## ## Elephant population size estimation ## rm(list=ls()) gc() ## 1. vals <- 59:200 likelihoods <- dhyper(x=15, m=27, n=vals, k=74, log=TRUE) vals[which.max(likelihoods)] ## so, mle number of unmarked individuals is 106, bringing the ## estimate of the total population size is: 106+27 ## 2. chi.2 <- qchisq(0.05, df=1, lower.tail=FALSE)/2 vals.above <- vals[max(likelihoods)-likelihoods0.95)[1] ## Check the sum sum(post.ordered[keep]) ## ## Finally, find n corresponding to a cumulative posterior probability ## of 0.95. bci <- range(vals.ordered[keep]) ## bci for total: bci + 27 ## could also do this using the uniroot function f <- function(x) sum((posteriors)[(posteriors-x)>0])-0.95 x <- uniroot(f, interval=c(0,1))$root ## x is the height of the line that interects our posterior at the 95% ## BCI range(vals[posteriors>x]) + 27 ## 9. ## ## Above we calculated the likelihood-based confidence interval and it ## was (105,192). Here we have calculated the 95% BCI to be ##(103,199). These are pretty close. ## 10. vals <- 50:1000 ll <- dhyper(x=15, m=27, n=vals, k=74, log=FALSE) vals.prior <- rep(1/length(vals), length(vals)) posteriors <- sapply(seq_along(vals), calc.post) post.ordered <- posteriors[order(posteriors, decreasing=TRUE)] vals.ordered <- vals[order(posteriors, decreasing=TRUE)] post.cumsum <- cumsum(post.ordered) keep <- 1:which(post.cumsum>0.95)[1] bci <- range(vals.ordered[keep]) bci + 27 ## result is the same ## ## Biodiversity and ecosystem function ## ## 1. ## Read and examine the data bb <- read.csv('/~lmgonigl/materials-qm/data/biodiv.csv', stringsAsFactors=TRUE, strip.white=TRUE) head(bb) ## 2. plot(x=bb$species, bb$co2flux, pch=16, las=1, xlab='Number of species', ylab=expression(CO[2]~' flux')) ## 3. out.lm <- lm(co2flux ~ species, data=bb) summary(out.lm) curve(coef(out.lm)[1] + coef(out.lm)[2]*x, from=2, to=19, col='red', add=TRUE) ## 4. out.nls.mm <- nls(co2flux ~ a + b * (species-2)/(c+(species-2)), data=bb, start=list(a=-1000, b=1000, c=1)) summary(out.nls.mm) coef(out.nls.mm) curve(coef(out.nls.mm)['a'] + coef(out.nls.mm)['b'] * (x-2) / (coef(out.nls.mm)['c']+(x-2)), from=2, to=19, col='blue', add=TRUE) ## 5. BIC(out.lm) BIC(out.nls.mm) ## non-linear is a better fit ## 6. bic.vec <- c(lm=BIC(out.lm), nls=BIC(out.nls.mm)) bic.delta <- bic.vec - min(bic.vec) L <- exp(-0.5 * bic.delta) w <- L/sum(L) w ## 7. aic.vec <- c(lm=AIC(out.lm), nls=AIC(out.nls.mm)) aic.delta <- aic.vec - min(aic.vec) L <- exp(-0.5 * aic.delta) w <- L/sum(L) w ## 8. ## non-linear has better support under both BIC and AIC ## 9. ## ## null hypothesis testing (if possible) would simply allow you to ## reject (or fail to reject) the null model. BIC, on the other hand, ## gives you posterior weights for each of the models, which provide a ## measure of how much better one model is compared to the other. ## 10. ## ## I wasn't able to get this working with species on its original ## scale (because 19^c gets very large, very quickly). Instead, I ## re-scaled species so that it ranges from 0-1 (this is stored in a ## new variable species.sc). The model runs fine on this new scale. bb$species.sc <- bb$species-min(bb$species) bb$species.sc <- bb$species.sc/max(bb$species.sc) out.nls.pow <- nls(co2flux ~ a + b*(species.sc)^c, data=bb, start=list(a=-1000, b=1500, c=1/5)) plot(x=bb$species.sc, bb$co2flux, pch=16, las=1, xlab='Number of species', ylab=expression(CO[2]~' flux')) curve(coef(out.nls.pow)['a'] + coef(out.nls.pow)['b']*x^coef(out.nls.pow)['c'], from=0, to=1, col='green4', add=TRUE) BIC(out.nls.mm) BIC(out.nls.pow) ## re-run Michaelis-Menten on same scale out.nls.mm.2 <- nls(co2flux ~ a + b * species.sc/(c+species.sc), data=bb, start=list(a=-1000, b=1000, c=1/5)) summary(out.nls.mm.2) ## same BIC as with non-scaled species (as it should be) BIC(out.nls.mm) BIC(out.nls.mm.2) ## add curve to plot curve(coef(out.nls.mm.2)['a'] + coef(out.nls.mm.2)['b'] * x / (coef(out.nls.mm.2)['c']+x), from=0, to=1, col='blue', add=TRUE) BIC(out.nls.mm) BIC(out.nls.pow) bic.vec <- c(mm=BIC(out.nls.mm), pow=BIC(out.nls.pow)) bic.delta <- bic.vec - min(bic.vec) L <- exp(-0.5 * bic.delta) w <- L/sum(L) w ## the power function fits better, but not by a lot