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ABSTRACT: We report on historical (1978 to 1982) and more recent (1996 to 2000) variation in the
nestling diet of Cassin’s auklet Ptychoramphus aleuticus breeding at Triangle Island (southern) and
Frederick Island (northern), British Columbia, Canada; these islands are influenced by the California
and the Alaska Current ecosystems, respectively. Ocean climate conditions off the British Columbia
coast varied tremendously between 1978 and 2000. At both colonies, the nestling diet was composed
largely of copepods and euphausiids, with fish contributing substantially in some of the warmer years
at Triangle Island. The copepod Neocalanus cristatus was the single most important prey item at both
colonies, and Stage V copepodites dominated in all sampling periods. We used a recently published
temperature-dependent phenology equation to estimate the timing of peak biomass of Neocalanus
near Triangle and Frederick Islands. During warm water years (such as 1996 and the El Nifio of 1998),
the timing and duration of N. cristatus availability in surface waters near Triangle Island was early
and limited (mismatched) in contrast to cooler years (such as 1999 and 2000), when this prey was
available to birds throughout the breeding season (matched). We argue that Cassin’s auklet nestling
diet data reflect the temperature-related timing of Neocalanus prey availability to seabirds in surface
waters. Our results support the argument that inadequate overlap of prey availability and predator

INTRODUCTION

Reports of ocean climate change on upper trophic
level predator (e.g. seabirds) populations are becom-
ing more frequent throughout the Northern Hemi-
sphere as sea surface temperature (SST) variability
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increases and extremes are recorded (e.g. North Sea:

Proffitt 2004; North Atlantic: Sandvik et al. 2008; Nor-

way: Durant et al. 2003; Canadian Arctic: Gaston et al.
2005; Newfoundland: Montevecchi & Myers 1997; Cal-
ifornia: Sydeman et al. 2006, Lee et al. 2007; British
Columbia: Gjerdrum et al. 2003, Hedd et al. 2006;
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Alaska: Anderson & Piatt 1999, Springer et al. 2007). In
several cases, authors have sought to explain climate-
related variation in reproductive performance of
marine birds by examining phenology of breeding and
prey availability and the possibility of matches and
mismatches in seasonal timing (e.g. Bertram et al.
2001, Hedd et al. 2002, Durant et al. 2005, 2007,
Suryan et al. 2006, Hipfner 2008, Gaston et al. 2009).

In the northeast Pacific Ocean, researchers invoked
the match-mismatch hypothesis to explain failed
reproduction in warm ocean years (1996 and 1998) for
Cassin’s auklets Ptychoramphus aleuticus on Triangle
Island, British Columbia, Canada (Bertram et al. 2001,
Hedd et al. 2002). They argued that in warm years
there was less temporal overlap between the parental
provisioning period and availability of a key prey spe-
cies, Neocalanus cristatus, in surface waters. Hipfner
(2008) tested the predictions of the match-mismatch
hypothesis and found strong support for the explana-
tion of Bertram et al. (2001) using a more recent and
extensive time series (1996 to 2006) for Cassin’s auklet
on Triangle Island. Hipfner (2008) further demon-
strated that it was the timing of prey availability, rather
than prey abundance, which was the key factor deter-
mining the seasonal prevalence of N. cristatus in the
nestling diet and concluded that seasonal timing mis-
matches could have significant demographic conse-
quences for the world’s largest Cassin’s auklet popula-
tion on Triangle Island.

The strong mismatches between Neocalanus prey
availability and the timing of Cassin’s auklet reproduc-
tion at Triangle Island reflect the geographic range of
the prey, the highly seasonal life cycle of the prey, and
the temperature-dependent nature of the seasonal
peak and duration of prey availability. N. cristatus is a
‘subartic copepod’ and is not found as prey on Cassin’s
auklet colonies in California and Mexico because those
colonies lie well below the southern limit to the geo-
graphic extent of Neocalanus spp. (Batten et al. 2003).
The copepod prey are highly seasonal in surface
waters (where they are available to Cassin’s auklet to a
depth of 40 m [mode]; Burger & Powell 1990) because
of their distinctive life history strategy and annual life
cycle. The copepod nauplii migrate from mesopelagic
depths (400 to 2000 m) to feed and grow and then dis-
appear from surface waters when they reach the final
copepodite stage (cV) to migrate back to the deep sea
zones and a prolonged dormancy (Mackas et al. 1998,
2004, 2007). In the northeast Pacific, total mesozoo-
plankton biomass and productivity are strongly domi-
nated by the large-bodied calanoid copepods of the
genus Neocalanus (Mackas et al. 2007). As a conse-
quence of their life history strategy as ‘interzonal
migrants’ combined with their dominance of the
regional mesozooplankton biomass, the annual peak of

