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effect sizes. We may also test hypotheses that the effect

does or does not fall within a specific range; for example,

we may test the hypothesis that the effect is no greater than

a particular amount, in which case the hypothesis is said to

be a one-sided or dividing hypothesis [7, 8].

Much statistical teaching and practice has developed a

strong (and unhealthy) focus on the idea that the main aim

of a study should be to test null hypotheses. In fact most

descriptions of statistical testing focus only on testing null

hypotheses, and the entire topic has been called ‘‘Null

Hypothesis Significance Testing’’ (NHST). This exclusive

focus on null hypotheses contributes to misunderstanding

of tests. Adding to the misunderstanding is that many

authors (including R.A. Fisher) use ‘‘null hypothesis’’ to

refer to any test hypothesis, even though this usage is at

odds with other authors and with ordinary English defini-

tions of ‘‘null’’—as are statistical usages of ‘‘significance’’

and ‘‘confidence.’’

Uncertainty, probability, and statistical significance

A more refined goal of statistical analysis is to provide an

evaluation of certainty or uncertainty regarding the size of

an effect. It is natural to express such certainty in terms of

‘‘probabilities’’ of hypotheses. In conventional statistical

methods, however, ‘‘probability’’ refers not to hypotheses,

but to quantities that are hypothetical frequencies of data

patterns under an assumed statistical model. These methods

are thus called frequentist methods, and the hypothetical

frequencies they predict are called ‘‘frequency probabili-

ties.’’ Despite considerable training to the contrary, many

statistically educated scientists revert to the habit of mis-

interpreting these frequency probabilities as hypothesis

probabilities. (Even more confusingly, the term ‘‘likelihood

of a parameter value’’ is reserved by statisticians to refer to

the probability of the observed data given the parameter

value; it does not refer to a probability of the parameter

taking on the given value.)

Nowhere are these problems more rampant than in

applications of a hypothetical frequency called the P value,

also known as the ‘‘observed significance level’’ for the test

hypothesis. Statistical ‘‘significance tests’’ based on this

concept have been a central part of statistical analyses for

centuries [75]. The focus of traditional definitions of

P values and statistical significance has been on null

hypotheses, treating all other assumptions used to compute

the P value as if they were known to be correct. Recog-

nizing that these other assumptions are often questionable

if not unwarranted, we will adopt a more general view of

the P value as a statistical summary of the compatibility



P value is a number computed from the data and thus an

analysis result, unknown until it is computed.

Moving from tests to estimates

We can vary the test hypothesis while leaving other

assumptions unchanged, to see how the P value differs

across competing test hypotheses. Usually, these test

hypotheses specify different sizes for a targeted effect; for

example, we may test the hypothesis that the average dif-

ference between two treatment groups is zero (the null

hypothesis), or that it is 20 or -10 or any size of interest.

The effect size whose test produced P = 1 is the size most

compatible with the data (in the sense of predicting what

was in fact observed) if all the other assumptions used in

the test (the statistical model) were correct, and provides a

point estimate of the effect under those assumptions. The

effect sizes whose test produced P[ 0.05 will typically

define a range of sizes (e.g., from 11.0 to 19.5) that would

be considered more compatible with the data (in the sense

of the observations being closer to what the model pre-

dicted) than sizes outside the range—again, if the statistical

model were correct. This range corresponds to a

1 - 0.05 = 0.95 or 95 % confidence interval, and provides

a convenient way of summarizing the results of hypothesis

tests for many effect sizes. Confidence intervals are

examples of interval estimates.

Neyman [76] proposed the construction of confidence

intervals in this way because they have the following

property: If one calculates, say, 95 % confidence intervals

repeatedly in valid applications, 95 % of them, on average,

will contain (i.e., include or cover) the true effect size.

Hence, the specified confidence level is called the coverage



3. A significant test result (P £ 0.05) means that the

test hypothesis is false or should be rejected. No! A

small P value simply flags the data as being unusual

if all the assumptions used to compute it (including

the test hypothesis) were correct; it may be small

because there was a large random error or because

some assumption other than the test hypothesis was

violated (for example, the assumption that this

P value was not selected for presentation because

it was below 0.05). P B 0.05 only means that a

discrepancy from the hypothesis prediction (e.g., no

difference between treatment groups) would be as

large or larger than that observed no more than 5 %

of the time if only chance were creating the

discrepancy (as opposed to a violation of the test

hypothesis or a mistaken assumption).

4. A nonsignificant test result (P > 0.05) means that

the test hypothesis is true or should be accepted.

No! A large P value only suggests that the data are

not unusual if all the assumptions used to compute the

P value (including the test hypothesis) were correct.

The same data would also not be unusual under many

other hypotheses. Furthermore, even if the test

hypothesis is wrong, the P value may be large

because it was inflated by a large random error or

because of some other erroneous assumption (for

example, the assumption that this P value was not



hypothesis, these assumptions include randomness in

sampling, treatment assignment, loss, and missing-

ness, as well as an assumption that the P value was

not selected for presentation based on its size or some

other aspect of the results.

10. If you reject the test hypothesis because P £ 0.05,

the chance you are in error (the chance your

‘‘significant finding’’ is a false positive) is 5 %. No!

To see why this description is false, suppose the test

hypothesis is in fact true. Then, if you reject it, the chance

you are in error is 100 %, not 5 %. The 5 % refers only to

how often you would reject it, and therefore be in error,

over very many uses of the test across different studies

when the test hypothesis and all other assumptions used

for the test are true. It does not refer to your single use of

the test, which may have been thrown off by assumption

violations as well as random errors. This is yet another

version of misinterpretation #1.

