





S2 Objective functions

S2.1 Pollinator visitation

To maximize pollinator visitation, we use the plant-pollinator interaction data to first con-
struct an m x n “visitation matrix” (denoted V). The rows of V correspond to the polli-
nator species, the columns to the potential plant species, and the (i, j) entry indicates the
number of records of pollinator species i visiting plant species j. We compute the visi-
tation score of plant mix M, denoted fy,(M), by subsetting the visitation matrix to those
plants present in M and then summing all matrix elements. Consequently, for a given mix

size k, fy is maximized by the k plants that received the most visits across the data-set.

S2.2 Pollinator richness

To compute the richness score of a plant mix M, denoted fgr(M), we identify how many
rows in the subsetted visitation matrix described above for visitation contain a non-zero
entry. In other words, for a mix of a given size, fg is maximized by the plant mix that is

visited by the greatest number of pollinator species.

S2.3 Floral phenology

One could use floral phenology to select a plant mix in multiple ways, and exactly how
should depend on the data available and the goals of the restoration. Here we provide
two representative approaches.

The first requires a record of calendar dates on which each visitation occurred. We use
these to infer the duration of a flower’s “bloom period”, defining it for each plant species
as the range of dates spanning all recorded visits across all pollinators. Alternatively, if

direct phenological measurements of bloom were available, we could instead use those



or, alternatively, one might wish to use percentiles instead of extremes. However, a full
evaluation of how one computes the bloom period of a plant species is not our goal here.
Once we have computed bloom periods, we then classify a pollinator as “supported” by
a mix if the bloom periods of the included plants visited by that pollinator collectively
cover the flight season of that pollinator. The phenology score for a particular mix, de-
noted by fr(M), is then equal to the number of pollinators whose flight seasons are fully
supported. Here, the subscript T is used to indicate that this metric is based on the timing
of interactions.

The second method is less data intensive, requiring bloom periods for the candidate
plant species but not visitation records. First, we split the season into some number of
time intervals (e.g., months or weeks). For plant species i, we define the matrix x where
X;j = 1 if plant species i flowers during time period j and 0 otherwise. Ideally, we want
to select plant mixes that have many species blooming in each interval and few intervals
with nothing blooming. If we let the vector y denote the number of species blooming in
interval j (specifically, y; = 3 X; j), then we can accomplish this by computing a modified

geometric mean of the elements of y. Specifically, we define

fa(M) = T Jdy; +1) (s1)
j=1

where n denotes the number of time intervals or, equivalently, the length of the vector
y. Unlike the arithmetic mean, the geometric mean penalizes heavily mixes with small
values, thus favoring mixes that promote season-long evenness of flowering. However,
because the geometric mean is multiplicative, it equals zero when any single entry is zero.
Thus we add 1 to each entry in the above product. The subscript B is used here to indicate
that this metric is based on bloom periods.

Neither of these objective functions account for uncertainty in our knowledge of the



timing of plant-pollinator interactions. For example, it is possible that our estimated flight
seasons or bloom periods for some species are too long or too short, or some phenologies
may change from year to year. One could accommodate such uncertainty by modifying
these functions appropriately. For example, in the case of fg, we could require that polli-
nator flight seasons be buffered on either side by some number of intervals. Optimizing
ft does not require any pollinator information, however, because it simply finds the mix
of plants that provides the most even floral sequence. In this case, one could shorten the
estimates of plant bloom periods by a given percentage before optimization, which would

force selection of mixes that have greater bloom overlaps.

S2.4 Composite objective functions

While the functions introduced above have all been constructed to evaluate single crite-
rion, construction of objective functions that simultaneously maximize multiple criteria
can be accomplished easily by combining these simpler functions. For example, to max-
imize both pollinator visitation and richness, the required objective function could be
constructed by multiplying together the appropriate simple objective functions, giving
fvr(M) = fy(M) CTk(M). By combining multiplicatively, the component objective func-
tions are weighted equally and thus the composite objective function will be maximized
by plant mixes that maximize this product. Thus, the units of measurement for each com-
ponent objective function need not be comparable. More complex methods for combining
these objective functions could also be constructed, should one want to weight visitation

more heavily than richness, for example.
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