,

ph b **n h** (d peu d u nlpp du n u em n n n р **Q**1) 🖬 eun nd eun h eund . A ei nd n n and einei em n (up d рп, deu n d d nh anh b). d n eund nd u р n eı b **Q**1 n, n n peupu eun (.). b 3 🖬 d eiu

	1114	1)) 4				1) 83	1) 82								•	•		•	1) 84				
		. 1.	1) 84	1) 84	. <i>k</i>	•		1) 83	. 2006	1) 83	•	1) 82	•	•	•		. 2007			•	•	•	- a . 1) 8)
1.0	1.1	1.4			1.3	1.4	1.4	1.5		1.2	1.6	1.6	1.5	1.4	1.4	1.6	1.1	1.2		1.4	1.4	1.5	1.5
18.5	15.0	18.6	20.6	1).4	I) .)	20.3	20.1	20.3	1) .2	18.5	18.5	20.2	20.6	(; (I	18.0	18.0	18.)	18.6	18.7	1).3	1).4	1).1	20.3
16	725	88	354	22,875	56	858	1,225	1,161	5 5	617	355	1, 2)),136	1,542	8	11	106	67		776	315	1,326	57
		n.															~						
 4, 04' , 122 55'	51,55, $104,00$,	51 $55'$, 104 $00'$	$51 \ 23$, $80 \ 24$	51 23', $80 24'$	45 24' , 75 41'	47 26' , 61 47'	45 52' , 64 2' '	$44 \ 35'$, $60 \ 27'$	46 52' ,)) 45'	45 57' ,) } 43'	38 30' ,) 8 38'	41 57, $70 38$	3) 11', 75 05'	33 20' , 7' 0''	$21 \ 18'$, $88 \ 20'$	8 58', 7', 2', '	$1\ 7\ 56'$, $67\ 06'$	2 13' ,80 58'	17 06', 71 54'	5 $54'$, 54 $55'$	5 55' ,55 I} '	5 44' , 53 54'	$31\ 21'\ ,50\ 00'$
-		•	n	•	•	:		•	;					•									

88

WATERBIRDS

db n 3. d d ndpp.b ein einn mu n u р D •uhA nd mln n d 🖬 , n 97, eb em •1 eu unpubhdd, D. nunpubhdd, D. eu unpubhd 98 nd *a* . .hhnn n p neunbdh •und du .. d . A. d n n p n •ıb h nn n embdh en en en und dud n n p nd . h 61 n n •u nd du h nn n p n eun b d h h n 21 h h n h nb d). D .hhnn n p n eunbdh h (up 🖬 n **Q**1 **Q**1 •1 b d). h nd du (up 🖬 u 🛯 n h **Q**1

1) 72, 1) 77).

(44 35', 60 27'), , , , (45 57',)) 43', 1) 7), 1) 83).

• • •

, .

(

)

90

Waterbirds

CONCLUSIONS

-., -

,

1) 84).						(-
-	.)	(14% % -	, =			(1) 64),
1) 84). 1) 88)	· ·	- (1) 84,	. (1) 78,	-	2000).
· •	(1) 84)	, -	(,)	-
1))1).		(-		(1) 78, 2010).	2000,
((1)	, .)	- 	(, ,	() 1) 84).
, .		•					,
(1) 84)		,		, 2006),	(/ ·	, 1j	81,
• • •	,	,			0.1 4 (, *0 - (20	-
<i>a</i> . 2003).	-		((1)) 4)				
			-				
x	(,	- 1) 8)),				
(a. 1) 8),		1) 8),	1)))).				
. (.	1) 7),	, 1) 83, 1)) 4,	1) 84, 3 -3).				
	, (1) 70).	,				

-

, . . 1) 75.

, 1) 74
, 45 364-
, . 1) 70.
- 4 (,, , 4
). ' , 40 185-302.
, 1) 73
· · · · · · · · · · · · · · · · · · ·
13 257-278.
,
8) 167-171.
,
. 58) -605.
, 1) 84.
. 125-202 . 6,
(, .).
, , , , , , , , , , , , , , , , , ,
26 37-41.
, , , ,
, -
,,. , , -
, , ,
) 4 34-38.
,, ,,.,.,,
. 2006
, 2000.
, , , , .,
, 35 120-134.
,1) 81.
5) 1527-1534.
· · · · · · · · · · · · · · · · · · ·
1) 87
, . 2006. , , ,
77 3) -45.
, 2008. ,
. 1)

(

) 33)-346.

, , , , , , , , , , , , , , , , , , , ,	· · ·
2) 7))-600.	. 1) 77.
· · · · ·	., .
1) 8) .	Ca, r
55 26-2).	
,, ,	, , · · ,
$(Ca, \gamma, \epsilon, a) \qquad .$	124 13) 7-1406.
71 665-675.	, .
, . 1) / 8.	3-708.
115 786-7) 1	
	. ,
	-
· · · · · · · · · · · · · · · · · · ·	,
,	
	/ -2000-0003,
· // · · · · · · · · · · · · · · · · ·	/ / - 2011.
.) 0 60-83. , 1) 84.	
68-7	76 .
1) 83	, -
, 2003.	/
)	(
, · ·, · · , ·	, ,
, , . 9010 -	
(C ara v., .)	
33 22-32. 1) 81	, , • ·
,	
2 150-153.	
2002.	, , .
17 76-83. , 1) 85.	,
· , , ,	, .

-