11. P = 0.05 and P £ 0.05 mean the same thing. No!

This is like saying reported height = 2 m and

reported height B2 m are the same thing:

‘‘height = 2 m’’ would include few people and those

people would be considered tall, whereas ‘‘height

B2 m’’ would include most people including small

children. Similarly, P = 0.05 would be considered a

borderline result in terms of statistical significance,

whereas P B 0.05 lumps borderline results together

with results very incompatible with the model (e.g.,

P = 0.0001) thus rendering its meaning vague, for no

good purpose.

12. P values are properly reported as inequalities (e.g.,

report ‘‘P < 0.02’’ when P = 0.015 or report

‘‘P > 0.05’’ when P = 0.06 or P = 0.70). No! This is





95 % probability of containing the true value; nonethe-

less, such computations require not only the assumptions

used to compute the confidence interval, but also further

assumptions about the size of effects in the model. These

further assumptions are summarized in what is called a

prior distribution, and the resulting intervals are usually

called Bayesian posterior (or credible) intervals to

distinguish them from confidence intervals [18].

Symmetrically, the misinterpretation of a small P value as

disproving the test hypothesis could be translated into:

20. An effect size outside the 95 % confidence interval

has been refuted (or excluded) by the data. No! As

with the P value, the confidence interval is computed

from many assumptions, the violation of which may

have led to the results. Thus it is the combination of

the data with the assumptions, along with the arbitrary

95 % criterion, that are needed to declare an effect

size outside the interval is in some way incompatible

with the observations. Even then, judgements as

extreme as saying the effect size has been refuted or

excluded will require even stronger conditions.

As with P values, naı̈ve comparison of confidence intervals

can be highly misleading:

21. If two confidence intervals overlap, the difference

between two estimates or studies is not significant.

No! The 95 % confidence intervals from two subgroups

or studies may overlap substantially and yet the test for

difference between them may still produce P\ 0.05.

Suppose for example, two 95 % confidence intervals for

means from normal populations with known variances

are (1.04, 4.96) and (4.16, 19.84); these intervals

overlap, yet the test of the hypothesis of no difference

ineffect across studies givesP = 0.03. Aswith P values,

comparison between groups requires statistics that

directly test and estimate the differences across groups.

It can, however, be noted that if the two 95 % confidence

intervals fail to overlap, then when using the same

assumptions used to compute the confidence intervals

we will find P\ 0.05 for the difference; and if one of the

95 % intervals contains the point estimate from the other

group or study, we will find P[0.05 for the difference.

Finally, as with P values, the replication properties of

confidence intervals are usually misunderstood:

22. An observed 95 % confidence interval predicts

that 95 % of the estimates from future studies will

fall inside the observed interval. No! This statement

is wrong in several ways. Most importantly, under the

model, 95 % is the frequency with which other

unobserved intervals will contain the true effect, not

how frequently the one interval being presented will

contain future estimates. In fact, even under ideal

conditions the chance that a future estimate will fall

within the current interval will usually be much less

than 95 %. For example, if two independent studies of

the same quantity provide unbiased normal point

estimates with the same standard errors, the chance

that the 95 % confidence interval for the first study

contains the point estimate from the second is 83 %

(which is the chance that the difference between the

two estimates is less than 1.96 standard errors). Again,

an observed interval either does or does not contain the

true effect; the 95 % refers only to how often 95 %

confidence intervals computed from very many studies

would contain the true effect if all the assumptions used

to compute the intervals were correct.

23. If one 95 % confidence interval includes the null

value and another excludes that value, the interval

excluding the null is the more precise one. No!

When the model is correct, precision of statistical

estimation is measured directly by confidence interval

width (measured on the appropriate scale). It is not a

matter of inclusion or exclusion of the null or any other

value. Consider two 95 % confidence intervals for a



hypotheses with data and wish to compare hypotheses with

this measure, we need to examine their P values directly, not

simply ask whether the hypotheses are inside or outside the

interval. This need is particularly acute when (as usual) one

of the hypotheses under scrutiny is a null hypothesis.

Common misinterpretations of power

The power of a test to detect a correct alternative

hypothesis is the pre-study probability that the test will

reject the test hypothesis (e.g., the probability that P will



represented by parameters denoted by Greek letters. ‘‘Model
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hypothesis probabilities. For example, under common sta-

tistical models, one-sided P values can provide lower

bounds on probabilities for hypotheses about effect direc-

tions [45, 46, 112, 113]. Whether such reinterpretations can

eventually replace common misinterpretations to good

effect remains to be seen.

A shift in emphasis from hypothesis testing to estimation

has been promoted as a simple and relatively safe way to

improve practice [5, 61, 63, 114, 115] resulting in increasing

use of confidence intervals and editorial demands for them;

nonetheless, this shift has brought to the fore misinterpre-

tations of intervals such as 19–23 above [116]. Other

approaches combine tests of the null with further calcula-

tions involving both null and alternative hypotheses [117,

118]; such calculations may, however, may bring with them

further misinterpretations similar to those described above

for power, as well as greater complexity.

Meanwhile, in the hopes of minimizing harms of current

practice, we can offer several guidelines for users and

readers of statistics, and re-emphasize some key warnings

from our list of misinterpretations:

(a) Correct and careful interpretation of statistical tests

demands examining the sizes of effect estimates and

confidence limits, as well as precise P values (not

just whether P values are above or below 0.05 or

some other threshold).

(b) Careful interpretation also demands critical exami-

nation of the assumptions and conventions used for

the statistical analysis—not just the usual statistical

assumptions, but also the hidden assumptions about

how results were generated and chosen for

presentation.

(c) It is simply false to claim that statistically non-

significant results support a test hypothesis, because

the same results may be even more compatible with

alternative hypotheses—even if the power of the test

is high for those alternatives.

(d) Interval estimates aid in evaluating whether the data

are capable of discriminating among various

hypotheses about effect sizes, or whether statistical
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