total mesozooplankton biomass in the upper layers of
the subarctic Pacific is intense and may be very narrow
in duration (Mackas & Tsuda 1999).

Latitudinal differences in the timing of Neocalanus
copepod prey biomass peaks are expected based on
regional temperature differences in the northeast
Pacific. For N. plumchrus, monthly sampling using a
continuous plankton recorder revealed that the timing
of peak biomass (when 50% of the population consists
of copepodites at Stage cV) occurs about 5 wk earlier at
the southernmost (40° N) part of the range than at the
northernmost part (Bering Sea), with intermediate
areas having intermediate timing (Batten et al. 2003).
Mackas et al. (2007) further observed that the latitudi-
nal range of developmental timing is at least as large,
and probably larger, than was originally reported by
Batten et al. (2003) and developed a new predictive
temperature-dependent phenology equation for the
northeast Pacific. The phenology equation demon-
strates that

‘variability of N. plumchrus life cycle timing is associated
very strongly, and approximately linearly, with cumulative
anomalies of upper-ocean temperature during the season

in which the copepods are feeding and growing in the
near-surface layer’ (Mackas et al. 2007, p. 238, Fig. 8b).

Within the northeast Pacific Ocean, British Colum-
bia, Canada, occupies a pivotal position from an oce-
anographic perspective, because the North Pacific
Current bifurcates off its coast forming the Alaska Cur-
rent to the north and the California Current to the
south. Associated with these major currents are 3
oceanographic domains, the downwelling domain in
the north, the upwelling domain in the south, and the
transitional domain in the central coast (Ware &
McFarlane 1989; Fig. 1). The Queen Charlotte Sound,
in the transitional domain, also provides an obstacle to
poleward transport of warm southern waters by dis-
rupting the effectively continuous coastline that ex-
tends from central California to the northern tip of
Vancouver Island (but see Zamon & Welch 2005).

Higher local adult annual survival of Cassin’s auklets
at Frederick Island, in the northern downwelling
domain, than at Triangle Island, at the northern
boundary of the California Current Ecosystem in the
upwelling domain, indicates that British Columbia is a
key location for the detection and investigation of lati-
tudinal variation in oceanographic influences on upper
trophic level predator demographics in the northeast
Pacific (Bertram et al. 2005). Moreover, in striking con-
trast to Triangle Island, there have been no reports of
reproductive failures on Frederick Island from histori-
cal reports (Vermeer 1985) or more recent comparisons
(1994 to 1998, 2000 cited in Bertram et al. 2005).

In the present study we contrast inter- and intra-year
nestling diets of Cassin’s auklets on Triangle and Fred-
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Columbia and contains the largest Cassin’s auklet
breeding colony in the world (540000 pairs in 1989;
Rodway et al. 1990). This windswept and effectively
treeless island is the outermost island of the Scott
Island chain, 45 km WNW of Cape Scott at the north-
ern tip of Vancouver Island. It has been protected since
1971 as an ecological reserve by the province of
British Columbia and is closed to the public (Anne Val-
lée Triangle Island Ecological Reserve, www.env.gov.
bc.ca/becparks/eco_reserve/anne_er.html).

Frederick Island (53°56’ N, 133°11’ W) lies approxi-
mately 2 km off the northwest coast of Haida Gwaii
(Queen Charlotte Islands). The colony had approxi-
mately 90 000 pairs of nesting Cassin’s auklets in 1980
(Rodway 1991, Rodway et al. 1994). Frederick Island is
largely forested, and the vegetation is described by
Rodway et al. (1994). The island is part of Duu Guusd
Tribal Park and is protected as a Wildlife Habitat Area
(Frederick Island, 6-037) for ancient murrelets Synthli-
boramphus antiquus and Cassin’s auklet by the pro-
vince of British Columbia (http://www.env.gov.bc.ca/
cgi-bin/apps/faw/wharesult.cgi?search=number&select
=6&number=037&submit=Search)

Nestling diet data. We used historical published
records (Vermeer 1985) and available raw data files to
reconstruct prey sampling from Triangle Island (1978,
1979, 1980, 1981, 1982) and Frederick Island (1980,
1981). More recent prey sampling was conducted from
1996 to 2000 in West Bay on Triangle Island (see
Bertram et al. 2001) and also on Frederick Island from
1996 to 1998 and in 2000 (Table 1). Diet samples were
collected by capturing incoming parents using a bar-
rier net (‘pheasant net’). We assisted adult birds to
regurgitate the meals intended for nestlings by mas-
saging the gular pouch while the beak was suspended
over a pre-weighed sample container. The wet mass of
sample was determined. We then added 10% formalin
(buffered with borax to prevent degradation of inverte-
brate body parts) in sea water to each container to pre-
serve the meal for identification and enumeration.
Approximately 10 samples were collected every 10 d
during a fixed time frame during the chick-rearing
period at each colony. Timing of hatching is positively
correlated on the 2 colonies (p = 0.9, p = 0.004, n = 7,
A. Harfenist unpubl.) and occurs about 1 wk earlier on
Triangle than on Frederick Island, so diet sampling
began on 18 to 19 May (Period 1) on Triangle and on 27
May to 3 June (Period 2) on Frederick Island.

Diet analyses: assumptions and corrections. Species
composition is reported as % wet mass in order to com-
pare more recent samples with historical data (Ver-
meer 1985). For both the general and specific diet com-
position, % mass was expressed as a % of identified
prey. We assumed that the proportions of identifiable
and unidentifiable items were distributed similarly for

all major prey species. The mass of euphausiids in the
historical samples (1978 to 1982) was corrected be-
cause of the digested euphausiid category, which did
not exist for the more recent samples. The mass of di-
gested euphausiids was added, by species, according
to the proportion of euphausiids identified in the corre-
sponding sampling period. The euphausiid Thysa-
noesa longipes in the historical samples (1978 to 1982)
is the same species as identified as T. inspinata in the
more recent samples. Finally, the inter-annual compar-
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Nestling diet composition

Overall, the diet of Cassin’s auklet at both Triangle and
Frederick Islands was dominated by 2 types of crus-
tacean prey (copepods and euphausiids) and fish (Fig. 3).
During Periods 1 to 5 in all years, these prey together
contributed 89 to 99% by overall mass (Fig. 3). Three
other types of crustaceans including carideans,
brachyurans, and amphipods occurred frequently in
the diet (Fig. 3 and Tables S1 & S2 in the Supplement,
available at www.int-res.com/articles/suppl/m393p199
_app-xls), but in general they contributed little by mass.

Annual-level variation

While copepods, euphausiids, and fish comprised the
bulk of the diet of Cassin’s auklet, the relative contri-
bution of these prey groups varied widely between
sites and among years (Fig. 3). Overall, however, cope-
pods were the predominant prey. At both sites and in
all years, a single species, Neocalanus cristatus, in par-
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Frederick after they had disappeared on
Triangle. In 2000, a cooler year in the time
series, occurrence of Neocalanus cristatus
increased during Periods 1 to 5 on Frederick
Island while remaining stable on Triangle
Island.

Latitudinal differences in the effects of
prey phenology on nestling diet are evident
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Island, the peak will be later and more protracted.
Poor reproductive performance is the biological con-
sequence of a trophic mismatch for Cassin’s auklet.

Our data and analyses show that in the warm El
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to changes in zooplankton that are related to ocean cli-
mate (e.g. Mackas et al. 2007). Additional independent

information on juvenile coho salmon Oncorhynchus
kisutch
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